Apoptosis of Eosinophil Granulocytes

. 2020 Dec 10 ; 9 (12) : . [epub] 20201210

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33321726

Grantová podpora
AF-IGA-2018-tym002 Mendelova Univerzita v Brně

In the past 10 years, the number of people in the Czech Republic with allergies has doubled to over three million. Allergic pollen catarrh, constitutional dermatitis and asthma are the allergic disorders most often diagnosed. Genuine food allergies today affect 6-8% of nursing infants, 3-5% of small children, and 2-4% of adults. These disorders are connected with eosinophil granulocytes and their apoptosis. Eosinophil granulocytes are postmitotic leukocytes containing a number of histotoxic substances that contribute to the initiation and continuation of allergic inflammatory reactions. Eosinophilia results from the disruption of the standard half-life of eosinophils by the expression of mechanisms that block the apoptosis of eosinophils, leading to the development of chronic inflammation. Glucocorticoids are used as a strong acting anti-inflammatory medicine in the treatment of hypereosinophilia. The removal of eosinophils by the mechanism of apoptosis is the effect of this process. This work sums up the contemporary knowledge concerning the apoptosis of eosinophils, its role in the aforementioned disorders, and the indications for the use of glucocorticoids in their related therapies.

Zobrazit více v PubMed

Anderson D.C., Schmalsteig F.C., Finegold M.J., Hughes B.J., Rothlein R., Miller L.J., Kohl S., Tosi M.F., Jacobs R.L., Waldrop T.C., et al. The severe and moderate phenotypes of heritable Mac-1, LFA/1 deficiency: Their quantitative definition and regulation to leukocyte dysfunction and clinical features. J. Infect. Dis. 1985;152:668–689. doi: 10.1093/infdis/152.4.668. PubMed DOI

Sanfilippo A.M., Furuya Y., Roberts S., Salmon S.L., Metzger D.W. Allergic lung inflammation reduces tissue invasion and enhances survival from pulmonary pneumococcal infection in mice, which correlates with increased expression of transforming growth factor β1 and SiglecF(low) alveolar macrophages. Infect. Immun. 2015;83:2976–2983. doi: 10.1128/IAI.00142-15. PubMed DOI PMC

Sanderson C.J. Interleukin-5, eosinophils and diseases. Blood. 1992;79:3101–3109. doi: 10.1182/blood.V79.12.3101.bloodjournal79123101. PubMed DOI

Specht S., Saeftel M., Arndt M., Endl E., Dubben B., Lee N.A., Lee J.J., Hoerauf A. Lack of eosinophil peroxidase or major basic protein impairs defense against murine filarial infection. Infect. Immun. 2006;74:5236–5243. doi: 10.1128/IAI.00329-06. PubMed DOI PMC

Minupuri A., Ramireddy K., Patel R., Hossain S., Noain J.S. Hyper-eosinophilic syndrome masquerading as myocardial infarction, stroke and cancer. Cereus. 2020;12:e9630. doi: 10.7759/cureus.9630. PubMed DOI PMC

George L., Brightling C.E. Eosinophilic airway inflammation: Role in asthma and chronic obstructive pulmonary disease. Ther. Adv. Chronic Dis. 2016;7:34–51. doi: 10.1177/2040622315609251. PubMed DOI PMC

Garcia-Moguel I., Campos R.D., Charterina S.A., Rodriguez C.F., Crespo J.F. COVID-19, severe asthma, and biologics. Ann. Allergy Asthma Immunol. 2020;124:2–12. doi: 10.1016/j.anai.2020.06.012. PubMed DOI PMC

Min D.Y., Lee Y.H., Ryu J.S., Ahn M.H., Chung Y.B., Sim S., Shin M.H. Caspase-3-mediated apoptosis of human eosinophils by the tissue-invading helminth Paragonimus westermani. Int. Arch. Allergy Immunol. 2004;133:357–364. doi: 10.1159/000077355. PubMed DOI

Wen T., Rothenberg M.E. The regulatory function of eosinophils. Microbiol. Spectr. 2016;4 doi: 10.1128/microbiolspec.MCHD-0020-2015. PubMed DOI PMC

Stern M., Meagher L., Savill J., Haslett C. Apoptosis in human eosinophils. Programmed cell death in the eosinophil leads to phagocytosis by macrophages and is modulated by IL-5. J. Immunol. 1992;148:3543–3549. PubMed

Walsh G.M. Eosinophil apoptosis and clearance in asthma. J. Cell Death. 2013;6:17–25. doi: 10.4137/JCD.S10818. PubMed DOI PMC

Kadin M., Butmarc J., Elovic K., Wong D. Eosinophils are the major source of transforming growth factor- ß1 in nodular sclerosing Hodgkin´s disease. Am. J. Pathol. 1993;142:11–16. PubMed PMC

Munitz A., Hogan S.P. Alarming eosinophils to combat tumors. Nat. Immunol. 2019;20:250–252. doi: 10.1038/s41590-019-0318-0. PubMed DOI

Shi H.Z. Eosinophils function as antigen-presenting cells. J. Leukoc. Biol. 2004;76:520–527. doi: 10.1189/jlb.0404228. PubMed DOI

Padigel U.M., Hess J.A., Lee J.J., Lok J.B., Nolan T.J., Schad G.A., Abraham D. Eosinophils act as antigen-presenting cells to induce immunity to Strongyloides stercoralis in mice. J. Infect. Dis. 2007;196:1844–1851. doi: 10.1086/522968. PubMed DOI PMC

Lin A., Lore K. Granulocytes: New members of the antigen-presenting cell family. Front. Immunol. 2017;8:1781. doi: 10.3389/fimmu.2017.01781. PubMed DOI PMC

Sedgwick J.B., Calhoun W.J., Vrtis R.F., Bates M.E., McAllister P.K., Busse W.W. Comparison of airway and blood eosinophil function after in vivo antigen challenge. J. Immunol. 1992;149:3710–3718. PubMed

Weller P.F., Rand T.H., Barrett T., Elovic A., Wong D.T., Finberg R.W. Accessory cell of human eosinophils: HLA-DR dependent, MHC-restricted antigen presentation and IL-1 alpha expression. J. Immunol. 1993;150:2554–2562. PubMed

Jacobsen E.A., Helmers R.A., Lee J.J., Lee N.A. The expanding role(s) of eosinophils in health and disease. Blood. 2012;120:3882–3890. doi: 10.1182/blood-2012-06-330845. PubMed DOI PMC

Singh R., Letai A., Sarosiek K. Regulation of apoptosis in health and disease: The balancing act of BLC-2 family proteins. Nat. Rev. Mol. Cell Biol. 2019;20:175–193. doi: 10.1038/s41580-018-0089-8. PubMed DOI PMC

Hwang J.Y., Silva-Sanchez A., Carragher D.M., de la Luz Garcia-Hernandez M., Rangel-Moreno J., Randall T.D. Inducible bronchus-associated lymphoid tissue (iBALT) attenuates pulmonary pathology in a mouse model of allergic airway disease. Front. Immunol. 2020;11:570661. doi: 10.3389/fimmu.2020.570661. PubMed DOI PMC

Duong-Quy S., Le-Thi-Minh H., Nguyen-Thi-Bich H., Pham-Thu H., Thom V.T., Pham-Thi-Hong N., Duong-Thi-Ly H., Nguyen-Huy B., Ngo-Minh X., Nguyen-Thi-Dieu T., et al. Correlations between exhaled nitric oxide, rs28364072 polymorphism of FCER2 gene, asthma control, and inhaled corticosteroid responsiveness in children with asthma. J. Breath Res. 2020 doi: 10.1088/1752-7163/abc4ec. PubMed DOI

Wardlaw A.J. Molecular basis for selective eosinophil trafficking in asthma: A multistep paradigm. J. Allergy Clin. Immunol. 1999;104:917–926. doi: 10.1016/S0091-6749(99)70069-2. PubMed DOI

Pavord I.D., Lettis S., Locantore N. Blood eosinophils and inhaled corticosteroid/long-acting β-2 agonist efficacy in COPD. Thorax. 2016;71:118–125. doi: 10.1136/thoraxjnl-2015-207021. PubMed DOI PMC

Mehta V., Campeau N.G., Kita H., Hagan J.B. Blood and sputum eosinophil levels in asthma and their relationship to sinus computed tomographic findings. Mayo Clin. Proc. 2008;83:671–678. doi: 10.1016/S0025-6196(11)60895-1. PubMed DOI PMC

Santing R.E., Hoekstra Y., Pasman Y., Zaagsma J., Meurs H. The importance of eosinophil activation for the development of allergen-induced bronchial hyperreactivity in conscious, unrestrained guinea-pigs. Clin. Exp. Allergy. 1994;24:1157–1163. doi: 10.1111/j.1365-2222.1994.tb03322.x. PubMed DOI

Walsh G.M., Dewson G., Wardlaw A.J., Levi-Schaffer F., Moqbel R. A comparative study of the different methods for assessment of apoptosis and necrosis in human eosinophils. J. Immunol. Methods. 1998;217:153–163. doi: 10.1016/S0022-1759(98)00103-3. PubMed DOI

Sexton D.W., Blaylock M.G., Walsh G.M. Human alveolar epithelial cells engulf apoptotic eosinophils by means of integrin- and phosphatidylserine receptor-dependent mechanisms: A process upregulated by dexamethasone. J. Allergy Clin. Immunol. 2001;108:962–969. doi: 10.1067/mai.2001.119414. PubMed DOI

Sexton D.W., Al-Rabia M., Blaylock M.G., Walsh G.M. Phagocytosis of apoptotic eosinophils but not neutrophils by bronchial epithelial cells. Clin. Exp. Allergy. 2004;34:1514–1524. doi: 10.1111/j.1365-2222.2004.02054.x. PubMed DOI

Walsh G.M. Mechanisms of human eosinophil survival and apoptosis. Clin. Exp. Allergy. 1997;27:482–487. doi: 10.1111/j.1365-2222.1997.tb00735.x. PubMed DOI

Walsh G.M. Eosinophils, their accumulation activation and fate. Br. J. Haematol. 1997;97:701–709. doi: 10.1046/j.1365-2141.1997.00125.x. PubMed DOI

Vignola A.M., Chanez P., Chiappara G. Evaluation of apoptosis of eosinophils, macrophages and T lymphocytes in mucosal biopsy specimens of patients with asthma and chronic bronchitis. J. Allergy Clin. Immunol. 1999;103:563–573. doi: 10.1016/S0091-6749(99)70225-3. PubMed DOI

Leifferman K.M. A current perspective on the role of eosinophils in dermatologic diseases. J. Am. Acad. Dermatol. 1991;24:1101–1112. doi: 10.1016/0190-9622(91)70166-Y. PubMed DOI

Davis M.D.P., Plager D.A., George T.J., Weiss E.A., Gleich G.J., Leiferman K.M. Interactions of eosinophil granule proteins with skin: Limits of detection, persistence, and vasopermeabilization. J. Allergy Clin. Immunol. 2003;112:988–994. doi: 10.1016/j.jaci.2003.08.028. PubMed DOI

Park Y.M., Bochner B.S. Eosinophil survival and apoptosis in health and disease. Allergy Asthma Immunol. Res. 2010;2:87–101. doi: 10.4168/aair.2010.2.2.87. PubMed DOI PMC

Lampinen M., Carlson M., Hakansson L.D., Venge P. Cytokine-regulated accumulation of eosinophils in inflammatory disease. Allergy. 2004;59:793–805. doi: 10.1111/j.1398-9995.2004.00469.x. PubMed DOI

Schwartz C., Willebrand R., Huber S., Rupec R.A., Wu D., Locksley R., Voehringer D. Eosinophil-specific deletion of IκBα in mice reveals a critical role of NF-κB–induced Bcl-xL for inhibition of apoptosis. Blood. 2015;125:3896–3904. doi: 10.1182/blood-2014-10-607788. PubMed DOI PMC

Kano G., Almanan M., Bochner B.S., Zimmermann N. Mechanism of Siglec-8-mediated cell death in IL-5-activated Eosinophils: Role for reactive oxygen species-enhanced MEK/ERK activation. J. Allergy Clin. Immunol. 2013;132:437–445. doi: 10.1016/j.jaci.2013.03.024. PubMed DOI PMC

Tsuyuki S., Bertrand C., Erard F., Trifilieff A., Tsuyuki J., Wesp M., Anderson G.P., Coyle A.J. Activation of the Fas receptor on lung eosinophils leads to apoptosis and the resolution of eosinophilic inflammation of the airways. J. Clin. Investig. 1995;96:2924–2931. doi: 10.1172/JCI118364. PubMed DOI PMC

Uller E., Rydell-Törmänen K., Persson C.G.A., Erjefalt J.S. Anti-Fas mAb-induced apoptosis and cytolysis of airway tissue eosinophils aggravates rather than resolves established inflammation. Respir. Res. 2005;6:90. doi: 10.1186/1465-9921-6-90. PubMed DOI PMC

Kankaanranta H., Lindsay M.A., Giembycz M.A., Zhang X., Moilanen E., Barnes P.J. Delayed eosinophil apoptosis in asthma. J. Allergy Clin. Immunol. 2000;106:77–83. doi: 10.1067/mai.2000.107038. PubMed DOI

Leung D.Y. Molecular basis of allergic diseases. Mol. Genet. Metab. 1998;63:157–167. doi: 10.1006/mgme.1998.2682. PubMed DOI

O´Sullivan J.A., Bochner B.S. Eosinophils and eosinophil-associated diseases: An update. J. Allergy Clin. Immunol. 2018;141:505–517. doi: 10.1016/j.jaci.2017.09.022. PubMed DOI PMC

Walker C., Bode E., Boer L., Hansel T.T., Blaser K., Virchow J.C., Jr. Allergic and nonallergic asthmatics have distinct patterns of T-cell activation and cytokine production in peripheral blood and bronchoalveolar lavage. Am. Rev. Respir. Dis. 1992;146:109–115. doi: 10.1164/ajrccm/146.1.109. PubMed DOI

Cohen<sc> J.J. Apoptosis: Mechanisms of life and death in the immune system. J. Allergy Clin. Immunol. 1999;103:548–554. PubMed

Cheng J.F., Ott N.L., Peterson E.A., George T.J., Hukee M.J., Gleich G.J., Leiferman K.M. Dermal eosinophils in atopic dermatitis undergo cytolytic degeneration. J. Allergy Clin. Immunol. 1997;99:683–692. doi: 10.1016/S0091-6749(97)70031-9. PubMed DOI

Horvathova M. Human eosinophils as potent inflammatory cells and their apoptosis. Bratisl. Lek. Listy. 2004;105:359–361. PubMed

Savill J. Recognition and phagocytosis of cells undergoing apoptosis. Br. Med Bull. 1997;53:491–508. doi: 10.1093/oxfordjournals.bmb.a011626. PubMed DOI

Fadok V.A., Voelker D.R., Campbell P.A., Cohen J.J., Bratton D.L., Henson P.M. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 1992;148:2207–2216. PubMed

Watkins A.D., Hatfield C.A., Fidler S.F., Winterrowd D.E., Brashler J.R., Sun F.F., Taylor B.M., Vonderfecht S.L., Conder G.A., Holgate S.T., et al. Phenotypic analysis of airway eosinophils and lymphocytes in a Th-2-driven murine model of pulmonary inflammation. Am. J. Respir. Cell Mol. Biol. 1996;15:20–34. doi: 10.1165/ajrcmb.15.1.8679219. PubMed DOI

Slama P., Sladek Z., Rysanek D., Buresova I. The effect of temperature on apoptosis of bovine blood eosinophil granulocytes in vitro. Acta Univ. Agric.Silvic. Mendel. Brun. 2008;56:173–178. doi: 10.11118/actaun200856010173. DOI

Ponath P.D., Qin S., Ringler D.J., Clark-Lewis I., Wang J., Kassam N., Smith H., Shi X., Gonzalo J.A., Newman W., et al. Cloning of the human eosinophil chemoattractant, eotaxin. Expression, receptor binding, and functional properties suggest a mechanism for the selective recruitment of eosinophils. J. Clin. Investig. 1996;97:604–612. doi: 10.1172/JCI118456. PubMed DOI PMC

Pasparakis M., Vandenabeele P. Necroptosis and its role in inflammation. Nature. 2015;517:311–320. doi: 10.1038/nature14191. PubMed DOI

Radonjic-Hoesli S., Wang X., de Graauw E., Stoeckle C., Styp-Rekowska B., Hlushchuk R., Simon D., Spaeth P.J., Yousefi S., Simon H.U. Adhesion-induced eosinophil cytolysis requires thereceptor-interacting protein kinase 3 (RIPK3)–mixedlineage kinase-like (MLKL) signaling pathway, which is counterregulated by autophagy. J. Allergy Clin. Immunol. 2017;140:1632–1642. doi: 10.1016/j.jaci.2017.01.044. PubMed DOI

Bray K., Mathew R., Lau A., Kamphorst J.J., Fan J., Chen J., Chen H.Y., Ghavami A., Stein M., DiPaola R.S., et al. Autophagy suppresses RIP kinase-dependent necrosis enabling survival to mTOR inhibition. PLoS ONE. 2012;7:e41831. doi: 10.1371/journal.pone.0041831. PubMed DOI PMC

Basit F., Cristofanon S., Fulda S. Obatoclax (GX15-070) triggers necroptosis by promoting the assembly of the necrosome on autophagosomal membranes. Cell Death Differ. 2014;21:1183–1184. doi: 10.1038/cdd.2014.52. PubMed DOI PMC

Radonjic-Hoesli S., Valent P., Klion A.D., Wechsler M.E., Simon H.U. Novel targeted therapies for eosinophil-associated diseases and allergy. Annu. Rev. Pharmacol. Toxicol. 2015;55:633–656. doi: 10.1146/annurev-pharmtox-010814-124407. PubMed DOI PMC

Sharmi R., Xenakis J.J., Spencer L.A. Eosinophils in innate immunity: An evolving story. Cell Tissue Res. 2011;343:57–83. PubMed PMC

Tefferi A., Gotlib J., Pardanani A. Hypereosinophilic syndrome and clonal eosinophilia: Point-of-care diagnostic algorithm and treatment update. Mayo Clin. Proc. 2010;85:158–164. doi: 10.4065/mcp.2009.0503. PubMed DOI PMC

Dal Berto A.S., Camina R.H., Machado E.S., Baptistella A.R. FIP1L1-PDGFRA fusion-negative hypereosinophilic syndrome with uncommon cardiac involvement responding to imatinib treatment: A case report. Mol. Clin. Oncol. 2018;9:35–39. doi: 10.3892/mco.2018.1637. PubMed DOI PMC

Gleich G.J., Leiferman K.M., Pardanani A., Tefferi A., Butterfield J.H. Treatment of hypereosinophilic syndrome with imatinib mesilate. Lancet. 2002;359:1577–1578. doi: 10.1016/S0140-6736(02)08505-7. PubMed DOI

Havelange V., Demoulin J.B. Review of current classification, molecular alterations, and tyrosine kinase inhibitor therapies in myeloproliferative disorders with hypereosinophilia. J. Blood Med. 2013;4:111–121. PubMed PMC

Fukakusa M., Bergeron C., Tulic M.K., Fiset P.O., Al Dewachi O., Laviolette M., Hamid O., Chakir J. Oral corticosteroids decrease eosinophil and CC chemokine expression but increase neutrophil, IL-8, and IFN-γ–inducible protein 10 expression in asthmatic airway mucosa. J. Allergy Clin. Immunol. 2005;115:280–286. doi: 10.1016/j.jaci.2004.10.036. PubMed DOI

Stellato C., Matsukura S., Fal A., White J., Beck L.A., Proud L.A., Schleimer R.P. Differential regulation of epithelial-derived C-C chemokine expression by IL-4 and the glucocorticoid budesonide. J. Immunol. 1999;163:5624–5632. PubMed

Bates M.E., Busse W.W., Bertics P.J. Interleukin 5 signals through Shc and Grb2 in human eosinophils. Am. J. Respir. Cell Mol. Biol. 1998;18:75–83. doi: 10.1165/ajrcmb.18.1.2766. PubMed DOI

Pazdrak K., Moon Y., Straub C., Stafford S., Kurosky A. Eosinophil resistance to glucocorticoid-induced apoptosis is mediated by the transcription factor NFIL3. Apoptosis. 2016;21:421–431. doi: 10.1007/s10495-016-1226-5. PubMed DOI PMC

Rothenberg M.E. Eosinophilia. N. Engl. J. Med. 1998;338:1592–1600. doi: 10.1056/NEJM199805283382206. PubMed DOI

Aldebert D., Lamkhioued B., Desaint C., Gounni A.S., Goldman M., Capron A., Prin L., Capron M. Eosinophils express a functional receptor for interferon α: Inhibitory role of interferon α on the release of mediators. Blood. 1996;87:2354–2360. doi: 10.1182/blood.V87.6.2354.bloodjournal8762354. PubMed DOI

Blanchard C., Mishra A., Saito-Akei H., Monk P., Anderson I., Rothenberg M.E. Inhibition of human interleukin-13-induced respiratory and oesophageal inflammation by anti-human-interleukin-13 antibody (CAT-354) Clin. Exp. Allergy. 2005;35:1096–1103. doi: 10.1111/j.1365-2222.2005.02299.x. PubMed DOI

Hunt L.W., Frigas E., Butterfield J.H., Kita H., Blomgren J., Dunnette S.L., Offord K.P., Gleich G.J. Treatment of asthma with nebulized lidocaine: A randomized, placebo-controlled study. J. Allergy Clin. Immunol. 2004;113:853–859. doi: 10.1016/j.jaci.2004.02.039. PubMed DOI

Kane G.C., Pollice M., Kim C.J., Cohn J., Dworski R.T., Murray J.J., Sheller J.R., Fish J.E., Peters S.P. A controlled trial of the effects of the 5-lipoxygenase inhibitor, zileuton, on lung inflammation produced by segmental antigen challenge in human beings. J. Allergy Clin. Immunol. 1996;97:646–654. doi: 10.1016/S0091-6749(96)70310-X. PubMed DOI

Gaddy J.N., Margolskee D.J., Bush R.K., Williams V.C., Busse W.W. Bronchodilation with a potent and selective leukotriene D4 (LTD4) receptor antagonist (MK-571) in patients with asthma. Am. Rev. Respir. Dis. 1992;146:358–363. doi: 10.1164/ajrccm/146.2.358. PubMed DOI

Snyman J.R., Sommers D.K., Gregorowski M.D., Boraine H. Effect of cetirizine, ketotifen and chlorpheniramine on the dynamics of the cutaneous hypersensitivity reaction: A comparative study. Eur. J. Clin. Pharmacol. 1992;42:359–362. doi: 10.1007/BF00280118. PubMed DOI

Rand T.H., Lopez A.F., Gamble J.R. Nedocromil sodium and cromolyn (sodium cromoglycate) selectively inhibit antibody-dependent granulocyte-mediated cytotoxicity. Int. Arch. Allergy Appl. Immunol. 1988;87:151–158. doi: 10.1159/000234665. PubMed DOI

Wegner C.D., Gundel R.H., Reilly P., Haynes N., Letts L.G., Rothlein R. Intracellular adhesion molekule-1 (ICAM-1) in the pathogenesis of asthma. Science. 1990;247:456–459. doi: 10.1126/science.1967851. PubMed DOI

Kuijpers T.W., Mul E.P., Blom M., Kovach N.L., Gaeta F.C. Freezing adhesion molecules in a state of high-avidity binding blocks eosinophil migration. J. Exp. Med. 1993;178:279–284. doi: 10.1084/jem.178.1.279. PubMed DOI PMC

Yusuf-Makagiansar H., Anderson M.E., Yakovleva T.V., Murray J.S., Siahaan T.J. Inhibition of LFA-1/ICAM-1 and VLA-4/VCAM-1 as a therapeutic approach to inflammation and autoimmune diseases. Med. Res. Rev. 2002;22:146–167. doi: 10.1002/med.10001. PubMed DOI

Egan R.W., Athwahl D., Chou C.C. Inhibition of pulmonary eosinophilia and hyperaktivity by antibodies to interleukin 5. Int. Arch. Immunol. 1995;107:321–322. doi: 10.1159/000237014. PubMed DOI

Mauser P.J., Pitman A.M., Fernandez X. Effects of an antibody to interleukin-5 in a money model of asthma. Am. J. Respir. Crit. Care Med. 1995;152:467–472. doi: 10.1164/ajrccm.152.2.7633694. PubMed DOI

Zimmermann N., Hershey G.K., Foster P.S. Chemokines in asthma: Cooperative interaction between chemokines and IL-13. J. Allergy Clin. Immunol. 2003;111:227–242. PubMed

Nutku E., Aizawa H., Hudson S.A., Bochner B.S. Ligation of Siglec-8: A selective mechanism for induction of human eosinophil apoptosis. Blood. 2003;101:5014–5020. doi: 10.1182/blood-2002-10-3058. PubMed DOI

Seguier J., Gelsi-Boyer V. Autoimmune diseases in myelodysplastic syndrome favors patient’s survival: A case control study and literature review. Autoimmun. Rev. 2019;1:36–42. doi: 10.1016/j.autrev.2018.07.009. PubMed DOI

Haldar P., Brightling C.E., Hargadon B., Gupta S., Monteiro W., Sousa A., Marshall R.P., Bradding P., Green R.H., Wardlaw A.J., et al. Mepolizumab and exacerbations of refractory eosinophilic asthma N. Engl. J. Med. 2009;360:973–984. doi: 10.1056/NEJMoa0808991. PubMed DOI PMC

Matera M.G., Calzetta L., Rinaldi B., Cazzola M. Pharmacokinetic/pharmacodynamic drug evaluation of benralizumab for the treatment of asthma. Expert Opin. Drug Metab. Toxicol. 2017;13:1007–1013. doi: 10.1080/17425255.2017.1359253. PubMed DOI

Pelaia C., Calabrese C., Vatrella A., Busceti M.T., Garofalo E., Lombardo N., Terracciano R., Pelaia G. Benralizumab: From the basic mechanism of action to the potential use in the biological therapy of severe eosinophilic asthma. Biomed Res. Int. 2018;2018:4839230. doi: 10.1155/2018/4839230. PubMed DOI PMC

Slama P., Sladek Z., Rysanek D., Langrova T. Effect of Staphylococcus aureus and Streptococcus uberis on apoptosis of bovine mammary gland lymphocytes. Res. Vet. Sci. 2009;87:233–238. doi: 10.1016/j.rvsc.2009.03.005. PubMed DOI

Slama P., Kabourkova E., Sladek Z., Zavadilova T., Kratochvilova L., Kharkevich K., Roychoudhury S., Pavlik A., Roztocilova A., Uhrincat M., et al. Effect of lipopolysaccharide and muramyl dipeptide on apoptosis of bovine mammary gland lymphocytes. Animals. 2020;10:990. doi: 10.3390/ani10060990. PubMed DOI PMC

Slama P., Sladek Z., Rysanek D. Effect of isolation techniques on viability of bovine blood neutrophils. Acta Vet. Brno. 2006;75:343–353. doi: 10.2754/avb200675030343. DOI

Slama P., Sladek Z., Rysanek D. The thermal treatment effects on bovine blood neutrophil granulocytes apoptosis and necrosis in vitro. Gen. Physiol. Biophys. 2007;26:118–125. PubMed

Luo X.Q., Ma F., Wang S., Zhao M.Z., Shao J.B., Geng X.R., Liu J.Q., Mo L.H., Guan L., Liu Z.G., et al. Interleukin-5 induces apoptotic defects in CD4 + T cells of patients with allergic rhinitis. J. Leukoc. Biol. 2020;105:719–727. doi: 10.1002/JLB.3A0718-287RR. PubMed DOI

Yang G., Liu J.Q., Mo L.H., Luo X.Q., Li J., Liu Z.O., Liu D.B., Liu Z.G., Yang P.C., Shi J.B. Bcl2 like protine-12 (Bcl2L12) facilitates experimental airway allergic inflammation by inducing autocrine eotaxin in eosinophils. Immunol. Lett. 2020;228:93–102. doi: 10.1016/j.imlet.2020.10.007. PubMed DOI

Gonzalo J.A., Jia G.Q., Aguirre V., Friend D., Coyle A.J., Jenkins N.A., Lin G.S., Katz H., Lichtman A., Copeland N., et al. Mouse eotaxin expression parallels eosinophil accumulation during lung allergic inflammation but it is not restricted to a Th2-type response. Immunity. 1996;4:1–14. doi: 10.1016/S1074-7613(00)80293-9. PubMed DOI

Simon H.U., Grotzer M., Nikolaizik W.H., Blaser K., Schöni M.H. High altitude climate therapy reduces peripheral blood T lymphocyte activation, eosinophilia, and bronchial obstruction in children with house-dust mite allergic asthma. Pediatric Pulmonol. 1994;17:304–311. doi: 10.1002/ppul.1950170507. PubMed DOI

Rankin J.A., Picarella D.E., Geba G.P., Temann U.A., Prasad B., DiCosmo B., Tarallo A., Stripp B., Whitsett J., Flavell R.A. Phenotypic and physiologic characterization of transgenic mice expressing interleukin 4 in the lung: Lymphocytic and eosinophilic inflammation without airway hyperreactivity. Proc. Natl. Acad. Sci. USA. 1996;93:7821–7825. doi: 10.1073/pnas.93.15.7821. PubMed DOI PMC

Jakobi M., Kiefer A., Mirzakhani H., Rauh M., Zimmermann T., Xepapadaki P., Stanic B., Akdis M., Papadopoulos N.G., Raby B.A., et al. Role of nuclear factor of activated T cells 2 (NFATc2) in allergic asthma. Immun. Inflamm. Dis. 2020 doi: 10.1002/iid3.360. PubMed DOI PMC

Robinson D.S., Hamid Q., Ying S., Tsicopoulos A., Barkans J., Bentley A.M., Corrigan C., Durham S.R., Kay A.B. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. New Engl. J. Med. 1992;326:298–304. doi: 10.1056/NEJM199201303260504. PubMed DOI

Yamaguchi Y., Suda T., Ohta S., Tominaga K., Miura Y., Kasahara T. Analysis of the survival of mature human eosinophils: Interleukin-5 prevents apoptosis in mature human eosinophils. Blood. 1991;78:2542–2547. doi: 10.1182/blood.V78.10.2542.2542. PubMed DOI

Morita M., Lamkhioued B., Gounni A.S., Aldebert D., Delaporte E., Capron A., Capron M. Induction by interferons of human eosinophil apoptosis and regulation by interleukin-3, granulocyte/macrophage-colony stimulating factor and interleukin-5. Eur. Cytokine Netw. 1996;7:725–732. PubMed

Ilmarinen P., Moilanen E., Kankaanranta H. Regulation of spontaneous eosinophil apoptosis—A neglected area of importance. J. Cell Death. 2014;7:1–9. doi: 10.4137/JCD.S13588. PubMed DOI PMC

Pazdrak K., Straub C., Maroto R., Stafford S., White W.I., Calhoun W.J., Kurosky A. Cytokine-Induced Glucocorticoid Resistance from Eosinophil Activation: Protein Phosphatase 5 Modulation of Glucocorticoid Receptor Phosphorylation and Signaling. J. Immunol. 2016;197:3782–3791. doi: 10.4049/jimmunol.1601029. PubMed DOI PMC

Moser R., Fehr J., Bruijnzeel P.L. IL-4 controls the selective endothelium-driven transmigration of eosinophils from allergic individuals. J. Immunol. 1992;149:1432–1438. PubMed

Kemeny D.M., Noble A., Holmes B.J., Diaz-Sanchez D. Immune regulation: A new role for the CD8+ T cell. Immunol. Today. 1994;15:107–110. doi: 10.1016/0167-5699(94)90152-X. PubMed DOI

Montefort S., Gratziou C., Goulding D., Polosa R., Haskard D.O., Howarth P.H., Holgate S.T., Carroll M.P. Bronchial biopsy evidence for leukocyte infiltration and upregulation of leukocyte-endothelial cell adhesion molecules 6 hours after local allergen challenge of sensitized asthmatic airways. J. Clin. Investig. 1994;93:1411–1421. doi: 10.1172/JCI117118. PubMed DOI PMC

Erriah M., Pabreja K., Fricker M., Baines K.J., Donnelly L.E., Bylund J., Karlsson A., Simpson J.L. Galectin-3 enhances monocyte-derived macrophage efferocytosis of apoptotic granulocytes in asthma. Respir. Res. 2019;20:1. doi: 10.1186/s12931-018-0967-9. PubMed DOI PMC

Lacy P., Moqbel R. Eosinophil cytokines. Chem. Immunol. 2000;76:134–155. PubMed

Reis A.C., Alessandri A.L., Athayde R.M., Perez D.A., Vago J.P., Avila T.V., Ferreira T.P.T., de Arantes A.C.S., de Sa Coutinho D., Rachid M.A., et al. Induction of eosinophil apoptosis by hydrogen peroxide promotes the resolution of allergic inflammation. Cell Death Dis. 2015;6:e1632. doi: 10.1038/cddis.2014.580. PubMed DOI PMC

Woolley K.L., Gibson P.G., Carty K., Wilson A.J., Twaddell S.H., Woolley M.J. Eosinophil apoptosis and the resolution of airway inflammation in asthma. Am. J. Respir. Crit. Care Med. 1996;154:237–243. doi: 10.1164/ajrccm.154.1.8680686. PubMed DOI

Wedi B., Raap U., Lewrick H., Kapp A. Delayed eosinophil programmed cell death in vitro: A common feature of inhalant allergy and extrinsic and intrinsic atopic dermatitis. J. Allergy Clin. Immunol. 1997;100:536–543. doi: 10.1016/S0091-6749(97)70147-7. PubMed DOI

Barthel S.R., Johansson M.W., McNamee D.M., Mosher D.F. Roles of integrin activation in eosinophil function and the eosinophilic inflammation of asthma. J. Leukoc. Biol. 2008;83:1–12. doi: 10.1189/jlb.0607344. PubMed DOI PMC

Schleimer R.P., Bochner B.S. The effects of glucocorticoids on human eosinophils. J. Allergy Clin. Immunol. 1994;94:1202–1213. doi: 10.1016/0091-6749(94)90333-6. PubMed DOI

Schleimer R.P., Sterbinsky S.A., Kaiser J. IL-4 induces adherence of human eosinophils and basophils but not neutrophils to endothelium. Association with expression of VCAM-1. J. Immunol. 1992;148:1086–1092. PubMed

Sakkal S., Miller S., Apostolopoulos V., Nurgali K. Eosinophils in cancer: Favourable or unfavourable? Curr. Med. Chem. 2016;23:650–666. doi: 10.2174/0929867323666160119094313. PubMed DOI

Nielsen H.J., Hanse U., Christensen I.J., Reimert C.M., Brunner N., Moesgaard F. Independent prognostic value of eosinophil and mast cell infiltration in colorectal cancer tissue. J. Pathol. 1999;189:487–495. doi: 10.1002/(SICI)1096-9896(199912)189:4<487::AID-PATH484>3.0.CO;2-I. PubMed DOI

Yousefi S., Green D.R., Blaser K., Simon H.U. Protein-tyrosine phosphorylation regulates apoptosis in human eosinophils and neutrophils. Proc. Natl. Acad. Sci. USA. 1994;91:10868–10872. doi: 10.1073/pnas.91.23.10868. PubMed DOI PMC

Ying S., Meng Q., Taborda-Barata L., Kay A.B. Association of apoptosis of neutrophils and eosinophils and their ingestion by macrophages with resolution of the-allergen induced cutaneous late-phase response in atopic human subjects. Proc. Assoc. Am. Phys. 1997;109:42–50. PubMed

Idzko M., Panther E., Bremer H.C., Sorichter S., Luttmann W., Virchow C.J., Jr., Di Virgilio F., Herouy J., Norgauer J., Ferrari D. Stimulation of P2 purinergic receptors induces the release of eosinophil cationic protein and interleukin-8 from human eosinophils. Br. J. Pharmacol. 2003;138:1244–1250. doi: 10.1038/sj.bjp.0705145. PubMed DOI PMC

French B.M., Sendil S., Sepuru K.M., Ranek J., Burdorf L., Harris D., Redding E., Cheng X., Laird C., Zhao Y., et al. Interleukin-8 mediates neutrophil-endothelial interactions in pig-to-human xenogeneic models. Xenotransplantation. 2018;25:e12385. doi: 10.1111/xen.12385. PubMed DOI PMC

Dibbert B., Daigle I., Braun D., Schranz C., Weber M., Blaser K., Zangemeister-Wittke U., Akbar A.N., Simon H.U. Role for Bcl-xL in delayed eosinophil apoptosis mediated by granulocyte-macrophage colony-stimulating factor and interleukin-5. Blood. 1998;92:778–783. doi: 10.1182/blood.V92.3.778. PubMed DOI

Hebestreit H., Dibbert B., Balatti I., Braun D., Schapowal A., Blaser K., Simon H.U. Disruption of Fas receptor signaling by nitric oxide in eosinophils. J. Exp. Med. 1998;187:415–425. doi: 10.1084/jem.187.3.415. PubMed DOI PMC

Melo R.C.N., Liu L., Xenakis J.J., Spencer L.A. Eosinophil-derived cytokines in health and disease: Unraveling novel mechanisms of selective secretion. Allergy. 2013;68:274–284. doi: 10.1111/all.12103. PubMed DOI PMC

Hebestreit H., Yousefi S., Balatti I., Weber M., Crameri R., Simon D., Hatung K., Schapolaw A., Blaser K., Simon H.U. Expression and function of the Fas receptor on human blood and tissue eosinophils. Eur. J. Immunol. 1996;26:1775–1780. doi: 10.1002/eji.1830260817. PubMed DOI

Kodama T., Matsuyama T., Miyata S., Nishimura H., Nishioka Y., Kitada O., Sugita M. Kinetics of apoptosis in the lung of mice with allergic airway inflammation. Clin. Exp. Allergy. 1998;28:1435–1443. doi: 10.1046/j.1365-2222.1998.00374.x. PubMed DOI

Ilmarinen P., Kankaanranta H. Eosinophil apoptosis as a therapeutic target in allergic asthma. Basic Clin. Pharmacol. Toxicol. 2014;114:109–117. doi: 10.1111/bcpt.12163. PubMed DOI

Felton J.M., Lucas C.D., Rossi A.G., Dransfield I. Eosinophils in the lung-modulating apoptosis and efferocytosis in airway inflammation. Front. Immunol. 2014;5:302. doi: 10.3389/fimmu.2014.00302. PubMed DOI PMC

Vasku J. Kolik Čechů Trpí Alergiemi? Infografika, 2018. [(accessed on 22 November 2020)]; Available online: https://ceskeinfografiky.cz/kolik-cechu-trpi-alergiemi-infografika/

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...