• This record comes from PubMed

Discovery of Molecular DNA Methylation-Based Biomarkers through Genome-Wide Analysis of Response Patterns to BCG for Bladder Cancer

. 2020 Aug 05 ; 9 (8) : . [epub] 20200805

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

BACKGROUND: Bacillus Calmette-Guérin (BCG) immunotherapy, the standard adjuvant intravesical therapy for some intermediate and most high-risk non-muscle invasive bladder cancers (NMIBCs), suffers from a heterogenous response rate. Molecular markers to help guide responses are scarce and currently not used in the clinical setting. METHODS: To identify novel biomarkers and pathways involved in response to BCG immunotherapy, we performed a genome-wide DNA methylation analysis of NMIBCs before BCG therapy. Genome-wide DNA methylation profiles of DNA isolated from tumors of 26 BCG responders and 27 failures were obtained using the Infinium MethylationEPIC BeadChip. RESULTS: Distinct DNA methylation patterns were found by genome-wide analysis in the two groups. Differentially methylated CpG sites were predominantly located in gene promoters and gene bodies associated with bacterial invasion of epithelial cells, chemokine signaling, endocytosis, and focal adhesion. In total, 40 genomic regions with a significant difference in methylation between responders and failures were detected. The differential methylation state of six of these regions, localized in the promoters of the genes GPR158, KLF8, C12orf42, WDR44, FLT1, and CHST11, were internally validated by bisulfite-sequencing. GPR158 promoter hypermethylation was the best predictor of BCG failure with an AUC of 0.809 (p-value < 0.001). CONCLUSIONS: Tumors from BCG responders and BCG failures harbor distinct DNA methylation profiles. Differentially methylated DNA regions were detected in genes related to pathways involved in bacterial invasion of cells or focal adhesion. We identified candidate DNA methylation biomarkers that may help to predict patient prognosis after external validation in larger, well-designed cohorts.

AIT Austrian Institute of Technology GmbH Health and Environment Department Molecular Diagnostics 1210 Vienna Austria

Clinical Institute of Pathology Medical University of Vienna Vienna 1090 Austria

College of Health Care Professions Claudiana Research Claudiana 39100 Bolzano Italy

Department of Urology 2nd Faculty of Medicine Charles University 150 06 Prague Czech Republic

Department of Urology Central Hospital of Bolzano Bozen 39100 Bozen Italy

Department of Urology CHRU Tours Francois Rabelais University 37000 Tours France

Department of Urology Jikei University School of Medicine Tokyo 105 8461 Japan

Department of Urology Medical University of Vienna 1090 Vienna Austria

Department of Urology University of Texas Southwestern Medical Center Dallas TX 75390 USA

Department of Urology Weill Cornell Medical College New York NY 10065 USA

Division of Pathology Department of Medical Sciences University of Studies of Torino 10124 Turin Italy

Division of Urology Department of Special Surgery The University of Jordan Amman 11942 Jordan

Division of Urology Department of Surgical Sciences San Giovanni Battista Hospital University of Studies of Torino 10124 Turin Italy

Institute for Urology and Reproductive Health 1 M Sechenov 1st Moscow State Medical University 119992 Moscow Russia

Karl Landsteiner Institute of Urology and Andrology 3100 St Poelten Austria

Ludwig Boltzmann Institute Applied Diagnostics Währinger Gürtel 18 20 1090 Vienna Austria

Sigmund Freud Private University Medical University 1020 Vienna Austria

See more in PubMed

Babjuk M., Burger M., Compérat E.M., Gontero P., Mostafid A.H., Palou J., Van Rhijn B.W., Rouprêt M., Shariat S.F., Sylvester R., et al. European Association of Urology Guidelines on Non-muscle-invasive Bladder Cancer (TaT1 and Carcinoma In Situ)—2019 Update. Eur. Urol. 2019;76:639–657. doi: 10.1016/j.eururo.2019.08.016. PubMed DOI

Böhle A., Bock P. Intravesical bacille calmette-guérin versus mitomycin c in superficial bladder cancer: Formal meta-analysis of comparative studies on tumor progression. Urology. 2004;63:682–686. doi: 10.1016/j.urology.2003.11.049. PubMed DOI

Sylvester R.J., Van Der Meijden A.P.M., Lamm D.L. Intravesical bacillus Calmette-Guerin reduces the risk of progression in patients with superficial bladder cancer: A meta-analysis of the published results of randomized clinical trials. J. Urol. 2002;168:1964–1970. doi: 10.1016/S0022-5347(05)64273-5. PubMed DOI

Xylinas E., Kent M., Sjoberg D., Kluth L., Pycha A., Comploj E., Lotan Y., Svatek R., Trinh Q.-D., Karakiewicz P., et al. 1701 Accuracy of the Eortc Risk Tables and of the Cueto Scoring Model to Predict Outcomes in Non Muscle-Invasive Urothelial Carcinoma of the Bladder. J. Urol. 2013;189:1460–1466. doi: 10.1016/j.juro.2013.02.3011. PubMed DOI PMC

Gontero P., Sylvester R., Pisano F., Joniau S., Eeckt K.V., Serretta V., Larré S., Di Stasi S., Van Rhijn B., Witjes A.J., et al. Prognostic Factors and Risk Groups in T1G3 Non–Muscle-invasive Bladder Cancer Patients Initially Treated with Bacillus Calmette-Guérin: Results of a Retrospective Multicenter Study of 2451 Patients. Eur. Urol. 2015;67:74–82. doi: 10.1016/j.eururo.2014.06.040. PubMed DOI

Pettenati C., Ingersoll M.A. Mechanisms of BCG immunotherapy and its outlook for bladder cancer. Nat. Rev. Urol. 2018;15:615–625. doi: 10.1038/s41585-018-0055-4. PubMed DOI

Bisiaux A., Thiounn N., Timsit M.-O., Eladaoui A., Chang H.-H., Mapes J., Mogenet A., Bresson J.-L., Prié D., Béchet S., et al. Molecular Analyte Profiling of the Early Events and Tissue Conditioning Following Intravesical Bacillus Calmette-Guerin Therapy in Patients With Superficial Bladder Cancer. J. Urol. 2009;181:1571–1580. doi: 10.1016/j.juro.2008.11.124. PubMed DOI

Luo Y., Chen X., O’Donnell M. Role of Th1 and Th2 cytokines in BCG-induced IFN-gamma production: Cytokine promotion and simulation of BCG effect. Cytokine. 2003;21:17–26. doi: 10.1016/S1043-4666(02)00490-8. PubMed DOI

De Boer E.C., De Jong W.H., Steerenberg P.A., Aarden L.A., Tetteroo E., De Groot E.R., Van Der Meijden A.P.M., Vegt P.D.J., Debruyne F.M.J., Ruitenberg E.J. Induction of urinary interleukin-1 (IL-1), IL-2, IL-6, and tumour necrosis factor during intravesical immunotherapy with bacillus Calmette-Guérin in superficial bladder cancer. Cancer Immunol. Immunother. 1992;34:306–312. doi: 10.1007/BF01741551. PubMed DOI PMC

Böhle A., Brandau S. Immune Mechanisms in Bacillus Calmette-Guerin Immunotherapy for Superficial Bladder Cancer. J. Urol. 2003;170:964–969. doi: 10.1097/01.ju.0000073852.24341.4a. PubMed DOI

Teppema J.S., De Boer E.C., Steerenberg P.A., Van Der Meijden A.P.M. Morphological aspects of the interaction of Bacillus Calmette-Guérin with urothelial bladder cells in vivo and in vitro: Relevance for antitumor activity? Urol. Res. 1992;20:219–228. doi: 10.1007/BF00299721. PubMed DOI

Kuroda K., Brown E.J., Telle W.B., Russell D.G., Ratliff T.L. Characterization of the internalization of bacillus Calmette-Guerin by human bladder tumor cells. J. Clin. Investig. 1993;91:69–76. doi: 10.1172/JCI116202. PubMed DOI PMC

Kavoussi L.R., Brown E.J., Ritchey J.K., Ratliff T.L. Fibronectin-mediated Calmette-Guerin bacillus attachment to murine bladder mucosa. Requirement for the expression of an antitumor response. J. Clin. Investig. 1990;85:62–67. doi: 10.1172/JCI114434. PubMed DOI PMC

Redelman-Sidi G., Iyer G., Solit D.B., Glickman M.S. Oncogenic activation of Pak1-dependent pathway of macropinocytosis determines BCG entry into bladder cancer cells. Cancer Res. 2013;73:1156–1167. doi: 10.1158/0008-5472.CAN-12-1882. PubMed DOI PMC

Durek C., Brandau S., Ulmer A.J., Flad H.-D., Jocham D., Bohle A. Bacillus-Calmette-Guerin (BCG) and 3D Tumors: An in vitro Model for the Study of Adhesion and Invasion. J. Urol. 1999;162:600–605. doi: 10.1016/S0022-5347(05)68633-8. PubMed DOI

Becich M.J., Carroll S., Ratliff T.L. Internalization of Bacille Calmette-Guerin by Bladder Tumor Cells. J. Urol. 1991;145:1316–1324. doi: 10.1016/S0022-5347(17)38622-6. PubMed DOI

Pook S.-H., Rahmat J., Esuvaranathan K., Mahendran R. Internalization of Mycobacterium bovis, Bacillus Calmette Guerin, by bladder cancer cells is cytotoxic. Oncol. Rep. 2007;18:1315–1320. doi: 10.3892/or.18.5.1315. PubMed DOI

Ikeda N., Toida I., Iwasaki A., Kawai K., Akaza H. Surface antigen expression on bladder tumor cells induced by bacillus Calmette-Guérin (BCG): A role of BCG internalization into tumor cells. Int. J. Urol. 2002;9:29–35. doi: 10.1046/j.1442-2042.2002.00415.x. PubMed DOI

Stefanini G., Bercovich E., Mazzeo V., Grigioni W., Emili E., D’Errico A., Cigno M.L., Tamagnini N., Mazzetti M. Class I and Class II HLA Antigen Expression by Transitional Cell Carcinoma of the Bladder: Correlation with T-Cell Infiltration and BCG Treatment. J. Urol. 1989;141:1449–1453. doi: 10.1016/S0022-5347(17)41343-7. PubMed DOI

Suttmann H., Riemensberger J., Bentien G., Schmaltz D., Stöckle M., Jocham D., Böhle A., Brandau S. Neutrophil Granulocytes Are Required for EffectiveBacillus Calmette-GuérinImmunotherapy of Bladder Cancer and Orchestrate Local Immune Responses. Cancer Res. 2006;66:8250–8257. doi: 10.1158/0008-5472.CAN-06-1416. PubMed DOI

Ilijazi D., Abufaraj M., Hassler M.R., Ertl I.E., D’Andrea D., Shariat S.F. Waiting in the wings: The emerging role of molecular biomarkers in bladder cancer. Expert Rev. Mol. Diagn. 2018;18:347–356. doi: 10.1080/14737159.2018.1453808. PubMed DOI

Álvarez-Múgica M., Fernandez-Gomez J.M., Cebrian V., Fresno F., Escaf S., Sanchez-Carbayo M. Polyamine-modulated Factor-1 Methylation Predicts Bacillus Calmette-Guérin Response in Patients with High-grade Non–muscle-invasive Bladder Carcinoma. Eur. Urol. 2013;63:364–370. doi: 10.1016/j.eururo.2012.05.050. PubMed DOI

Kitchen M., Bryan R.T., Emes R.D., Luscombe C.J., Cheng K., Zeegers M.P., James N.D., Gommersall L.M., Fryer A. HumanMethylation450K Array–Identified Biomarkers Predict Tumour Recurrence/Progression at Initial Diagnosis of High-risk Non-muscle Invasive Bladder Cancer. Biomarkers Cancer. 2018;10:1179299–17751920. doi: 10.1177/1179299X17751920. PubMed DOI PMC

Pidsley R., Zotenko E., Peters T.J., Lawrence M.G., Risbridger G., Molloy P.L., Van Dijk S.J., Muhlhausler B.S., Stirzaker C., Clark S.J. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Boil. 2016;17:208. doi: 10.1186/s13059-016-1066-1. PubMed DOI PMC

Li R., Metcalfe M., Tabayoyong W.B., Guo C., González G.M.N., Navai N., Grossman H.B., Dinney C.P.N., Kamat A.M. Using Grade of Recurrent Tumor to Guide Further Therapy While on Bacillus Calmette-Guerin: Low-grade Recurrences Are not Benign. Eur. Urol. Oncol. 2018;2:286–293. doi: 10.1016/j.euo.2018.08.013. PubMed DOI

Troyanskaya O., Cantor M., Sherlock G., Brown P., Hastie T., Tibshirani R., Botstein D., Altman R.B. Missing value estimation methods for DNA microarrays. Bioinformatics. 2001;17:520–525. doi: 10.1093/bioinformatics/17.6.520. PubMed DOI

Leek J.T., Johnson W.E., Parker H.S., Fertig E.J., Jaffe A.E., Zhang Y., Storey J.D., Torres L.C. Bioconductor – sva: Surrogate Variable Analysis. [(accessed on 31 July 2020)]; Available online: https://bioconductor.org/packages/release/bioc/html/sva.html.

Ritchie M.E., Phipson B., Wu D., Hu Y., Law C.W., Shi W., Smyth G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. doi: 10.1093/nar/gkv007. PubMed DOI PMC

Jaffe A.E., Murakami P., Lee H., Leek J.T., Fallin M.D., Feinberg A.P., Irizarry R.A. Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies. Int. J. Epidemiol. 2012;41:200–209. doi: 10.1093/ije/dyr238. PubMed DOI PMC

Halachev K., Bast H., Albrecht F., Lengauer T., Bock C. EpiExplorer: Live exploration and global analysis of large epigenomic datasets. Genome Boil. 2012;13:R96. doi: 10.1186/gb-2012-13-10-r96. PubMed DOI PMC

Pabinger S., Ernst K., Pulverer W., Kallmeyer R., Valdes A.M., Metrustry S., Katic D., Nuzzo A., Kriegner A., Vierlinger K., et al. Analysis and Visualization Tool for Targeted Amplicon Bisulfite Sequencing on Ion Torrent Sequencers. PLoS ONE. 2016;11:e0160227. doi: 10.1371/journal.pone.0160227. PubMed DOI PMC

Simon R., Lam A., Li M.-C., Ngan M., Menenzes S., Zhao Y. Analysis of Gene Expression Data Using BRB-Array Tools. Cancer Inform. 2007;3:11–17. doi: 10.1177/117693510700300022. PubMed DOI PMC

Huang D.W., Sherman B.T., Lempicki R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2008;37:1–13. doi: 10.1093/nar/gkn923. PubMed DOI PMC

Huang d.W., Sherman B.T., Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009;4:44–57. doi: 10.1038/nprot.2008.211. PubMed DOI

Chiu H.-Y., Sun K.-H., Chen S.-Y., Wang H.-H., Lee M.-Y., Tsou Y.-C., Jwo S.-C., Sun G.-H., Tang S.-J. Autocrine CCL2 promotes cell migration and invasion via PKC activation and tyrosine phosphorylation of paxillin in bladder cancer cells. Cytokine. 2012;59:423–432. doi: 10.1016/j.cyto.2012.04.017. PubMed DOI

Petit V., Boyer B., Lentz D., Turner C.E., Thiery J.P., Vallés A.M. Phosphorylation of Tyrosine Residues 31 and 118 on Paxillin Regulates Cell Migration through an Association with Crk in Nbt-II Cells. J. Cell Boil. 2000;148:957–970. doi: 10.1083/jcb.148.5.957. PubMed DOI PMC

Metalli D., Lovat F., Tripodi F., Genua M., Xu S.-Q., Spinelli M., Alberghina F., Vanoni M., Baffa R., Gomella L.G., et al. The Insulin-Like Growth Factor Receptor I Promotes Motility and Invasion of Bladder Cancer Cells through Akt- and Mitogen-Activated Protein Kinase-Dependent Activation of Paxillin. Am. J. Pathol. 2010;176:2997–3006. doi: 10.2353/ajpath.2010.090904. PubMed DOI PMC

Babjuk M., Böhle A., Burger M., Čapoun O., Cohen D., Compérat E., Hernández V., Kaasinen E., Palou J., Rouprêt M., et al. EAU Guidelines on Non–Muscle-invasive Urothelial Carcinoma of the Bladder: Update 2016. Eur. Urol. 2017;71:447–461. doi: 10.1016/j.eururo.2016.05.041. PubMed DOI

Rechache N.S., Wang Y., Stevenson H.S., Killian J.K., Edelman D.C., Merino M., Zhang L., Nilubol N., Stratakis C.A., Meltzer P.S., et al. DNA methylation profiling identifies global methylation differences and markers of adrenocortical tumors. J. Clin. Endocrinol. Metab. 2012;97:E1004–E1013. doi: 10.1210/jc.2011-3298. PubMed DOI PMC

Geybels M.S., Zhao S., Wong C.-J., Bibikova M., Klotzle B., Wu M.C., Ostrander E.A., Fan J.-B., Feng Z., Stanford J.L. Epigenomic profiling of DNA methylation in paired prostate cancer versus adjacent benign tissue. Prostate. 2015;75:1941–1950. doi: 10.1002/pros.23093. PubMed DOI PMC

Olkhov-Mitsel E., Savio A.J., Kron K.J., Pethe V.V., Hermanns T., Fleshner N.E., Van Rhijn B., Van Der Kwast T.H., Zlotta A.R., Bapat B. Epigenome-Wide DNA Methylation Profiling Identifies Differential Methylation Biomarkers in High-Grade Bladder Cancer. Transl. Oncol. 2017;10:168–177. doi: 10.1016/j.tranon.2017.01.001. PubMed DOI PMC

Smith B.A., Balanis N.G., Nanjundiah A., Sheu K.M., Tsai B., Zhang Q., Park J.W., Thompson M., Huang J., Witte O.N., et al. A Human Adult Stem Cell Signature Marks Aggressive Variants across Epithelial Cancers. Cell Rep. 2018;24:3353–3366.e5. doi: 10.1016/j.celrep.2018.08.062. PubMed DOI PMC

Monami G., Gonzalez E.M., Hellman M., Gomella L.G., Baffa R., Iozzo R.V., Morrione A. Proepithelin promotes migration and invasion of 5637 bladder cancer cells through the activation of ERK1/2 and the formation of a paxillin/FAK/ERK complex. Cancer Res. 2006;66:7103–7110. doi: 10.1158/0008-5472.CAN-06-0633. PubMed DOI

Athanasopoulou A., Aroukatos P., Nakas D., Repanti M., Papadaki H., Bravou V. Decreased ezrin and paxillin expression in human urothelial bladder tumors correlate with tumor progression. Urol. Oncol. Semin. Orig. Investig. 2013;31:836–842. doi: 10.1016/j.urolonc.2011.07.003. PubMed DOI

Spainhour J.C., Lim H.S., Yi S.V., Qiu P. Correlation Patterns Between DNA Methylation and Gene Expression in The Cancer Genome Atlas. Cancer Inform. 2019;18:1–11. doi: 10.1177/1176935119828776. PubMed DOI PMC

Orlandi C., Xie K., Masuho I., Fajardo-Serrano A., Lujan R., Martemyanov K.A. Orphan Receptor GPR158 Is an Allosteric Modulator of RGS7 Catalytic Activity with an Essential Role in Dictating Its Expression and Localization in the Brain. J. Boil. Chem. 2015;290:13622–13639. doi: 10.1074/jbc.M115.645374. PubMed DOI PMC

Patel N., Itakura T., González J.M., Schwartz S.G., Fini M.E. GPR158, an Orphan Member of G Protein-Coupled Receptor Family C: Glucocorticoid-Stimulated Expression and Novel Nuclear Role. PLoS ONE. 2013;8:e57843. doi: 10.1371/journal.pone.0057843. PubMed DOI PMC

Patel N., Itakura T., Jeong S., Liao C.-P., Roy-Burman P., Zandi E., Groshen S., Pinski J., Coetzee G.A., Gross M.E., et al. Expression and Functional Role of Orphan Receptor GPR158 in Prostate Cancer Growth and Progression. PLoS ONE. 2015;10:e0117758. doi: 10.1371/journal.pone.0117758. PubMed DOI PMC

Kitchen M., Bryan R.T., Haworth K.E., Emes R.D., Luscombe C., Gommersall L., Cheng K.K., Zeegers M.P., James N.D., Devall A.J., et al. Methylation of HOXA9 and ISL1 Predicts Patient Outcome in High-Grade Non-Invasive Bladder Cancer. PLoS ONE. 2015;10:e0137003. doi: 10.1371/journal.pone.0137003. PubMed DOI PMC

Agundez M., Grau L., Palou J., Algaba F., Villavicencio H., Sanchez-Carbayo M. Evaluation of the Methylation Status of Tumour Suppressor Genes for Predicting Bacillus Calmette-Guérin Response in Patients With T1G3 High-Risk Bladder Tumours. Eur. Urol. 2011;60:131–140. doi: 10.1016/j.eururo.2011.04.020. PubMed DOI

Heiss J.A., Brennan K.J., Baccarelli A.A., Téllez-Rojo M.M., Estrada-Gutierrez G., Wright R.O., Just A.C. Battle of epigenetic proportions: Comparing Illumina’s EPIC methylation microarrays and TruSeq targeted bisulfite sequencing. Epigenetics. 2019;15:174–182. doi: 10.1080/15592294.2019.1656159. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...