Quasi-Static Shear Test of Hybrid Adhesive Bonds Based on Treated Cotton-Epoxy Resin Layer
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2020:31140/1312/3107
Internal grant agency of Faculty of Engineering no. 2020:31140/1312/3107 "Research of mechanical properties of bio-composite with geometrical structured natural fibres, Czech University of Life Sciences Prague".
PubMed
33317210
PubMed Central
PMC7763207
DOI
10.3390/polym12122945
PII: polym12122945
Knihovny.cz E-zdroje
- Klíčová slova
- SEM analyses, alkali treatment, biological fabric, fatigue and fracture mechanics, green composite, mechanical behavior,
- Publikační typ
- časopisecké články MeSH
This research evaluates the mechanical properties of hybrid adhesive bonds with various 100% cotton fabrics in static and quasi-static conditions and the influence of alkali surface treatment (NaOH) of the cotton fabrics on the mechanical properties. Biological fibers in polymers are characterized by low wettability with the matrix, which decreases mechanical properties. Adhesive bonds usually operate in cyclic stress, which causes irreversible failure before maximal strength. In this paper, a quasi-static test was used to load the adhesive bonds in 5-50% (192-1951 N) and 5-70% (192-2732 N) intervals with 1000 cycles. The results of SEM analysis showed good wettability of alkali treated cotton fabric with NaOH solution in hybrid adhesive bonds. The static test proved the influence of reinforcing cotton fabrics on shear tensile strength against pure resin, i.e., sample Erik up to 19% on 14.90 ± 1.15 MPa and sample Tera up to 21% on 15.28 ± 1.05 MPa. The adhesive bonds with pure resin did not resist either quasi-static tests. Reinforcing cotton fabrics resisted both quasi-static tests, even shear tensile strength increases up to 10% on 16.34 ± 1.24 MPa for the fabric Erik. The results of strain difference of adhesive bonds with Tera and Erik confirmed that a lower value of the difference during cyclic loading positively influenced the ultimate shear tensile strength.
Zobrazit více v PubMed
Barnes T.A., Pashby I.R. Joining techniques for aluminum spaceframes used in automobiles. Part II—adhesive bonding and mechanical fasteners. J. Mater. Process. Technol. 2000;99:72–79. doi: 10.1016/S0924-0136(99)00361-1. DOI
Preu H., Mengel M. Experimental and theoretical study of a fast curing adhesive. Int. J. Adhes. Adhes. 2007;27:330–337. doi: 10.1016/j.ijadhadh.2006.06.004. DOI
Adams R.D. Adhesive Bonding: Science, Technology and Applications. Woodhead Publishing; London, UK: 2005.
Pizzi A., Mittal K.L. Handbook of Adhesive Technology. CRS Press Taylor & Francis Group; Boca Raton, FL, USA: 2003.
Müller M., Valášek P. Composite adhesive bonds reinforced with microparticle filler based on egg shell waste. J. Phys. Conf. Ser. 2018;1016:12002. doi: 10.1088/1742-6596/1016/1/012002. DOI
Bahrami B., Ayatollahi M.R., Beigrezaee M.J., da Silva L.F.M. Strength improvement in single lap adhesive joints by notching the adherends. Int. J. Adhes. Adhes. 2019;95:102401. doi: 10.1016/j.ijadhadh.2019.102401. DOI
Stoeckel F., Konnerth J., Gindl-Altmutter W. Mechanical properties of adhesives for bonding wood—A review. Int. J. Adhes. Adhes. 2013;45:32–41. doi: 10.1016/j.ijadhadh.2013.03.013. DOI
Krolczyk G., Raos P., Legutko S. Experimental analysis of surface roughness and surface texture of machined and fused deposition modelled parts. Teh. Vjesn. 2014;21:217–221.
Nieslony P., Krolczyk G.M., Wojciechowski S., Chudy R., Zak K., Maruda R.W. Surface quality and topographic inspection of variable compliance part after precise turning. Appl. Surf. Sci. 2018;434:91–101. doi: 10.1016/j.apsusc.2017.10.158. DOI
Bresson G., Jumel J., Shanahan M.E.R., Serin P. Strength of adhesively bonded joints under mixed axial and shear loading. Int. J. Adhes. Adhes. 2012;35:27–35. doi: 10.1016/j.ijadhadh.2011.12.006. DOI
Gower M.R.L., Broughton W.R. Project PAJ3—Combined Cyclic Loading and Hostile Environments 1996–1999. National Physical Laboratory; Teddington, UK: 1999. Report No. 11 Fractographic Analysis of Adhesive Joints.
Lapique F., Redford K. Curing effects on viscosity and mechanical properties of a commercial epoxy resin adhesive. Int. J. Adhes. Adhes. 2002;22:337–346. doi: 10.1016/S0143-7496(02)00013-1. DOI
Ruggiero A., Valášek P., Merola M. Friction and wear behaviors of Al/Epoxy composites during reciprocating sliding tests. Manuf. Technol. 2015;15:684–689. doi: 10.21062/ujep/x.2015/a/1213-2489/MT/15/4/684. DOI
Mimura K., Ito H. Characteristics of epoxy resin cured with in situ polymerized curing agent. Polymer. 2002;43:7559–7566. doi: 10.1016/S0032-3861(02)00607-9. DOI
Prolongo S., Del Rosario G., Ureña A. Comparative study on the adhesive properties of different epoxy resins. Int. J. Adhes. Adhes. 2006;26:125–132. doi: 10.1016/j.ijadhadh.2005.02.004. DOI
Van Den Brand J., Van Gils S., Beentjes P., Terryn H., Sivel V., De Wit J.H.W. Improving the adhesion between epoxy coatings and aluminium substrates. Prog. Org. Coatings. 2004;51:339–350. doi: 10.1016/j.porgcoat.2004.08.005. DOI
Niknahad M., Moradian S., Mirabedini M. The adhesion properties and corrosion performance of differently pretreated epoxy coatings on an aluminium alloy. Corros. Sci. 2010;52:1948–1957. doi: 10.1016/j.corsci.2010.02.014. DOI
Kahraman R., Sunar M., Yilbas B. Influence of adhesive thickness and filler content on the mechanical performance of aluminum single-lap joints bonded with aluminum powder filled epoxy adhesive. J. Mater. Process. Technol. 2008;205:183–189. doi: 10.1016/j.jmatprotec.2007.11.121. DOI
Kim H.S., Khamis M.A. Fracture and impact behaviours of hollow micro-sphere/epoxy resin composites. Compos. Part A Appl. Sci. Manuf. 2001;32:1311–1317. doi: 10.1016/S1359-835X(01)00098-7. DOI
Agoudjil B., Ibos L., Canakci A., Candau Y., Mamunya Y. Correlation between transport properties of Ethylene Vinyl Acetate/glass, silver-coated glass spheres composites. Compos. Part A Appl. Sci. Manuf. 2008;39:342–351. doi: 10.1016/j.compositesa.2007.10.003. DOI
Barczewski M., Sałasińska K., Szulc J. Application of sunflower husk, hazelnut shell and walnut shell as waste agricultural fillers for epoxy-based composites: A study into mechanical behavior related to structural and rheological properties. Polym. Test. 2019;75:1–11. doi: 10.1016/j.polymertesting.2019.01.017. DOI
Park S.W., Kim B.C., Lee D.G. Tensile Strength of Joints Bonded With a Nano-particle-Reinforced Adhesive. J. Adhes. Sci. Technol. 2009;23:95–113. doi: 10.1163/156856108X344063. DOI
Essabir H., Nekhlaoui S., Malha M., Bensalah M.O., Arrakhiz F.Z., Qaiss A., Bouhfid R. Bio-composites based on polypropylene reinforced with Almond Shells particles: Mechanical and thermal properties. Mater. Des. 2013;51:225–230. doi: 10.1016/j.matdes.2013.04.031. DOI
Petrásek S., Müller M. Mechanical qualities of adhesive bonds reinforced with biological fabric treated by plasma. Agron. Res. 2017;15:1170–1181.
Pothan L.A., Potschke P., Habler R., Thomas S. The static and dynamic mechanical properties of banana and glass fiber woven fabric-reinforced polyester composite. J. Compos. Mater. 2005;39:1007–1025. doi: 10.1177/0021998305048737. DOI
Arumugam V., Mishra R., Militky J., Salacova J. Investigation on thermo-physiological and compression characteristics of weft-knitted 3D spacer fabrics. J. Text. Inst. 2017;108:1095–1105. doi: 10.1080/00405000.2016.1220035. DOI
Jamshaid H., Mishra R., Militky J., Pechociakova M., Noman M.T. Mechanical, thermal and interfacial properties of green composites from basalt and hybrid woven fabrics. Fibers Polym. 2016;17:1675–1686. doi: 10.1007/s12221-016-6563-z. DOI
Lee J., Cho M., Kim H.S., Kim J.S. Layup optimization of laminated composite patches considering uncertainty of material properties; Proceedings of the Collection of Technical Papers—51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; Orlando, FL, USA. 12–15 April 2010.
Zavrtálek J., Müller M., Šléger V. Low-cyclic fatigue test of adhesive bond reinforced with glass fibre fabric. Agron. Res. 2016;14:1138–1146.
Müller M., Valášek P., Kolář V., Šleger V., Kagan Gürdil G.A., Hromasová M., Hloch S., Moravec J., Pexa M. Material utilization of cotton post-harvest line residues in polymeric composites. Polymers. 2019;11:1106. doi: 10.3390/polym11071106. PubMed DOI PMC
Ayrilmis N., Buyuksari U., Dundar T. Waste pine cones as a source of reinforcing fillers for thermoplastic composites. J. Appl. Polym. Sci. 2010;117:2324–2330. doi: 10.1002/app.32076. DOI
Bajracharya R.M., Bajwa D.S., Bajwa S.G. Mechanical properties of polylactic acid composites reinforced with cotton gin waste and flax fibers. Procedia Eng. 2017;200:370–376. doi: 10.1016/j.proeng.2017.07.052. DOI
Ruggiero A., Valášek P., Müller M. Exploitation of waste date seeds of Phoenix dactylifera in form of polymeric particle biocomposite: Investigation on adhesion, cohesion and wear. Compos. Part B Eng. 2016;104:9–16. doi: 10.1016/j.compositesb.2016.08.014. DOI
Poole A.J., Church J.S., Huson M.G. Environmentally sustainable fibers from regenerated protein. Biomacromolecules. 2009;10:1–8. doi: 10.1021/bm8010648. PubMed DOI
Aziz S.H., Ansell M.P. The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: Part 1—polyester resin matrix. Compos. Sci. Technol. 2004;64:1219–1230. doi: 10.1016/j.compscitech.2003.10.001. DOI
Lu X., Zhang M.Q., Rong M.Z., Shi G., Yang G.C. Self-reinforced melt processable composites of sisal. Compos. Sci. Technol. 2003;63:177–186. doi: 10.1016/S0266-3538(02)00204-X. DOI
Kabir M.M., Wang H., Lau K.T., Cardona F. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Compos. Part B Eng. 2012;43:2883–2892. doi: 10.1016/j.compositesb.2012.04.053. DOI
Chong T.Y., Law M.C., Chan Y.S. The Potentials of Corn Waste Lignocellulosic Fibre as an Improved Reinforced Bioplastic Composites. J. Polym. Environ. 2020:1–19. doi: 10.1007/s10924-020-01888-4. PubMed DOI
Joshi S.V., Drzal L.T., Mohanty A.K., Arora S. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos. Part A Appl. Sci. Manuf. 2004;35:371–376. doi: 10.1016/j.compositesa.2003.09.016. DOI
Müller M., Valášek P., Rudawska A. Mechanical properties of adhesive bonds reinforced with biological fabric. J. Adhes. Sci. Technol. 2017;31:1859–1871. doi: 10.1080/01694243.2017.1285743. DOI
Mizera C., Herak D., Hrabe P., Muller M., Kabutey A. Mechanical Behavior of Ensete ventricosum Fiber Under Tension Loading. J. Nat. Fibers. 2017;14:287–296. doi: 10.1080/15440478.2016.1206500. DOI
De Medeiros E.S., Agnelli J.A.M., Joseph K., De Carvalho L.H., Mattoso L.H.C. Mechanical properties of phenolic composites reinforced with jute/cotton hybrid fabrics. Polym. Compos. 2005;26:1–11. doi: 10.1002/pc.20063. DOI
Li X., Tabil L.G., Panigrahi S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. J. Polym. Environ. 2007;15:25–33. doi: 10.1007/s10924-006-0042-3. DOI
Komuraiah A., Kumar N.S., Prasad B.D. Chemical Composition of Natural Fibers and its Influence on their Mechanical Properties. Mech. Compos. Mater. 2014;50:359–376. doi: 10.1007/s11029-014-9422-2. DOI
Ray D., Sarkar B.K., Rana A.K., Bose N.R. Effect of alkali treated jute fibres on composite properties. Bull. Mater. Sci. 2001;24:129–135. doi: 10.1007/BF02710089. DOI
Nam T.H., Ogihara S., Tung N.H., Kobayashi S. Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly(butylene succinate) biodegradable composites. Compos. Part B Eng. 2011;42:1648–1656. doi: 10.1016/j.compositesb.2011.04.001. DOI
Mwaikambo L., Ansell M. Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials. I. hemp fibres. J. Mater. Sci. 2006;41:2483–2496. doi: 10.1007/s10853-006-5098-x. DOI
Boopathi L., Sampath P.S., Mylsamy K. Investigation of physical, chemical and mechanical properties of raw and alkali treated Borassus fruit fiber. Compos. Part B Eng. 2012;43:3044–3052. doi: 10.1016/j.compositesb.2012.05.002. DOI
Cai M., Takagi H., Nakagaito A.N., Li Y., Waterhouse G.I.N. Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Compos. Part A Appl. Sci. Manuf. 2016;90:589–597. doi: 10.1016/j.compositesa.2016.08.025. DOI
Mazzanti V., Pariante R., Bonanno A., de Ballesteros O.R., Mollica F., Filippone G. Reinforcing mechanisms of natural fibers in green composites: Role of fibers morphology in a PLA/hemp model system. Compos. Sci. Tech. 2019;180:51–59. doi: 10.1016/j.compscitech.2019.05.015. DOI
Faruk O., Bledzki A.K., Fink H.P., Sain M. Biocomposites reinforced with natural fibers: 2000—2010. Prog. Polym. Sci. 2012;37:1552–1596. doi: 10.1016/j.progpolymsci.2012.04.003. DOI
Vardhini K.J.V., Murugan R., Selvi C.T., Surjit R. Optimisation of alkali treatment of banana fibres on lignin removal. Indian J. Fibre Text. Res. 2016;41:156–160.
Mohanty A.K., Misra M., Drzal L.T. Surface modifications of natural fibers and performance of the resulting biocomposites: An overview. Compos. Interfaces. 2001;8:313–343. doi: 10.1163/156855401753255422. DOI
Hafiz T.A., Abdel Wahab M., Crocombe A.D., Smith P. Mixed-mode fracture of adhesively bonded metallic joints under quasi-static loading. Eng. Fract. Mech. 2010;77:3434–3445. doi: 10.1016/j.engfracmech.2010.09.015. DOI
Kelly G. Quasi-static strength and fatigue life of hybrid (bonded/bolted) composite single-lap joints. Compos. Struct. 2006;72:119–129. doi: 10.1016/j.compstruct.2004.11.002. DOI
Šleger V., Müller M. Quasi static tests of adhesive bonds of alloy AlCu4Mg. Manuf. Technol. 2015;15:694–698. doi: 10.21062/ujep/x.2015/a/1213-2489/MT/15/4/694. DOI
Tichy M., Kolar V., Muller M., Valasek P. Proceedings of the Engineering for Rural Development. Vol. 18. Latvia University of Life Sciences and Technologies; Jelgava, Latvia: 2019. Quasi-static tests on polyurethane adhesive bonds reinforced by rubber powder; pp. 1035–1041.
Kolář V., Müller M., Mishra R., Rudawska A., Šleger V., Tichý M., Hromasová M., Valášek P. Quasi-static tests of hybrid adhesive bonds based on biological reinforcement in the form of eggshell microparticles. Polymers. 2020;12:1391. doi: 10.3390/polym12061391. PubMed DOI PMC
Reddy N., Yang Y.Q. Properties and potential applications of natural cellulose fibers from the bark of cotton stalks. Bioresource Technol. 2009;100:3563–3569. doi: 10.1016/j.biortech.2009.02.047. PubMed DOI
Valadez-Gonzalez A., Cervantes-Uc J.M., Olayo R., Herrera-Franco P.J. Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Compos. Part B Eng. 1999;30:309–320. doi: 10.1016/S1359-8368(98)00054-7. DOI
Fan T., Hu R., Zhao Z., Liu Y., Lu M. Surface micro-dissolve method of imparting self-cleaning property to cotton fabrics in NaOH/urea aqueous solution. Appl. Surf. Sci. 2007;400:524–529. doi: 10.1016/j.apsusc.2016.12.184. DOI
Svitap.cz. [(accessed on 2 November 2020)]; Available online: https://www.tkaniny-svitap.cz/kcfinder/upload/file/vzorkovnik.pdf.
Mylsamy K., Rajendran I. Investigation on physio-chemical and mechanical properties of raw and alkali-treated Agave americana fiber. J. Reinf. Plast. Compos. 2010;29:2925–2935. doi: 10.1177/0731684410362817. DOI