Naturally Occurring Ecdysteroids in Triticum aestivum L. and Evaluation of Fenarimol as a Potential Inhibitor of Their Biosynthesis in Plants

. 2021 Mar 11 ; 22 (6) : . [epub] 20210311

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33799719

Grantová podpora
no. CZ.02.1.01/0.0/0.0/16_019/0000738 European Regional Development Fund
no. CZ.02.1.01/0.0/0.0/16_019/0000827 European Regional Development Fund

Ecdysteroids (ECs) are steroid hormones originally found in the animal kingdom where they function as insect molting hormones. Interestingly, a relatively high number of these substances can also be formed in plant cells. Moreover, ECs have certain regulatory effects on plant physiology, but their role in plants still requires further study. One of the main aims of the present study was to verify a hypothesis that fenarimol, an inhibitor of the biosynthesis of ECs in the animal kingdom, also affects the content of endogenous ECs in plants using winter wheat Triticum aestivum L. as a model plant. The levels of endogenous ECs in winter wheat, including the estimation of their changes during a course of different temperature treatments, have been determined using a sensitive analytical method based on UHPLC-MS/MS. Under our experimental conditions, four substances of EC character were detected in the tissue of interest in amounts ranging from less than 1 to over 200 pg·g-1 FW: 20-hydroxyecdysone, polypodine B, turkesterone, and isovitexirone. Among them, turkesterone was observed to be the most abundant EC and accumulated mainly in the crowns and leaves of wheat. Importantly, the level of ECs was observed to be dependent on the age of the plants, as well as on growth conditions (especially temperature). Fenarimol, an inhibitor of a cytochrome P450 monooxygenase, was shown to significantly decrease the level of naturally occurring ECs in experimental plants, which may indicate its potential use in studies related to the biosynthesis and physiological function of these substances in plants.

Zobrazit více v PubMed

Brown M.R., Sieglaff D.H., Rees H.H. Gonadal Ecdysteroidogenesis in Arthropoda: Occurrence and Regulation. Annu. Rev. Entomol. 2009;54:105–125. doi: 10.1146/annurev.ento.53.103106.093334. PubMed DOI PMC

Lafont R., Koolman J. Diversity of Ecdysteroids in Animal Species. In: Smagghe G., editor. Ecdysone: Structures and Functions. Springer; Dordrecht, The Netherlands: 2009. pp. 47–71. DOI

Spindler K.-D., Hönl C., Tremmel C., Braun S., Ruff H., Spindler-Barth M. Ecdysteroid hormone action. Cell. Mol. Life Sci. 2009;66:3837–3850. doi: 10.1007/s00018-009-0112-5. PubMed DOI PMC

Dinan L. Phytoecdysteroids: Biological aspects. Phytochemistry. 2001;57:325–339. doi: 10.1016/S0031-9422(01)00078-4. PubMed DOI

Dinan L., Savchenko T., Whiting P. On the distribution of phytoecdysteroids in plants. CMLS Cell. Mol. Life Sci. 2001;58:1121–1132. doi: 10.1007/PL00000926. PubMed DOI PMC

Hopkins P.M. Crustacean Ecdysteroids and Their Receptors. In: Smagghe G., editor. Ecdysone: Structures and Functions. Springer; Dordrecht, The Netherlands: 2009. pp. 73–97. DOI

Al Naggar Y., Ghorab M., Mohamed K. Phytoecdysteroids: Isolation and Biological Applications. Am. J. Life Sci. 2017;5:7–10. doi: 10.11648/j.ajls.20170501.12. DOI

Hornok S., Csorba A., Kováts D., Csörgő T., Hunyadi A. Ecdysteroids are present in the blood of wild passerine birds. Sci. Rep. 2019;9:17002. doi: 10.1038/s41598-019-53090-9. PubMed DOI PMC

Kreis W., Müller-Uri F. Biochemistry of Sterols, Cardiac Glycosides, Brassinosteroids, Phytoecdysteroids and Steroid saponins. Annu. Plant Rev. 2010;40:304–363. doi: 10.1002/9781444320503.ch6. DOI

Thiem B., Kikowska M., Maliński M.P., Kruszka D., Napierała M., Florek E. Ecdysteroids: Production in plant in vitro cultures. Phytochem. Rev. 2017;16:603–622. doi: 10.1007/s11101-016-9483-z. PubMed DOI PMC

Wu P., Xie H., Tao W., Miao S., Wei X. Phytoecdysteroids from the rhizomes of Brainea insignis. Phytochemistry. 2010;71:975–981. doi: 10.1016/j.phytochem.2010.03.002. PubMed DOI

Dang N.H., Tuyen P.T., Loan V.T., Dac L.X. The contents of 20-hydroecdysone (20 E), quercetin and essential oils in Asteraceae species gwowing in Tamdao District, Vinh Phuc Province, Vietnam. Manag. For. Resour. Environ. 2019;7:72–81.

Guibout L., Mamadalieva N., Balducci C., Girault J.-P., Lafont R. The minor ecdysteroids from Ajuga turkestanica. Phytochem. Anal. 2015;26:293–300. doi: 10.1002/pca.2563. PubMed DOI

Lafont R., Dinan L. Practical uses for ecdysteroids in mammals including humans: An update. J. Insect Sci. 2003;3:7. doi: 10.1673/031.003.0701. PubMed DOI PMC

Golovatskaya I.F. Effect of Ecdysterone on Morphological and Physiological Processes in Plants. Russ. J. Plant Physiol. 2004;51:407–413. doi: 10.1023/B:RUPP.0000028689.97402.d5. DOI

Bajguz A., Dinan L. Effects of ecdysteroids on Chlorella vulgaris. Physiol. Plant. 2004;121:349–357. doi: 10.1111/j.1399-3054.2004.00329.x. DOI

Bakrim A., Lamhamdi M., Sayah F., Chib F. Effects of plant hormones and 20-hydroxyecdysone on tomato (Lycopersicum esculentum) seed germination and seedlings growth. Afr. J. Biotechnol. 2007;6:2792–2802.

Lamhamdi M., Lafont R., Rharrabe K., Sayah F., Aarab A., Bakrim A. 20-Hydroxyecdysone protects wheat seedlings (Triticum aestivum L.) against lead stress. Plant Physiol. Biochem. 2016;98:64–71. doi: 10.1016/j.plaphy.2015.11.006. PubMed DOI

Li J.-T., Han. X.-P., Wang C., Zhang W.-Y., Ma J.-H. 20-Hydroxyecdysone protects wheat seedlings from salt stress. Arch. Biol. Sci. 2018;70:379–386. doi: 10.2298/ABS170722056L. DOI

Holá D., Frimlová K., Kocová M., Marková H., Rothová O., Tumová L. Effect of exogenously applied 20-hydroxyecdysone on the efficiency of primary photosynthetic processes substantially differs across plant species. Photosynthetica. 2020;58:961–973. doi: 10.32615/ps.2020.050. DOI

Hirsch K.S., Adams E.R., Hoffman D.G., Markham J.K., Owen N.V. Studies to elucidate the mechanism of fenarimol-induced infertility in male rats. Toxicol. Appl. Pharmacol. 1986;86:391–399. doi: 10.1016/0041-008X(86)90366-2. PubMed DOI

Hirsch K.S., Weaver D.E., Black L.J., Falcone J.F., MacLusky N.J. Inhibition of central nervous system aromatase activity: A mechanism for fenarimol-induced infertility in the male rat. Toxicol. Appl. Pharmacol. 1987;91:235–245. doi: 10.1016/0041-008X(87)90104-9. PubMed DOI

Grieneisen M.L., Warren J.T., Gilbert L.I. Early steps in ecdysteroid biosynthesis: Evidence for the involvement of cytochrome P-450 enzymes. Insect Biochem. Mol. Biol. 1993;23:13–23. doi: 10.1016/0965-1748(93)90077-6. PubMed DOI

Paolini M., Pozzetti L., Mesirca R., Sapone A., Cantelli-Forti G. Testosterone hydroxylase in evaluating induction and suppression of murine CYP isoenzymes by fenarimol. Arch. Toxicol. 1996;70:451–456. doi: 10.1007/s002040050298. PubMed DOI

Mu X., LeBlanc G.A. Environmental Antiecdysteroids Alter Embryo Development in the Crustacean Daphnia magna. J. Exp. Zool. 2002;292:287–292. doi: 10.1002/jez.10020. PubMed DOI

Andersen H.R., Bonefeld-Jørgensen E.C., Nielsen F., Jarfeldt K., Jayatissa M.N., Vinggaard A.M. Estrogenic effects in vitro and in vivo of the fungicide fenarimol. Toxicol. Lett. 2006;163:142–152. doi: 10.1016/j.toxlet.2005.10.004. PubMed DOI

de Castro V.L.S.S., de Mello M.A., Diniz C., Morita L., Zucchi T., Poli P. Neurodevelopmental effects of perinatal fenarimol exposure on rats. Reprod. Toxicol. 2007;23:98–105. doi: 10.1016/j.reprotox.2006.09.001. PubMed DOI

Keenan M., Chaplin J.H., Alexander P.W., Abbott M.J., Best W.M., Khong A., Botero A., Perez C., Cornwall S., Thompson A., et al. Two Analogues of Fenarimol Show Curative Activity in an Experimental Model of Chagas Disease. J. Med. Chem. 2013;56:10158–10170. doi: 10.1021/jm401610c. PubMed DOI PMC

Oh K., Matsumoto T., Yamagami A., Hoshi T., Nakano T., Yoshizawa Y. Fenarimol, a Pyrimidine-Type Fungicide, Inhibits Brassinosteroid Biosynthesis. Int. J. Mol. Sci. 2015;16:17273–17288. doi: 10.3390/ijms160817273. PubMed DOI PMC

Bajguz A., Chmur M., Gruszka D. Comprehensive Overview of the Brassinosteroid Biosynthesis Pathways: Substrates, Products, Inhibitors, and Connections. Front. Plant Sci. 2020;11:1034. doi: 10.3389/fpls.2020.01034. PubMed DOI PMC

Janeczko A. The significance of ethanol as a hormone solvent in experiments on the physiological activity of brassinosteroids. In: Hayat S., Ahmad A., editors. Brassinosteroids: A Class of Plant Hormone. Springer; Dordrecht, The Netherlands: 2011. pp. 361–374. DOI

Janeczko A., Swaczynová J. Endogenous brassinosteroids in wheat treated with 24-epibrassinolide. Biol. Plant. 2010;54:477–482. doi: 10.1007/s10535-010-0084-1. DOI

Janeczko A., Biesaga–Kościelniak J., Oklestkova J., Filek M., Dziurka M., Szarek-Łukaszewska G., Kościelniak J. Role of 24-Epibrassinolide in wheat production: Physiological effects and uptake. J. Agron. Crop Sci. 2010;196:311–321. doi: 10.1111/j.1439-037X.2009.00413.x. DOI

Sadura I., Pociecha E., Dziurka M., Oklestkova J., Novak O., Gruszka D., Janeczko A. Mutations in the HvDWARF, HvCPD and HvBRI1 genes-involved in brassinosteroid biosynthesis/signalling: Altered photosynthetic efficiency, hormonal homeostasis and tolerance to high/low temperatures in barley. J. Plant Growth Regul. 2019;38:1062–1081. doi: 10.1007/s00344-019-09914-z. DOI

Janeczko A., Oklestkova J., Novak O., Śniegowska-Świerk K., Snaczke Z., Pociecha E. Disturbances in production of progesterone and their implications in plant studies. Steroids. 2015;96:153–163. doi: 10.1016/j.steroids.2015.01.025. PubMed DOI

Machackova I., Vagner M., Slama K. Comparison between the effects of 20-hydroxyecdysone and phytohormones on growth and development in plants. Eur. J. Entomol. 1995;92:309–316.

Schmelz E.A., Grebenok R.J., Galbraith D.W., Bowers W.S. Insectinduced synthesis of phytoecdysteroids in spinach, Spinacia oleracea. J. Chem. Ecol. 1999;25:1739–1757. doi: 10.1023/A:1020969413567. DOI

Udalova Z.V., Zinov’eva S.V., Vasil’eva I.S., Paseshnichenko V.A. Correlation between the structure of plant steroids and their effects on phytoparasitic nematodes. Appl. Biochem. Microbiol. 2004;40:93–97. doi: 10.1023/B:ABIM.0000010362.79928.77. DOI

Soriano I.R., Riley I.T., Potter M.J., Bowers W.S. Phytoecdysteroids: A novel defense against plant-parasitic nematodes. J. Chem. Ecol. 2004;30:651–654. doi: 10.1023/B:JOEC.0000045584.56515.11. PubMed DOI

Das N., Mishra S.K., Bishayee A., Ali E.S., Bishayee A. The phytochemical, biological, and medicinal attributes of phytoecdysteroids: An updated review. Acta Pharm. Sin. B. 2020 doi: 10.1016/j.apsb.2020.10.012. PubMed DOI PMC

Dinan L., Harmatha J., Volodin V., Lafont R. Phytoecdysteroids: Diversity, Biosynthesis and Distribution. In: Smagghe G., editor. Ecdysone: Structures and Functions. Springer; Dordrecht, The Netherlands: 2009. pp. 3–45. DOI

Grebenok R.J., Ripa P.V., Adler J.H. Occurrence and levels of ecdysteroids in spinach. Lipids. 1991;26:666–668. doi: 10.1007/BF02536433. DOI

Kholodova Y.D., Baltaev U., Volovenko V.O., Gorovits M.B., Abubakirov N.K. Phytoecdisones of Serratula xeranthemoides. Khimiya Prir. Soedin. 1979;2:171–174.

Canals D., Irurre-Santilari J., Casas J. The first cytochrome P450 in ferns. Evidence for its involvement in phytoecdysteroid biosynthesis in Polypodium vulgare. FEBS J. 2005;272:4817–4825. doi: 10.1111/j.1742-4658.2005.04897.x. PubMed DOI

Skoczowski A.M., Filek M. Cold-induced changes in lipids from hypocotyls of winter and spring rape. I. The lipid synthesis and fatty acid composition. Acta Physiol. Plant. 1986;8:203–212.

Fürtauer L., Weiszmann J., Weckwerth W., Nägele T. Dynamics of Plant Metabolism during Cold Acclimation. Int. J. Mol. Sci. 2019;20:5411. doi: 10.3390/ijms20215411. PubMed DOI PMC

Livingston D.P., Tuong T.D., Owen S. Carbohydrate changes in winter oat crowns during recovery from freezing. Dyn. Biochem. Process Biotechnol. Mol. Biol. 2009;3:16–22.

Pociecha E., Jurczyk B., Dziurka M., Paczyński R., Okleštková J., Janeczko A. 24-Epibrassinolide Promotes Carbohydrates Accumulation in Crowns of Perennial Ryegrass during Cold Acclimation by Regulation of Gene Expression and Enzyme Activities which Results in Increased Frost Tolerance. Procedia Environ. Sci. 2015;29:234–235. doi: 10.1016/j.proenv.2015.07.289. DOI

Rapacz M., Jurczyk B., Sasal M. Deacclimation may be crucial for winter survival of cereals under warming climate. Plant Sci. J. 2017;256:5–15. doi: 10.1016/j.plantsci.2016.11.007. PubMed DOI

Rys M., Pociecha E., Oliwa J., Ostrowska A., Jurczyk B., Saja D., Janeczko A. Deacclimation of Winter Oilseed Rape—Insight into Physiological Changes. Agronomy. 2020;10:1565. doi: 10.3390/agronomy10101565. DOI

Murashige T., Skoog F. A revised medium for rapid growth and bioassays with plant tissue culture. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI

Kamlar M., Rothova O., Salajkova S., Tarkowska D., Drasar P., Kocova M., Harmatha J., Hola D., Kohout L., Macek T. The effect of exogenous 24-epibrassinolide on the ecdysteroid content in the leaves of Spinacia oleracea L. Steroids. 2015;97:107–112. doi: 10.1016/j.steroids.2014.12.024. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...