Dinitrogen fixation associated with shoots of aquatic carnivorous plants: is it ecologically important?
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
24817095
PubMed Central
PMC4071093
DOI
10.1093/aob/mcu067
PII: mcu067
Knihovny.cz E-zdroje
- Klíčová slova
- 15N2 labelling, Aldrovanda vesiculosa, N nutrition, U. australis, U. intermedia, U. reflexa, Utricularia vulgaris, aquatic carnivorous plants, daily nitrogen gain, nitrogen fixation, periphyton, traps,
- MeSH
- amoniové sloučeniny analýza MeSH
- Bacteria genetika izolace a purifikace metabolismus MeSH
- bakteriální RNA chemie genetika MeSH
- Droseraceae metabolismus mikrobiologie MeSH
- dusík metabolismus MeSH
- ekologie MeSH
- ekosystém MeSH
- fixace dusíku * MeSH
- izotopy dusíku MeSH
- Magnoliopsida metabolismus mikrobiologie MeSH
- molekulární sekvence - údaje MeSH
- RNA ribozomální 16S chemie genetika MeSH
- sekvence nukleotidů MeSH
- sekvenční analýza RNA MeSH
- voda metabolismus MeSH
- výhonky rostlin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- amoniové sloučeniny MeSH
- bakteriální RNA MeSH
- dusík MeSH
- izotopy dusíku MeSH
- RNA ribozomální 16S MeSH
- voda MeSH
BACKGROUND AND AIMS: Rootless carnivorous plants of the genus Utricularia are important components of many standing waters worldwide, as well as suitable model organisms for studying plant-microbe interactions. In this study, an investigation was made of the importance of microbial dinitrogen (N2) fixation in the N acquisition of four aquatic Utricularia species and another aquatic carnivorous plant, Aldrovanda vesiculosa. METHODS: 16S rRNA amplicon sequencing was used to assess the presence of micro-organisms with known ability to fix N2. Next-generation sequencing provided information on the expression of N2 fixation-associated genes. N2 fixation rates were measured following (15)N2-labelling and were used to calculate the plant assimilation rate of microbially fixed N2. KEY RESULTS: Utricularia traps were confirmed as primary sites of N2 fixation, with up to 16 % of the plant-associated microbial community consisting of bacteria capable of fixing N2. Of these, rhizobia were the most abundant group. Nitrogen fixation rates increased with increasing shoot age, but never exceeded 1·3 μmol N g(-1) d. mass d(-1). Plant assimilation rates of fixed N2 were detectable and significant, but this fraction formed less than 1 % of daily plant N gain. Although trap fluid provides conditions favourable for microbial N2 fixation, levels of nif gene transcription comprised <0·01 % of the total prokaryotic transcripts. CONCLUSIONS: It is hypothesized that the reason for limited N2 fixation in aquatic Utricularia, despite the large potential capacity, is the high concentration of NH4-N (2·0-4·3 mg L(-1)) in the trap fluid. Resulting from fast turnover of organic detritus, it probably inhibits N2 fixation in most of the microorganisms present. Nitrogen fixation is not expected to contribute significantly to N nutrition of aquatic carnivorous plants under their typical growth conditions; however, on an annual basis the plant-microbe system can supply nitrogen in the order of hundreds of mg m(-2) into the nutrient-limited littoral zone, where it may thus represent an important N source.
Institute of Experimental Botany AS CR Rozvojová 263 CZ 16502 Prague 6 Lysolaje Czech Republic
Institute of Hydrobiology Biology Centre AS CR Na Sádkách 7 CZ 37005 České Budějovice Czech Republic
Section of Plant Ecology Institute of Botany AS CR Dukelská 135 CZ 37982 Třeboň Czech Republic
Zobrazit více v PubMed
Adamec L. Photosynthetic characteristics of the aquatic carnivorous plant Aldrovanda vesiculosa. Aquatic Botany. 1997;59:297–306.
Adamec L. Rootless aquatic plant Aldrovanda vesiculosa: physiological polarity, mineral nutrition, and importance of carnivory. Biologia Plantarum. 2000;43:113–119.
Adamec L. Respiration and photosynthesis of bladders and leaves of aquatic Utricularia species. Plant Biology. 2006;8:765–769. PubMed
Adamec L. Oxygen concentrations inside the traps of the carnivorous plants Utricularia and Genlisea (Lentibulariaceae) Annals of Botany. 2007;100:849–856. PubMed PMC
Adamec L. Mineral nutrient relations in the aquatic carnivorous plant Utricularia australis and its investment in carnivory. Fundamental and Applied Limnology. 2008;171:175–183.
Adamec L. Photosynthetic CO2 affinity of the aquatic carnivorous plant Utricularia australis (Lentibulariaceae) and its investment in carnivory. Ecological Research. 2009;24:327–333.
Adamec L. Field growth analysis of Utricularia stygia and U. intermedia – two aquatic carnivorous plants with dimorphic shoots. Phyton. 2010;49:241–251.
Adamec L. Ecophysiological look at plant carnivory: why are plants carnivorous? In: Seckbach J, Dubinski Z, editors. All flesh is grass. Plant–animal interrelationships. Cellular Origin, Life in Extreme Habitats and Astrobiology. Vol. 16. Dordrecht: Springer Science + Business Media B. V; 2011a. pp. 455–489.
Adamec L. Functional characteristics of traps of aquatic carnivorous Utricularia species. Aquatic Botany. 2011b;95:226–233. PubMed PMC
Adamec L, Pásek K. Photosynthetic CO2 affinity of aquatic carnivorous plants growing under nearly-natural conditions and in vitro. Carnivorous Plant Newsletter. 2009;38:107–113.
Albino U, Saridakis DP, Ferreira MC, Hungria M, Vinuesa P, Andrade G. High diversity of diazotrophic bacteria associated with the carnivorous plant Drosera villosa var. villosa growing in oligotrophic habitats in Brazil. Plant and Soil. 2000;287:199–207.
Baiser B, Buckley HL, Gotelli NJ, Ellison AM. Predicting food-web structure with metacommunity models. Oikos. 2013;122:492–506.
Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N. Examining the global distribution of dominant archaeal populations in soil. ISME Journal. 2011;5:908–917. PubMed PMC
Bergmann GT, Bates ST, Eilers KG, et al. The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biology and Biochemistry. 2011;43:1450–1455. PubMed PMC
Borovec J, Sirová D, Adamec L. Light as a factor affecting the concentration of simple organics in the traps of aquatic carnivorous Utricularia species. Fundamental and Applied Limnology. 2012;181:159–166.
Butler JL, Gotelli NJ, Ellison AM. Linking the brown and green: nutrient transformation and fate in the Sarracenia microecosystem. Ecology. 2008;89:898–904. PubMed
Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods. 2010;7:335–336. PubMed PMC
Černá B, Rejmánková E, Snyder JM, Šantrůčková H. Heterotrophic nitrogen fixation in oligotrophic tropical marshes: changes after phosphorus addition. Hydrobiologia. 2009;627:55–65.
Díaz-Olarte J, Valoyes-Valois V, Guisande C, et al. Periphyton and phytoplankton associated with the tropical carnivorous plant Utricularia foliosa. Aquatic Botany. 2007;87:285–291.
Drogue B, Dore H, Borland S, Wisniewski-Dyé F, Prigent-Combaret C. Which specificity in cooperation between phytostimulating rhizobacteria and plants? Research in Microbiology. 2012;163:500–510. PubMed
Ellison AM, Gotelli NJ. Nitrogen availability alters the expression of carnivory in the northern pitcher plant, Sarracenia purpurea. Proceedings of the National Academy of Sciences of the United States of America; 2002. pp. 4409–4412. PubMed PMC
Englund G, Harms S. Effects of light and microcrustacean prey on growth and investment in carnivory in Utricularia vulgaris. Freshwater Biology. 2003;48:786–794.
Fertig B. Waltham, MA, USA: Student report, Brandeis University; 2001. Importance of prey derived and absorbed nitrogen to new growth; preferential uptake of ammonia or nitrate for three species of Utricularia.
Frias-Lopez J, Shi Y, Tyson GW, et al. Microbial community gene expression in ocean surface waters. Proceedings of the National Academy of Sciences of the United States of America; 2008. pp. 3805–3810. PubMed PMC
Friday LE. Rapid turnover of traps in Utricularia vulgaris L. Oecologia. 1989;80:272–277. PubMed
Guisande C, Granado-Lorencio C, Andrade-Sossa C, Duque SR. Bladderworts. Functional Plant Science and Biotechnology. 2007;1:58–68.
Howarth RW, Marino R, Cole JJ. Nitrogen-fixation in fresh-water, estuarine, and marine ecosystems 2. Biogeochemical controls. Limnology and Oceanography. 1988;33:688–701.
Ibarra-Laclette E, Albert VA, Perez-Torres CA, et al. Transcriptomics and molecular evolutionary rate analysis of the bladderwort (Utricularia), a carnivorous plant with a minimal genome. BMC Plant Biology. 2011;11:101. PubMed PMC
Langille MGI, Zaneveld J, Caporaso JG, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnology. 2013;31:814. PubMed PMC
Leininger S, Urich T, Schloter M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature. 2006;442:806–809. PubMed
Liu Z, Lozupone C, Hamady M, Bushman FD, Knight R. Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Research. 2007;35:e120. PubMed PMC
Long RA, Azam F. Microscale patchiness of bacterioplankton assemblage richness in seawater. Aquatic Microbial Ecology. 2001;26:103–113.
López M, Herrera-Cervera JA, Iribarne C, Tejera NA, Lluch C. Growth and nitrogen fixation in Lotus japonicus and Medicago truncatula under NaCl stress: Nodule carbon metabolism. Journal of Plant Physiology. 2008;165:641–650. PubMed
Martinez-Argudo I, Little R, Shearer N, Johnson P, Dixon R. Nitrogen fixation: key genetic regulatory mechanisms. Biochemical Society Transactions. 2005;33:152–156. PubMed
Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD. PANDAseq: paired-end assembler for Illumina sequences. BMC Bioinformatics. 2012;13:31. PubMed PMC
Meneghin J. 2010. http://alrlab.research.pdx.edu/aquificales/scripts/extract_fasta_records.pl. accessed 4 November 2013.
Montoya JP, Voss M, Kähler P, Capone DG. A simple, high-precision, high-sensitivity tracer assay for N2 fixation. Applied and Environmental Microbiology. 1996;62:986–993. PubMed PMC
Mouquet N, Daufresne T, Gray SM, Miller TE. Modelling the relationship between a pitcher plant (Sarracenia purpurea) and its phytotelma community: mutualism or parasitism? Functional Ecology. 2008;22:728–737.
Pagano AM, Titus JE. Submersed macrophyte growth at low pH: carbon source influences response to dissolved inorganic carbon enrichment. Freshwater Biology. 2007;52:2412–2420.
Peroutka M, Adlassnig W, Volgger M, Lendl T, Url WG, Lichtscheidl IK. Utricularia: a vegetarian carnivorous plant? Algae as prey of bladderwort in oligotrophic bogs. Plant Ecology. 2008;199:153–162.
Płachno BJ, Łukaszek M, Wołowski K, Adamec L, Stolarczyk P. Aging of Utricularia traps and variability of microorganisms associated with that microhabitat. Aquatic Botany. 2012;97:44–48.
Prankevicius AB, Cameron DM. Bacterial dinitrogen fixation in the leaf of the northern pitcher plant (Sarracenia purpurea) Canadian Journal of Botany. 2011;69:2296–2298.
Reddy KR. Nitrogen fixation by Azolla cultured in nutrient enriched waters. Journal of Aquatic Plant Management. 1987;25:43–48.
Richards JH. Bladder function in Utricularia purpurea (Lentibulariaceae): is carnivory important? American Journal of Botany. 2001;88:170–176. PubMed
Sirová D, Adamec L, Vrba J. Enzymatic activities in traps of four aquatic species of the carnivorous genus Utricularia. New Phytologist. 2003;159:669–675. PubMed
Sirová D, Borovec J, Černá B, Rejmánková E, Adamec L, Vrba J. Microbial community development in the traps of aquatic Utricularia species. Aquatic Botany. 2009;90:129–136.
Sirová D, Borovec J, Šantrůčková H, Šantrůček J, Vrba J, Adamec L. Utricularia carnivory revisited: plants supply photosynthetic carbon to traps. Journal of Experimental Botany. 2010;61:99–103. PubMed
Sirová D, Borovec J, Picek T, Adamec L, Nedbalová L, Vrba J. Ecological implications of organic carbon dynamics in the traps of aquatic carnivorous Utricularia plants. Functional Plant Biology. 2011;38:583–593. PubMed
Taylor P. The Genus Utricularia: A Taxonomic Monograph. London: Royal Botanic Gardens; 1989. Kew Bulletin, Additional Series, XIV.
Terakado-Tonooka J, Ando S, Ohwaki Y, Yoneyama T. NifH gene expression and nitrogen fixation by diazotrophic endophytes in sugarcane and sweet potato. In: de Bruijn F, editor. Molecular ecology of the rhizosphere. Volume 1. New York: Wiley; 2013. pp. 437–444.
Urich T, Lanzén A, Qi J, Huson DH, Schleper C, Schuster SC. Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS ONE. 2008;3:e2527. PubMed PMC
Vessey JK. Plant growth-promoting rhizobacteria as biofertilizers. Plant and Soil. 2003;255:571–586.
Vitousek PM, Cassman K, Cleveland C, et al. Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry. 2002;57:1–45.
Wagner GM, Mshigeni KE. The Utricularia–Cyanophyta association and its nitrogen-fixing capacity. Hydrobiologia. 1986;141:255–261.
Yoneyama T, Terakado J, Masuda T. Natural abundance of 15N in sweet potato, pumpkin, sorghum and castor bean: possible input of N2-derived nitrogen in sweet potato. Biology and Fertility of Soils. 1998;26:152–154.
Zuberer DA. Nitrogen fixation (acetylene reduction) associated with duckweed (Lemnaceae) mats. Applied and Environmental Microbiology. 1982;43:823–828. PubMed PMC
Recent ecophysiological, biochemical and evolutional insights into plant carnivory