Metatranscriptome analysis reveals host-microbiome interactions in traps of carnivorous Genlisea species
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
26236284
PubMed Central
PMC4500957
DOI
10.3389/fmicb.2015.00526
Knihovny.cz E-zdroje
- Klíčová slova
- Genlisea, RNA-sequencing, algae commensalism, lobster pot trapping, metatranscriptomics, plant carnivory, plant-microbe interaction, whole-genome gene transcription analysis,
- Publikační typ
- časopisecké články MeSH
In the carnivorous plant genus Genlisea a unique lobster pot trapping mechanism supplements nutrition in nutrient-poor habitats. A wide spectrum of microbes frequently occurs in Genlisea's leaf-derived traps without clear relevance for Genlisea carnivory. We sequenced the metatranscriptomes of subterrestrial traps vs. the aerial chlorophyll-containing leaves of G. nigrocaulis and of G. hispidula. Ribosomal RNA assignment revealed soil-borne microbial diversity in Genlisea traps, with 92 genera of 19 phyla present in more than one sample. Microbes from 16 of these phyla including proteobacteria, green algae, amoebozoa, fungi, ciliates and metazoans, contributed additionally short-lived mRNA to the metatranscriptome. Furthermore, transcripts of 438 members of hydrolases (e.g., proteases, phosphatases, lipases), mainly resembling those of metazoans, ciliates and green algae, were found. Compared to aerial leaves, Genlisea traps displayed a transcriptional up-regulation of endogenous NADH oxidases generating reactive oxygen species as well as of acid phosphatases for prey digestion. A leaf-vs.-trap transcriptome comparison reflects that carnivory provides inorganic P- and different forms of N-compounds (ammonium, nitrate, amino acid, oligopeptides) and implies the need to protect trap cells against oxidative stress. The analysis elucidates a complex food web inside the Genlisea traps, and suggests ecological relationships between this plant genus and its entrapped microbiome.
Zobrazit více v PubMed
Adamec L. (1997). Mineral nutrition of carnivorous plants: a review. Bot. Rev. 63, 273–299. 10.1007/BF02857953 DOI
Adamec L. (2003). Zero water flows in Genlisea traps. Carniv. Pl. Newslett. 32, 46–48.
Adamec L. (2007). Oxygen concentrations inside the traps of the carnivorous plants Utricularia and Genlisea (Lentibulariaceae). Ann. Bot. 100, 849–856. 10.1093/aob/mcm182 PubMed DOI PMC
Adlassnig W., Peroutka M., Lendl T. (2011). Traps of carnivorous pitcher plants as a habitat: composition of the fluid, biodiversity and mutualistic activities. Ann. Bot. 107, 181–194. 10.1093/aob/mcq238 PubMed DOI PMC
Albert V. A., Jobson R. W., Michael T. P., Taylor D. J. (2010). The carnivorous bladderwort (Utricularia, Lentibulariaceae): a system inflates. J. Exp. Bot. 61, 5–9. 10.1093/jxb/erp349 PubMed DOI
Albert V. A., Williams S. E., Chase M. W. (1992). Carnivorous plants: phylogeny and structural evolution. Science 257, 1491–1495. 10.1126/science.1523408 PubMed DOI
Albino U., Saridakis D. P., Ferreira M. C., Hungria M., Vinuesa P., Andrade G. (2006). High diversity of diazotrophic bacteria associated with the carnivorous plant Drosera villosa var. villosa growing in oligotrophic habitats in Brazil. Plant Soil 287, 199–207. 10.1007/s11104-006-9066-7 DOI
Arndt D., Xia J., Liu Y., Zhou Y., Guo A. C., Cruz J. A., et al. . (2012). METAGENassist: a comprehensive web server for comparative metagenomics. Nucleic Acids Res. 40, W88–W95. 10.1093/nar/gks497 PubMed DOI PMC
Badri D. V., Chaparro J. M., Zhang R., Shen Q., Vivanco J. M. (2013). Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J. Biol. Chem. 288, 4502–4512. 10.1074/jbc.M112.433300 PubMed DOI PMC
Bakker P. A., Berendsen R. L., Doornbos R. F., Wintermans P. C., Pieterse C. M. (2013). The rhizosphere revisited: root microbiomics. Front. Plant Sci. 4:165. 10.3389/fpls.2013.00165 PubMed DOI PMC
Barthlott W., Porembski S., Fischer E., Gemmel B. (1998). First protozoa-trapping plant found. Nature 392, 447–447. 10.1038/33037 PubMed DOI
Berendsen R. L., Pieterse C. M., Bakker P. A. (2012). The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486. 10.1016/j.tplants.2012.04.001 PubMed DOI
Broeckling C. D., Broz A. K., Bergelson J., Manter D. K., Vivanco J. M. (2008). Root exudates regulate soil fungal community composition and diversity. Appl. Environ. Microbiol. 74, 738–744. 10.1128/AEM.02188-07 PubMed DOI PMC
Bulgarelli D., Rott M., Schlaeppi K., Ver Loren Van Themaat E., Ahmadinejad N., Assenza F., et al. . (2012). Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95. 10.1038/nature11336 PubMed DOI
Caporaso J. G., Lauber C. L., Walters W. A., Berg-Lyons D., Lozupone C. A., Turnbaugh P. J., et al. . (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U.S.A. 108, 4516–4522. 10.1073/pnas.1000080107 PubMed DOI PMC
Caravieri F. A., Ferreira A. J., Ferreira A., Clivati D., De Miranda V. F. O., Araújo W. L. (2014). Bacterial community associated with traps of the carnivorous plants Utricularia hydrocarpa and Genlisea filiformis. Aquat. Bot. 116, 8–12. 10.1016/j.aquabot.2013.12.008 DOI
Cardinale M., Grube M., Erlacher A., Quehenberger J., Berg G. (2015). Bacterial networks and co-occurrence relationships in the lettuce root microbiota. Environ. Microbiol. 17, 239–252. 10.1111/1462-2920.12686 PubMed DOI
Cohen I., Knopf J. A., Irihimovitch V., Shapira M. (2005). A proposed mechanism for the inhibitory effects of oxidative stress on Rubisco assembly and its subunit expression. Plant Physiol. 137, 738–746. 10.1104/pp.104.056341 PubMed DOI PMC
Conesa A., Gotz S. (2008). Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int. J. Plant Genomics 2008, 619832. 10.1155/2008/619832 PubMed DOI PMC
Crotti E., Damiani C., Pajoro M., Gonella E., Rizzi A., Ricci I., et al. . (2009). Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically distant genera and orders. Environ. Microbiol. 11, 3252–3264. 10.1111/j.1462-2920.2009.02048.x PubMed DOI
De Muyt A., Pereira L., Vezon D., Chelysheva L., Gendrot G., Chambon A., et al. . (2009). A high throughput genetic screen identifies new early meiotic recombination functions in Arabidopsis thaliana. PLoS Genet. 5:e1000654. 10.1371/journal.pgen.1000654 PubMed DOI PMC
Edgar R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461. 10.1093/bioinformatics/btq461 PubMed DOI
Edwards J., Johnson C., Santos-Medellin C., Lurie E., Podishetty N. K., Bhatnagar S., et al. . (2015). Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. U.S.A. 112, E911–E920. 10.1073/pnas.1414592112 PubMed DOI PMC
Eisen J. A., Coyne R. S., Wu M., Wu D., Thiagarajan M., Wortman J. R., et al. . (2006). Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol. 4:e286. 10.1371/journal.pbio.0040286 PubMed DOI PMC
Ellison A. M., Gotelli N. J. (2001). Evolutionary ecology of carnivorous plants. Trends Ecol. Evol. 16, 623–629. 10.1016/S0169-5347(01)02269-8 DOI
Ellison A. M., Gotelli N. J. (2009). Energetics and the evolution of carnivorous plants–Darwin's ‘most wonderful plants in the world’. J. Exp. Bot. 60, 19–42. 10.1093/jxb/ern179 PubMed DOI
Farnsworth E. J., Ellison A. M. (2008). Prey availability directly affects physiology, growth, nutrient allocation and scaling relationships among leaf traits in 10 carnivorous plant species. J. Ecol. 96, 213–221. 10.1111/j.1365-2745.2007.01313.x. DOI
Fedoroff N. V. (2012). Presidential address. Transposable elements, epigenetics, and genome evolution. Science 338, 758–767. 10.1126/science.338.6108.758 PubMed DOI
Fleischmann A. (2012). Monograph of the Genus Genlisea. Poole; Dorset; England: Redfern Natural History Productions.
Fleischmann A., Schaferhoff B., Heubl G., Rivadavia F., Barthlott W., Muller K. F. (2010). Phylogenetics and character evolution in the carnivorous plant genus Genlisea A. St.-Hil. (Lentibulariaceae). Mol. Phylogenet. Evol. 56, 768–783. 10.1016/j.ympev.2010.03.009 PubMed DOI
Giorgi G., Marcantonio P., Del Re B. (2011). LINE-1 retrotransposition in human neuroblastoma cells is affected by oxidative stress. Cell Tissue Res. 346, 383–391. 10.1007/s00441-011-1289-0 PubMed DOI
Haichar F. Z., Marol C., Berge O., Rangel-Castro J. I., Prosser J. I., Balesdent J., et al. . (2008). Plant host habitat and root exudates shape soil bacterial community structure. ISME J. 2, 1221–1230. 10.1038/ismej.2008.80 PubMed DOI
Huson D. H., Mitra S., Ruscheweyh H.-J., Weber N., Schuster S. C. (2011). Integrative analysis of environmental sequences using MEGAN4. Genome Res. 21, 1552–1560. 10.1101/gr.120618.111 PubMed DOI PMC
Ibarra-Laclette E., Albert V. A., Perez-Torres C. A., Zamudio-Hernandez F., Ortega-Estrada Mde J., Herrera-Estrella A., et al. . (2011). Transcriptomics and molecular evolutionary rate analysis of the bladderwort (Utricularia), a carnivorous plant with a minimal genome. BMC Plant Biol. 11:101. 10.1186/1471-2229-11-101 PubMed DOI PMC
Ikeda K., Nakayashiki H., Takagi M., Tosa Y., Mayama S. (2001). Heat shock, copper sulfate and oxidative stress activate the retrotransposon MAGGY resident in the plant pathogenic fungus Magnaporthe grisea. Mol. Genet. Genomics 266, 318–325. 10.1007/s004380100560 PubMed DOI
Jobson R. W., Morris E. C. (2001). Feeding ecology of a carnivorous bladderwort (Utricularia uliginosa, Lentibulariaceae). Austral. Ecol. 26, 680–691. 10.1046/j.1442-9993.2001.01149.x DOI
Jobson R. W., Playford J., Cameron K. M., Albert V. A. (2003). Molecular phylogenetics of Lentibulariaceae inferred from plastid rps 16 intron and trn LF DNA sequences: implications for character evolution and biogeography. Syst. Bot. 28, 157–171.
Ke X., Angel R., Lu Y., Conrad R. (2013). Niche differentiation of ammonia oxidizers and nitrite oxidizers in rice paddy soil. Environ. Microbiol. 15, 2275–2292. 10.1111/1462-2920.12098 PubMed DOI
Kierul K., Voigt B., Albrecht D., Chen X. H., Carvalhais L. C., Borriss R. (2015). Influence of root exudates on the extracellular proteome of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Microbiology 161, 131–147. 10.1099/mic.0.083576-0 PubMed DOI
Koopman M., Carstens B. (2011). The microbial phyllogeography of the carnivorous plant Sarracenia alata. Microb. Ecol. 61, 750–758. 10.1007/s00248-011-9832-9 PubMed DOI
Krieger J. R., Kourtev P. S. (2012). Bacterial diversity in three distinct sub-habitats within the pitchers of the northern pitcher plant, Sarracenia purpurea. FEMS Microbiol. Ecol. 79, 555–567. 10.1111/j.1574-6941.2011.01240.x PubMed DOI
Król E., Płachno B. J., Adamec L., Stolarz M., Dziubiñska H., Trẽbacz K. (2012). Quite a few reasons for calling carnivores ‘the most wonderful plants in the world’. Ann. Bot. 109, 47–64. 10.1093/aob/mcr249 PubMed DOI PMC
Legendre L. (2000). The genus Pinguicula L. (Lentibulariaceae): an overview. Acta Bot. Gall. 147, 77–95. 10.1080/12538078.2000.10515837 DOI
Lugtenberg B., Kamilova F. (2009). Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541–556. 10.1146/annurev.micro.62.081307.162918 PubMed DOI
Lundberg D. S., Lebeis S. L., Paredes S. H., Yourstone S., Gehring J., Malfatti S., et al. . (2012). Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90. 10.1038/nature11237 PubMed DOI PMC
Meyers-Rice B. (1994). Are Genlisea traps active? A crude calculation. Carniv. Pl. Newslett 23, 40–42.
Mhiri C., Morel J. B., Vernhettes S., Casacuberta J. M., Lucas H., Grandbastien M. A. (1997). The promoter of the tobacco Tnt1 retrotransposon is induced by wounding and by abiotic stress. Plant Mol. Biol. 33, 257–266. 10.1023/A:1005727132202 PubMed DOI
Mittler R., Vanderauwera S., Gollery M., Van Breusegem F. (2004). Reactive oxygen gene network of plants. Trends Plant Sci. 9, 490–498. 10.1016/j.tplants.2004.08.009 PubMed DOI
Muller K. F., Borsch T., Legendre L., Porembski S., Barthlott W. (2006). Recent progress in understanding the evolution of carnivorous Lentibulariaceae (Lamiales). Plant Biol. (Stuttg.) 8, 748–757. 10.1055/s-2006-924706 PubMed DOI
Ofek-Lalzar M., Sela N., Goldman-Voronov M., Green S. J., Hadar Y., Minz D. (2014). Niche and host-associated functional signatures of the root surface microbiome. Nat. Commun. 5, 4950. 10.1038/ncomms5950 PubMed DOI
Peterson C. N., Day S., Wolfe B. E., Ellison A. M., Kolter R., Pringle A. (2008). A keystone predator controls bacterial diversity in the pitcher-plant (Sarracenia purpurea) microecosystem. Environ. Microbiol. 10, 2257–2266. 10.1111/j.1462-2920.2008.01648.x PubMed DOI
Plachno B. J., Adamec L., Lichtscheidl I. K., Peroutka M., Adlassnig W., Vrba J. (2006). Fluorescence labelling of phosphatase activity in digestive glands of carnivorous plants. Plant Biol. (Stuttg.) 8, 813–820. 10.1055/s-2006-924177 PubMed DOI
Płachno B. J., Adamus K., Faber J., Kozłowski J. (2005). Feeding behaviour of carnivorous Genlisea plants in the laboratory. Acta Bot. Gall. 152, 159–164. 10.1080/12538078.2005.10515466 DOI
Plachno B. J., Kozieradzka-Kiszkurno M., Swiatek P. (2007). Functional utrastructure of Genlisea (Lentibulariaceae) digestive hairs. Ann. Bot. 100, 195–203. 10.1093/aob/mcm109 PubMed DOI PMC
Plachno B. J., Wolowski K. (2008). Algae commensal community in Genlisea traps. Acta Soc. Bot. Pol. 77, 77–86. 10.5586/asbp.2008.011 DOI
Prankevicius A. B., Cameron D. M. (1991). Bacterial Dinitrogen Fixation in the Leaf of the Northern Pitcher Plant (Sarracenia-Purpurea). Can. J. Bot. 69, 2296–2298. 10.1139/b91-289 DOI
Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., et al. . (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. 10.1093/nar/gks1219 PubMed DOI PMC
Reinhold-Hurek B., Hurek T. (2011). Living inside plants: bacterial endophytes. Curr. Opin. Plant Biol. 14, 435–443. 10.1016/j.pbi.2011.04.004 PubMed DOI
Richards J. (2001). Bladder function in Utricularia purpurea (Lentibulariaceae): is carnivory important? Am. J. Bot. 88, 170–176. 10.2307/2657137 PubMed DOI
Rockwood L. D., Felix K., Janz S. (2004). Elevated presence of retrotransposons at sites of DNA double strand break repair in mouse models of metabolic oxidative stress and MYC-induced lymphoma. Mutat Res. 548, 117–125. 10.1016/j.mrfmmm.2004.01.005 PubMed DOI
Rout M. E., Callaway R. M. (2012). Interactions between exotic invasive plants and soil microbes in the rhizosphere suggest that ‘everything is not everywhere’. Ann. Bot. 110, 213–222. 10.1093/aob/mcs061 PubMed DOI PMC
Siragusa A., Swenson J., Casamatta D. (2007). Culturable bacteria present in the fluid of the hooded-pitcher plant Sarracenia minor based on 16S rDNA gene sequence data. Microb. Ecol. 54, 324–331. 10.1007/s00248-006-9205-y PubMed DOI
Sirová D., Adamec L., Vrba J. (2003). Enzymatic activities in traps of four aquatic species of the carnivorous genus Utricularia. New Phytol. 159, 669–675. 10.1046/j.1469-8137.2003.00834.x PubMed DOI
Sirová D., Borovec J., Èerná B., Rejmánková E., Adamec L., Vrba J. (2009). Microbial community development in the traps of aquatic Utricularia species. Aquat. Bot. 90, 129–136. 10.1016/j.aquabot.2008.07.007 DOI
Sirova D., Santrucek J., Adamec L., Barta J., Borovec J., Pech J., et al. . (2014). Dinitrogen fixation associated with shoots of aquatic carnivorous plants: is it ecologically important? Ann. Bot. 114, 125–133. 10.1093/aob/mcu067 PubMed DOI PMC
Skutch A. F. (1928). The capture of prey by the bladderwort. New Phytol. 27, 261–297. 10.1111/j.1469-8137.1928.tb06742.x DOI
Soltis P. S., Soltis D. E., Wolf P. G., Nickrent D. L., Chaw S. M., Chapman R. L. (1999). The phylogeny of land plants inferred from 18S rDNA sequences: pushing the limits of rDNA signal? Mol. Biol. Evol. 16, 1774–1784. 10.1093/oxfordjournals.molbev.a026089 PubMed DOI
Studnicka M. (1996). Several ecophysiological observations in Genlisea. Carniv. Pl. Newslett. 25, 14–16.
Studnicka M. (2003a). Further problem in Genlisea trap untangled. Carniv. Pl. Newslett. 32, 40–45.
Studnicka M. (2003b). Genlisea traps - A new piece of knowledge. Carniv. Pl. Newslett. 32, 36–39.
Studnicka M. (2003c). Observations on life strategies of Genlisea, Heliamphora, and Utricularia in natural habitats. Carniv. Pl. Newslett. 32, 57–61.
Suen G., Scott J. J., Aylward F. O., Adams S. M., Tringe S. G., Pinto-Tomas A. A., et al. . (2010). An insect herbivore microbiome with high plant biomass-degrading capacity. PLoS Genet. 6:e1001129. 10.1371/journal.pgen.1001129 PubMed DOI PMC
Turner T. R., Ramakrishnan K., Walshaw J., Heavens D., Alston M., Swarbreck D., et al. . (2013). Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J. 7, 2248–2258. 10.1038/ismej.2013.119 PubMed DOI PMC
Vandenkoornhuyse P., Quaiser A., Duhamel M., Le Van A., Dufresne A. (2015). The importance of the microbiome of the plant holobiont. New Phytol. 206, 1196–1206. 10.1111/nph.13312 PubMed DOI
Vincent O., Weisskopf C., Poppinga S., Masselter T., Speck T., Joyeux M., et al. . (2011). Ultra-fast underwater suction traps. Proc. Biol. Sci. 278, 2909–2914. 10.1098/rspb.2010.2292 PubMed DOI PMC
Ward N. L., Challacombe J. F., Janssen P. H., Henrissat B., Coutinho P. M., Wu M., et al. . (2009). Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl. Environ. Microbiol. 75, 2046–2056. 10.1128/AEM.02294-08 PubMed DOI PMC
Yarza P., Yilmaz P., Pruesse E., Glockner F. O., Ludwig W., Schleifer K. H., et al. . (2014). Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12, 635–645. 10.1038/nrmicro3330 PubMed DOI