Quasi-Static Shear Test of Hybrid Adhesive Bonds Based on Treated Cotton-Epoxy Resin Layer

. 2020 Dec 09 ; 12 (12) : . [epub] 20201209

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33317210

Grantová podpora
2020:31140/1312/3107 Internal grant agency of Faculty of Engineering no. 2020:31140/1312/3107 "Research of mechanical properties of bio-composite with geometrical structured natural fibres, Czech University of Life Sciences Prague".

This research evaluates the mechanical properties of hybrid adhesive bonds with various 100% cotton fabrics in static and quasi-static conditions and the influence of alkali surface treatment (NaOH) of the cotton fabrics on the mechanical properties. Biological fibers in polymers are characterized by low wettability with the matrix, which decreases mechanical properties. Adhesive bonds usually operate in cyclic stress, which causes irreversible failure before maximal strength. In this paper, a quasi-static test was used to load the adhesive bonds in 5-50% (192-1951 N) and 5-70% (192-2732 N) intervals with 1000 cycles. The results of SEM analysis showed good wettability of alkali treated cotton fabric with NaOH solution in hybrid adhesive bonds. The static test proved the influence of reinforcing cotton fabrics on shear tensile strength against pure resin, i.e., sample Erik up to 19% on 14.90 ± 1.15 MPa and sample Tera up to 21% on 15.28 ± 1.05 MPa. The adhesive bonds with pure resin did not resist either quasi-static tests. Reinforcing cotton fabrics resisted both quasi-static tests, even shear tensile strength increases up to 10% on 16.34 ± 1.24 MPa for the fabric Erik. The results of strain difference of adhesive bonds with Tera and Erik confirmed that a lower value of the difference during cyclic loading positively influenced the ultimate shear tensile strength.

Zobrazit více v PubMed

Barnes T.A., Pashby I.R. Joining techniques for aluminum spaceframes used in automobiles. Part II—adhesive bonding and mechanical fasteners. J. Mater. Process. Technol. 2000;99:72–79. doi: 10.1016/S0924-0136(99)00361-1. DOI

Preu H., Mengel M. Experimental and theoretical study of a fast curing adhesive. Int. J. Adhes. Adhes. 2007;27:330–337. doi: 10.1016/j.ijadhadh.2006.06.004. DOI

Adams R.D. Adhesive Bonding: Science, Technology and Applications. Woodhead Publishing; London, UK: 2005.

Pizzi A., Mittal K.L. Handbook of Adhesive Technology. CRS Press Taylor & Francis Group; Boca Raton, FL, USA: 2003.

Müller M., Valášek P. Composite adhesive bonds reinforced with microparticle filler based on egg shell waste. J. Phys. Conf. Ser. 2018;1016:12002. doi: 10.1088/1742-6596/1016/1/012002. DOI

Bahrami B., Ayatollahi M.R., Beigrezaee M.J., da Silva L.F.M. Strength improvement in single lap adhesive joints by notching the adherends. Int. J. Adhes. Adhes. 2019;95:102401. doi: 10.1016/j.ijadhadh.2019.102401. DOI

Stoeckel F., Konnerth J., Gindl-Altmutter W. Mechanical properties of adhesives for bonding wood—A review. Int. J. Adhes. Adhes. 2013;45:32–41. doi: 10.1016/j.ijadhadh.2013.03.013. DOI

Krolczyk G., Raos P., Legutko S. Experimental analysis of surface roughness and surface texture of machined and fused deposition modelled parts. Teh. Vjesn. 2014;21:217–221.

Nieslony P., Krolczyk G.M., Wojciechowski S., Chudy R., Zak K., Maruda R.W. Surface quality and topographic inspection of variable compliance part after precise turning. Appl. Surf. Sci. 2018;434:91–101. doi: 10.1016/j.apsusc.2017.10.158. DOI

Bresson G., Jumel J., Shanahan M.E.R., Serin P. Strength of adhesively bonded joints under mixed axial and shear loading. Int. J. Adhes. Adhes. 2012;35:27–35. doi: 10.1016/j.ijadhadh.2011.12.006. DOI

Gower M.R.L., Broughton W.R. Project PAJ3—Combined Cyclic Loading and Hostile Environments 1996–1999. National Physical Laboratory; Teddington, UK: 1999. Report No. 11 Fractographic Analysis of Adhesive Joints.

Lapique F., Redford K. Curing effects on viscosity and mechanical properties of a commercial epoxy resin adhesive. Int. J. Adhes. Adhes. 2002;22:337–346. doi: 10.1016/S0143-7496(02)00013-1. DOI

Ruggiero A., Valášek P., Merola M. Friction and wear behaviors of Al/Epoxy composites during reciprocating sliding tests. Manuf. Technol. 2015;15:684–689. doi: 10.21062/ujep/x.2015/a/1213-2489/MT/15/4/684. DOI

Mimura K., Ito H. Characteristics of epoxy resin cured with in situ polymerized curing agent. Polymer. 2002;43:7559–7566. doi: 10.1016/S0032-3861(02)00607-9. DOI

Prolongo S., Del Rosario G., Ureña A. Comparative study on the adhesive properties of different epoxy resins. Int. J. Adhes. Adhes. 2006;26:125–132. doi: 10.1016/j.ijadhadh.2005.02.004. DOI

Van Den Brand J., Van Gils S., Beentjes P., Terryn H., Sivel V., De Wit J.H.W. Improving the adhesion between epoxy coatings and aluminium substrates. Prog. Org. Coatings. 2004;51:339–350. doi: 10.1016/j.porgcoat.2004.08.005. DOI

Niknahad M., Moradian S., Mirabedini M. The adhesion properties and corrosion performance of differently pretreated epoxy coatings on an aluminium alloy. Corros. Sci. 2010;52:1948–1957. doi: 10.1016/j.corsci.2010.02.014. DOI

Kahraman R., Sunar M., Yilbas B. Influence of adhesive thickness and filler content on the mechanical performance of aluminum single-lap joints bonded with aluminum powder filled epoxy adhesive. J. Mater. Process. Technol. 2008;205:183–189. doi: 10.1016/j.jmatprotec.2007.11.121. DOI

Kim H.S., Khamis M.A. Fracture and impact behaviours of hollow micro-sphere/epoxy resin composites. Compos. Part A Appl. Sci. Manuf. 2001;32:1311–1317. doi: 10.1016/S1359-835X(01)00098-7. DOI

Agoudjil B., Ibos L., Canakci A., Candau Y., Mamunya Y. Correlation between transport properties of Ethylene Vinyl Acetate/glass, silver-coated glass spheres composites. Compos. Part A Appl. Sci. Manuf. 2008;39:342–351. doi: 10.1016/j.compositesa.2007.10.003. DOI

Barczewski M., Sałasińska K., Szulc J. Application of sunflower husk, hazelnut shell and walnut shell as waste agricultural fillers for epoxy-based composites: A study into mechanical behavior related to structural and rheological properties. Polym. Test. 2019;75:1–11. doi: 10.1016/j.polymertesting.2019.01.017. DOI

Park S.W., Kim B.C., Lee D.G. Tensile Strength of Joints Bonded With a Nano-particle-Reinforced Adhesive. J. Adhes. Sci. Technol. 2009;23:95–113. doi: 10.1163/156856108X344063. DOI

Essabir H., Nekhlaoui S., Malha M., Bensalah M.O., Arrakhiz F.Z., Qaiss A., Bouhfid R. Bio-composites based on polypropylene reinforced with Almond Shells particles: Mechanical and thermal properties. Mater. Des. 2013;51:225–230. doi: 10.1016/j.matdes.2013.04.031. DOI

Petrásek S., Müller M. Mechanical qualities of adhesive bonds reinforced with biological fabric treated by plasma. Agron. Res. 2017;15:1170–1181.

Pothan L.A., Potschke P., Habler R., Thomas S. The static and dynamic mechanical properties of banana and glass fiber woven fabric-reinforced polyester composite. J. Compos. Mater. 2005;39:1007–1025. doi: 10.1177/0021998305048737. DOI

Arumugam V., Mishra R., Militky J., Salacova J. Investigation on thermo-physiological and compression characteristics of weft-knitted 3D spacer fabrics. J. Text. Inst. 2017;108:1095–1105. doi: 10.1080/00405000.2016.1220035. DOI

Jamshaid H., Mishra R., Militky J., Pechociakova M., Noman M.T. Mechanical, thermal and interfacial properties of green composites from basalt and hybrid woven fabrics. Fibers Polym. 2016;17:1675–1686. doi: 10.1007/s12221-016-6563-z. DOI

Lee J., Cho M., Kim H.S., Kim J.S. Layup optimization of laminated composite patches considering uncertainty of material properties; Proceedings of the Collection of Technical Papers—51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; Orlando, FL, USA. 12–15 April 2010.

Zavrtálek J., Müller M., Šléger V. Low-cyclic fatigue test of adhesive bond reinforced with glass fibre fabric. Agron. Res. 2016;14:1138–1146.

Müller M., Valášek P., Kolář V., Šleger V., Kagan Gürdil G.A., Hromasová M., Hloch S., Moravec J., Pexa M. Material utilization of cotton post-harvest line residues in polymeric composites. Polymers. 2019;11:1106. doi: 10.3390/polym11071106. PubMed DOI PMC

Ayrilmis N., Buyuksari U., Dundar T. Waste pine cones as a source of reinforcing fillers for thermoplastic composites. J. Appl. Polym. Sci. 2010;117:2324–2330. doi: 10.1002/app.32076. DOI

Bajracharya R.M., Bajwa D.S., Bajwa S.G. Mechanical properties of polylactic acid composites reinforced with cotton gin waste and flax fibers. Procedia Eng. 2017;200:370–376. doi: 10.1016/j.proeng.2017.07.052. DOI

Ruggiero A., Valášek P., Müller M. Exploitation of waste date seeds of Phoenix dactylifera in form of polymeric particle biocomposite: Investigation on adhesion, cohesion and wear. Compos. Part B Eng. 2016;104:9–16. doi: 10.1016/j.compositesb.2016.08.014. DOI

Poole A.J., Church J.S., Huson M.G. Environmentally sustainable fibers from regenerated protein. Biomacromolecules. 2009;10:1–8. doi: 10.1021/bm8010648. PubMed DOI

Aziz S.H., Ansell M.P. The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1—polyester resin matrix. Compos. Sci. Technol. 2004;64:1219–1230. doi: 10.1016/j.compscitech.2003.10.001. DOI

Lu X., Zhang M.Q., Rong M.Z., Shi G., Yang G.C. Self-reinforced melt processable composites of sisal. Compos. Sci. Technol. 2003;63:177–186. doi: 10.1016/S0266-3538(02)00204-X. DOI

Kabir M.M., Wang H., Lau K.T., Cardona F. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Compos. Part B Eng. 2012;43:2883–2892. doi: 10.1016/j.compositesb.2012.04.053. DOI

Chong T.Y., Law M.C., Chan Y.S. The Potentials of Corn Waste Lignocellulosic Fibre as an Improved Reinforced Bioplastic Composites. J. Polym. Environ. 2020:1–19. doi: 10.1007/s10924-020-01888-4. PubMed DOI

Joshi S.V., Drzal L.T., Mohanty A.K., Arora S. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos. Part A Appl. Sci. Manuf. 2004;35:371–376. doi: 10.1016/j.compositesa.2003.09.016. DOI

Müller M., Valášek P., Rudawska A. Mechanical properties of adhesive bonds reinforced with biological fabric. J. Adhes. Sci. Technol. 2017;31:1859–1871. doi: 10.1080/01694243.2017.1285743. DOI

Mizera C., Herak D., Hrabe P., Muller M., Kabutey A. Mechanical Behavior of Ensete ventricosum Fiber Under Tension Loading. J. Nat. Fibers. 2017;14:287–296. doi: 10.1080/15440478.2016.1206500. DOI

De Medeiros E.S., Agnelli J.A.M., Joseph K., De Carvalho L.H., Mattoso L.H.C. Mechanical properties of phenolic composites reinforced with jute/cotton hybrid fabrics. Polym. Compos. 2005;26:1–11. doi: 10.1002/pc.20063. DOI

Li X., Tabil L.G., Panigrahi S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. J. Polym. Environ. 2007;15:25–33. doi: 10.1007/s10924-006-0042-3. DOI

Komuraiah A., Kumar N.S., Prasad B.D. Chemical Composition of Natural Fibers and its Influence on their Mechanical Properties. Mech. Compos. Mater. 2014;50:359–376. doi: 10.1007/s11029-014-9422-2. DOI

Ray D., Sarkar B.K., Rana A.K., Bose N.R. Effect of alkali treated jute fibres on composite properties. Bull. Mater. Sci. 2001;24:129–135. doi: 10.1007/BF02710089. DOI

Nam T.H., Ogihara S., Tung N.H., Kobayashi S. Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly(butylene succinate) biodegradable composites. Compos. Part B Eng. 2011;42:1648–1656. doi: 10.1016/j.compositesb.2011.04.001. DOI

Mwaikambo L., Ansell M. Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials. I. hemp fibres. J. Mater. Sci. 2006;41:2483–2496. doi: 10.1007/s10853-006-5098-x. DOI

Boopathi L., Sampath P.S., Mylsamy K. Investigation of physical, chemical and mechanical properties of raw and alkali treated Borassus fruit fiber. Compos. Part B Eng. 2012;43:3044–3052. doi: 10.1016/j.compositesb.2012.05.002. DOI

Cai M., Takagi H., Nakagaito A.N., Li Y., Waterhouse G.I.N. Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Compos. Part A Appl. Sci. Manuf. 2016;90:589–597. doi: 10.1016/j.compositesa.2016.08.025. DOI

Mazzanti V., Pariante R., Bonanno A., de Ballesteros O.R., Mollica F., Filippone G. Reinforcing mechanisms of natural fibers in green composites: Role of fibers morphology in a PLA/hemp model system. Compos. Sci. Tech. 2019;180:51–59. doi: 10.1016/j.compscitech.2019.05.015. DOI

Faruk O., Bledzki A.K., Fink H.P., Sain M. Biocomposites reinforced with natural fibers: 2000—2010. Prog. Polym. Sci. 2012;37:1552–1596. doi: 10.1016/j.progpolymsci.2012.04.003. DOI

Vardhini K.J.V., Murugan R., Selvi C.T., Surjit R. Optimisation of alkali treatment of banana fibres on lignin removal. Indian J. Fibre Text. Res. 2016;41:156–160.

Mohanty A.K., Misra M., Drzal L.T. Surface modifications of natural fibers and performance of the resulting biocomposites: An overview. Compos. Interfaces. 2001;8:313–343. doi: 10.1163/156855401753255422. DOI

Hafiz T.A., Abdel Wahab M., Crocombe A.D., Smith P. Mixed-mode fracture of adhesively bonded metallic joints under quasi-static loading. Eng. Fract. Mech. 2010;77:3434–3445. doi: 10.1016/j.engfracmech.2010.09.015. DOI

Kelly G. Quasi-static strength and fatigue life of hybrid (bonded/bolted) composite single-lap joints. Compos. Struct. 2006;72:119–129. doi: 10.1016/j.compstruct.2004.11.002. DOI

Šleger V., Müller M. Quasi static tests of adhesive bonds of alloy AlCu4Mg. Manuf. Technol. 2015;15:694–698. doi: 10.21062/ujep/x.2015/a/1213-2489/MT/15/4/694. DOI

Tichy M., Kolar V., Muller M., Valasek P. Proceedings of the Engineering for Rural Development. Vol. 18. Latvia University of Life Sciences and Technologies; Jelgava, Latvia: 2019. Quasi-static tests on polyurethane adhesive bonds reinforced by rubber powder; pp. 1035–1041.

Kolář V., Müller M., Mishra R., Rudawska A., Šleger V., Tichý M., Hromasová M., Valášek P. Quasi-static tests of hybrid adhesive bonds based on biological reinforcement in the form of eggshell microparticles. Polymers. 2020;12:1391. doi: 10.3390/polym12061391. PubMed DOI PMC

Reddy N., Yang Y.Q. Properties and potential applications of natural cellulose fibers from the bark of cotton stalks. Bioresource Technol. 2009;100:3563–3569. doi: 10.1016/j.biortech.2009.02.047. PubMed DOI

Valadez-Gonzalez A., Cervantes-Uc J.M., Olayo R., Herrera-Franco P.J. Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Compos. Part B Eng. 1999;30:309–320. doi: 10.1016/S1359-8368(98)00054-7. DOI

Fan T., Hu R., Zhao Z., Liu Y., Lu M. Surface micro-dissolve method of imparting self-cleaning property to cotton fabrics in NaOH/urea aqueous solution. Appl. Surf. Sci. 2007;400:524–529. doi: 10.1016/j.apsusc.2016.12.184. DOI

Svitap.cz. [(accessed on 2 November 2020)]; Available online: https://www.tkaniny-svitap.cz/kcfinder/upload/file/vzorkovnik.pdf.

Mylsamy K., Rajendran I. Investigation on physio-chemical and mechanical properties of raw and alkali-treated Agave americana fiber. J. Reinf. Plast. Compos. 2010;29:2925–2935. doi: 10.1177/0731684410362817. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...