Service Life of Adhesive Bonds under Cyclic Loading with a Filler Based on Natural Waste from Coconut Oil Production
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA FE 2022
Internal grant agency of Faculty of Engineering, Czech University of Life Sciences Prague
PubMed
35267858
PubMed Central
PMC8915070
DOI
10.3390/polym14051033
PII: polym14051033
Knihovny.cz E-zdroje
- Klíčová slova
- SEM, coconut shell powder, cracking, material utilization, mechanical properties, natural filler, quasi-static test, secondary product,
- Publikační typ
- časopisecké články MeSH
The research is focused on the evaluation of mechanical properties of adhesive bonds with a composite layer of adhesive to increase their service life (safety) under cyclic loading of different intensities. Cyclic loading represents a frequent cause of adhesive bond failure and, thus, a reduction in their service life. Waste from the production of coconut oil, that is, coconut shells in the form of particles, was used as a filler. Coconut shells are in most cases incinerated or otherwise uselessly incinerated, but they can also be used as a natural filler. Cyclic loading (quasi-static tests) was performed for 1000 cycles in two intensities, that is, 5-30% (157-940 N) of maximum force and 5-50% (157-1567 N) of maximum force. The results of the experiment showed a positive effect of the added filler, especially at an intensity of 5-50%, when the service life of adhesive bonds with a composite adhesive layer (AB10, AB20, AB30) increased compared to adhesive bonds without added AB0 filler, which did not withstand the given intensity. A more pronounced viscoelastic behavior of adhesive bonds was demonstrated at an intensity of 5-50% between the 1st and 1000th cycle. SEM analysis showed reduced wetting of the filler and matrix and delamination due to cyclic loading.
Zobrazit více v PubMed
Lapique F., Redford K. Curing effects on viscosity and mechanical properties of a commercial epoxy resin adhesive. Int. J. Adhes. Adhes. 2002;22:337–346. doi: 10.1016/S0143-7496(02)00013-1. DOI
Bhowmik S., Bonin H., Bui V., Weir R. Durability of adhesive bonding of titanium in radiation and aerospace environments. Int. J. Adhes. Adhes. 2006;26:400–405. doi: 10.1016/j.ijadhadh.2005.05.004. DOI
Barnes T., Pashby I. Joining techniques for aluminium spaceframes used in automobiles: Part II—Adhesive bonding and mechanical fasteners. J. Mater. Process. Technol. 2000;99:72–79. doi: 10.1016/S0924-0136(99)00361-1. DOI
Preu H., Mengel M. Experimental and theoretical study of a fast curing adhesive. Int. J. Adhes. Adhes. 2007;27:330–337. doi: 10.1016/j.ijadhadh.2006.06.004. DOI
Adams R. Adhesive Bonding: Science, Technology and Applications. Woodhead Publishing; Abington, MA, USA: Cambridge, UK: 2005.
Pizzi A., Mittal K. Handbook of Adhesive Technology. CRS Press Taylor & Francis Group; Boca Raton, FL, USA: 2003.
Saraç İ., Adin H., Temiz Ş. Experimental determination of the static and fatigue strength of the adhesive joints bonded by epoxy adhesive including different particles. Compos. Part B Eng. 2018;155:92–103. doi: 10.1016/j.compositesb.2018.08.006. DOI
Yan L., Kasal B., Huang L. A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Compos. Part B Eng. 2016;92:94–132. doi: 10.1016/j.compositesb.2016.02.002. DOI
Lau K.T., Hung P.Y., Zhu M.H., Hui D. Properties of natural fibre composites for structural engineering applications. Compos. Part B Eng. 2018;136:222–233. doi: 10.1016/j.compositesb.2017.10.038. DOI
Müller M., Valášek P., Kolář V., Šleger V., Gürdil G.A.K., Hromasová M., Hloch S., Moravec J., Pexa M. Material Utilization of Cotton Post-Harvest Line Residues in Polymeric Composites. Polymers. 2019;11:1106. doi: 10.3390/polym11071106. PubMed DOI PMC
Kolář V., Müller M., Mishra R., Rudawska A., Šleger V., Tichý M., Hromasová M., Valášek P. Quasi-Static Tests of Hybrid Adhesive Bonds Based on Biological Reinforcement in the Form of Eggshell Microparticles. Polymers. 2020;12:1391. doi: 10.3390/polym12061391. PubMed DOI PMC
Sareena C., Ramesan M., Purushothaman E. Utilization of coconut shell powder as a novel filler in natural rubber. J. Reinf. Plast. Compos. 2012;31:533–547. doi: 10.1177/0731684412439116. DOI
Kumar M., Jena H. Sea Shell: A Marine Waste to Filler in Polymer Composite; Proceedings of the International Conference on Artificial Intelligence in Manufacturing & Renewable Energy (ICAIMRE) 2019; Bhubaneswar, India. 25–26 October 2019; DOI
Olumuyiwa A.J., Isaac T.S., Samuel S.O. Study of Mechanical Behaviour of Coconut Shell Reinforced Polymer Matrix Composite. J. Miner. Mater. Charact. Eng. 2012;11:774–779. doi: 10.4236/jmmce.2012.118065. DOI
Keerthika B., Umayavalli M., Jeyalalitha T., Krishnaveni N. Coconut shell powder as cost effective filler in copolymer of acrylonitrile and butadiene rubber. Ecotoxicol. Environ. Saf. 2016;130:1–3. doi: 10.1016/j.ecoenv.2016.03.022. PubMed DOI
Orue A., Eceiza A., Arbelaiz A. The use of alkali treated walnut shells as filler in plasticized poly(lactic acid) matrix composites. Ind. Crop. Prod. 2020;145:111993. doi: 10.1016/j.indcrop.2019.111993. DOI
Ramnath B.V., Jeykrishnan J., Ramakrishnan G., Barath B., Ejoelavendhan E., Raghav P.A. Proceedings of the Materials Today: Proceedings. Volume 5. Elsevier BV; Amsterdam, The Netherlands: 2018. Sea Shells And Natural Fibres Composites: A Review; pp. 1846–1851.
Müller M., Valášek P. Composite adhesive bonds reinforced with microparticle filler based on egg shell waste. J. Phys. Conf. Ser. 2018;1016:12002. doi: 10.1088/1742-6596/1016/1/012002. DOI
Bahrami B., Ayatollahi M., Beigrezaee M., da Silva L. Strength improvement in single lap adhesive joints by notching the adherends. Int. J. Adhes. Adhes. 2019;95:102401. doi: 10.1016/j.ijadhadh.2019.102401. DOI
Stoeckel F., Konnerth J., Gindl-Altmutter W. Mechanical properties of adhesives for bonding wood—A review. Int. J. Adhes. Adhes. 2013;45:32–41. doi: 10.1016/j.ijadhadh.2013.03.013. DOI
Kolář V., Tichý M., Müller M., Valášek P., Rudawska A. Research on influence of cyclic degradation process on changes of structural adhesive bonds mechanical properties. Agron. Res. 2019;17:1062–1070. doi: 10.15159/AR.19.090. DOI
Han X., Crocombe A., Anwar S., Hu P. The strength prediction of adhesive single lap joints exposed to long term loading in a hostile environment. Int. J. Adhes. Adhes. 2014;55:1–11. doi: 10.1016/j.ijadhadh.2014.06.013. DOI
Krolczyk G., Raos P., Legutko S. Experimental analysis of surface roughness and surface texture of machined and fused deposition modelled parts. Teh. Vjesn. 2014;21:217–221.
Nieslony P., Krolczyk G., Wojciechowski S., Chudy R., Żak K., Maruda R. Surface quality and topographic inspection of variable compliance part after precise turning. Appl. Surf. Sci. 2018;434:91–101. doi: 10.1016/j.apsusc.2017.10.158. DOI
Rudawska A. Selected aspects of the effect of mechanical treatment on surface roughness and adhesive joint strength of steel sheets. Int. J. Adhes. Adhes. 2014;50:235–243. doi: 10.1016/j.ijadhadh.2014.01.032. DOI
Bresson G., Jumel J., Shanahan M.E., Serin P. Strength of adhesively bonded joints under mixed axial and shear loading. Int. J. Adhes. Adhes. 2012;35:27–35. doi: 10.1016/j.ijadhadh.2011.12.006. DOI
Broughton W.R., Mera R.D., Hinopoulos G. Cyclic Fatigue Testing of Adhesive Joints Test Method Assessment. Elsevier BV; Teddington, UK: 1999.
Chen Y., Smith L.V. Ratcheting and recovery of adhesively bonded joints under tensile cyclic loading. Mech. Time-Dependent Mater. 2021:1–20. doi: 10.1007/s11043-019-09432-1. DOI
Zhang J., Li H., Li H.-Y., Wei X.-L. Uniaxial ratchetting and low-cycle fatigue failure behaviors of adhesively bonded butt-joints under cyclic tension deformation. Int. J. Adhes. Adhes. 2019;95:102399. doi: 10.1016/j.ijadhadh.2019.102399. DOI
Naebe M., Abolhasani M.M., Khayyam H., Amini A., Fox B. Crack Damage in Polymers and Composites: A Review. Polym. Rev. 2016;56:31–69. doi: 10.1080/15583724.2015.1078352. DOI
Xia Z., Shen X., Ellyin F. Biaxial cyclic deformation of an epoxy resin: Experiments and constitutive modeling. J. Mater. Sci. 2005;40:643–654. doi: 10.1007/s10853-005-6302-0. DOI
Tao G., Xia Z. Ratcheting behavior of an epoxy polymer and its effect on fatigue life. Polym. Test. 2007;26:451–460. doi: 10.1016/j.polymertesting.2006.12.010. DOI
Arena N., Lee J., Clift R. Life Cycle Assessment of activated carbon production from coconut shells. J. Clean. Prod. 2016;125:68–77. doi: 10.1016/j.jclepro.2016.03.073. DOI
Faisal Z.H.T., Amri F., Tahir I. Effect of Maleic Anhydride Polypropylene on the Properties of Coconut Shell Filled Thermoplastic Elastomeric Olefin Composites. Indones. J. Chem. 2010;10:156–161. doi: 10.22146/ijc.21453. DOI
International Organization for Standardization . ČSN EN 1465—Adhesives—Determination of Tensile Lap-Shear Strength of Bonded Assemblies. Czech Standardization Institute; Prague, Czech Republic: 2009.
Tichý M., Kolář V., Müller M., Mishra R.K., Šleger V., Hromasová M. Quasi-Static Shear Test of Hybrid Adhesive Bonds Based on Treated Cotton-Epoxy Resin Layer. Polymers. 2020;12:2945. doi: 10.3390/polym12122945. PubMed DOI PMC
DIN 17120 Grade St 37-3—Low Carbon Steel—Matmatch. [(accessed on 13 May 2021)]. Available online: https://matmatch.com/materials/minfm31305-din-17120-grade-st-37-3.
Adhesives—Designation of Main Failure Patterns. Czech Standard Institute; Prague, Czech Republic: 1995. ČSN ISO 10365.
Broughton W.R., Mera R.D. Cyclic Fatigue Testing of Adhesive Joints Environmental Effects. Elsevier BV; Teddington, UK: 1999.
Aziz S.H., Ansell M.P. The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1—Polyester resin matrix. Compos. Sci. Technol. 2004;64:1219–1230. doi: 10.1016/j.compscitech.2003.10.001. DOI
Valášek P., Müller M., Šleger V., Kolář V., Hromasová M., D’Amato R., Ruggiero A. Influence of Alkali Treatment on the Microstructure and Mechanical Properties of Coir and Abaca Fibers. Materials. 2021;14:2636. doi: 10.3390/ma14102636. PubMed DOI PMC
Cai M., Takagi H., Nakagaito A.N., Katoh M., Ueki T., Waterhouse G.I., Li Y. Influence of alkali treatment on internal microstructure and tensile properties of abaca fibers. Ind. Crop. Prod. 2015;65:27–35. doi: 10.1016/j.indcrop.2014.11.048. DOI
Grant L., Adams R., da Silva L.F. Experimental and numerical analysis of single-lap joints for the automotive industry. Int. J. Adhes. Adhes. 2009;29:405–413. doi: 10.1016/j.ijadhadh.2008.09.001. DOI
Da Silva L.F., Carbas R., Critchlow G., Figueiredo M., Brown K. Effect of material, geometry, surface treatment and environment on the shear strength of single lap joints. Int. J. Adhes. Adhes. 2009;29:621–632. doi: 10.1016/j.ijadhadh.2009.02.012. DOI
Shahar F.S., Sultan M.T.H., Safri S.N.A., Jawaid M., Abu Talib A.R., Basri A.A., Shah A.U.M. Fatigue and impact properties of 3D printed PLA reinforced with kenaf particles. J. Mater. Res. Technol. 2021;16:461–470. doi: 10.1016/j.jmrt.2021.12.023. DOI
Abdullah A.H., Alias S.K., Abdan K., Ali A. Proceedings of the Advanced Materials Research. Volume 576. Trans Tech Publications Ltd.; Freienbach, Switzerland: 2012. A study of fatigue life of kenaf fibre composites; pp. 757–760.
Hasanah U., Setiaji B., Triyono T., Anwar C. The Chemical Composition and Physical Properties of the Light and Heavy Tar Resulted from Coconut Shell Pyrolysis. J. Pure Appl. Chem. Res. 2012;1:26–32. doi: 10.21776/ub.jpacr.2012.001.01.102. DOI
Gao Y., Yang Y., Qin Z., Sun Y. Factors affecting the yield of bio-oil from the pyrolysis of coconut shell. SpringerPlus. 2016;5:1–8. doi: 10.1186/s40064-016-1974-2. PubMed DOI PMC
Müller M., Valášek P., Rudawska A., Choteborsky R. Effect of active rubber powder on structural two-component epoxy resin and its mechanical properties. J. Adhes. Sci. Technol. 2018;32:1531–1547. doi: 10.1080/01694243.2018.1428040. DOI