Apoptosis of Eosinophil Granulocytes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
AF-IGA-2018-tym002
Mendelova Univerzita v Brně
PubMed
33321726
PubMed Central
PMC7763668
DOI
10.3390/biology9120457
PII: biology9120457
Knihovny.cz E-zdroje
- Klíčová slova
- allergy, apoptosis, eosinophil granulocyte, inflammation,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In the past 10 years, the number of people in the Czech Republic with allergies has doubled to over three million. Allergic pollen catarrh, constitutional dermatitis and asthma are the allergic disorders most often diagnosed. Genuine food allergies today affect 6-8% of nursing infants, 3-5% of small children, and 2-4% of adults. These disorders are connected with eosinophil granulocytes and their apoptosis. Eosinophil granulocytes are postmitotic leukocytes containing a number of histotoxic substances that contribute to the initiation and continuation of allergic inflammatory reactions. Eosinophilia results from the disruption of the standard half-life of eosinophils by the expression of mechanisms that block the apoptosis of eosinophils, leading to the development of chronic inflammation. Glucocorticoids are used as a strong acting anti-inflammatory medicine in the treatment of hypereosinophilia. The removal of eosinophils by the mechanism of apoptosis is the effect of this process. This work sums up the contemporary knowledge concerning the apoptosis of eosinophils, its role in the aforementioned disorders, and the indications for the use of glucocorticoids in their related therapies.
Zobrazit více v PubMed
Anderson D.C., Schmalsteig F.C., Finegold M.J., Hughes B.J., Rothlein R., Miller L.J., Kohl S., Tosi M.F., Jacobs R.L., Waldrop T.C., et al. The severe and moderate phenotypes of heritable Mac-1, LFA/1 deficiency: Their quantitative definition and regulation to leukocyte dysfunction and clinical features. J. Infect. Dis. 1985;152:668–689. doi: 10.1093/infdis/152.4.668. PubMed DOI
Sanfilippo A.M., Furuya Y., Roberts S., Salmon S.L., Metzger D.W. Allergic lung inflammation reduces tissue invasion and enhances survival from pulmonary pneumococcal infection in mice, which correlates with increased expression of transforming growth factor β1 and SiglecF(low) alveolar macrophages. Infect. Immun. 2015;83:2976–2983. doi: 10.1128/IAI.00142-15. PubMed DOI PMC
Sanderson C.J. Interleukin-5, eosinophils and diseases. Blood. 1992;79:3101–3109. doi: 10.1182/blood.V79.12.3101.bloodjournal79123101. PubMed DOI
Specht S., Saeftel M., Arndt M., Endl E., Dubben B., Lee N.A., Lee J.J., Hoerauf A. Lack of eosinophil peroxidase or major basic protein impairs defense against murine filarial infection. Infect. Immun. 2006;74:5236–5243. doi: 10.1128/IAI.00329-06. PubMed DOI PMC
Minupuri A., Ramireddy K., Patel R., Hossain S., Noain J.S. Hyper-eosinophilic syndrome masquerading as myocardial infarction, stroke and cancer. Cereus. 2020;12:e9630. doi: 10.7759/cureus.9630. PubMed DOI PMC
George L., Brightling C.E. Eosinophilic airway inflammation: Role in asthma and chronic obstructive pulmonary disease. Ther. Adv. Chronic Dis. 2016;7:34–51. doi: 10.1177/2040622315609251. PubMed DOI PMC
Garcia-Moguel I., Campos R.D., Charterina S.A., Rodriguez C.F., Crespo J.F. COVID-19, severe asthma, and biologics. Ann. Allergy Asthma Immunol. 2020;124:2–12. doi: 10.1016/j.anai.2020.06.012. PubMed DOI PMC
Min D.Y., Lee Y.H., Ryu J.S., Ahn M.H., Chung Y.B., Sim S., Shin M.H. Caspase-3-mediated apoptosis of human eosinophils by the tissue-invading helminth Paragonimus westermani. Int. Arch. Allergy Immunol. 2004;133:357–364. doi: 10.1159/000077355. PubMed DOI
Wen T., Rothenberg M.E. The regulatory function of eosinophils. Microbiol. Spectr. 2016;4 doi: 10.1128/microbiolspec.MCHD-0020-2015. PubMed DOI PMC
Stern M., Meagher L., Savill J., Haslett C. Apoptosis in human eosinophils. Programmed cell death in the eosinophil leads to phagocytosis by macrophages and is modulated by IL-5. J. Immunol. 1992;148:3543–3549. PubMed
Walsh G.M. Eosinophil apoptosis and clearance in asthma. J. Cell Death. 2013;6:17–25. doi: 10.4137/JCD.S10818. PubMed DOI PMC
Kadin M., Butmarc J., Elovic K., Wong D. Eosinophils are the major source of transforming growth factor- ß1 in nodular sclerosing Hodgkin´s disease. Am. J. Pathol. 1993;142:11–16. PubMed PMC
Munitz A., Hogan S.P. Alarming eosinophils to combat tumors. Nat. Immunol. 2019;20:250–252. doi: 10.1038/s41590-019-0318-0. PubMed DOI
Shi H.Z. Eosinophils function as antigen-presenting cells. J. Leukoc. Biol. 2004;76:520–527. doi: 10.1189/jlb.0404228. PubMed DOI
Padigel U.M., Hess J.A., Lee J.J., Lok J.B., Nolan T.J., Schad G.A., Abraham D. Eosinophils act as antigen-presenting cells to induce immunity to Strongyloides stercoralis in mice. J. Infect. Dis. 2007;196:1844–1851. doi: 10.1086/522968. PubMed DOI PMC
Lin A., Lore K. Granulocytes: New members of the antigen-presenting cell family. Front. Immunol. 2017;8:1781. doi: 10.3389/fimmu.2017.01781. PubMed DOI PMC
Sedgwick J.B., Calhoun W.J., Vrtis R.F., Bates M.E., McAllister P.K., Busse W.W. Comparison of airway and blood eosinophil function after in vivo antigen challenge. J. Immunol. 1992;149:3710–3718. PubMed
Weller P.F., Rand T.H., Barrett T., Elovic A., Wong D.T., Finberg R.W. Accessory cell of human eosinophils: HLA-DR dependent, MHC-restricted antigen presentation and IL-1 alpha expression. J. Immunol. 1993;150:2554–2562. PubMed
Jacobsen E.A., Helmers R.A., Lee J.J., Lee N.A. The expanding role(s) of eosinophils in health and disease. Blood. 2012;120:3882–3890. doi: 10.1182/blood-2012-06-330845. PubMed DOI PMC
Singh R., Letai A., Sarosiek K. Regulation of apoptosis in health and disease: The balancing act of BLC-2 family proteins. Nat. Rev. Mol. Cell Biol. 2019;20:175–193. doi: 10.1038/s41580-018-0089-8. PubMed DOI PMC
Hwang J.Y., Silva-Sanchez A., Carragher D.M., de la Luz Garcia-Hernandez M., Rangel-Moreno J., Randall T.D. Inducible bronchus-associated lymphoid tissue (iBALT) attenuates pulmonary pathology in a mouse model of allergic airway disease. Front. Immunol. 2020;11:570661. doi: 10.3389/fimmu.2020.570661. PubMed DOI PMC
Duong-Quy S., Le-Thi-Minh H., Nguyen-Thi-Bich H., Pham-Thu H., Thom V.T., Pham-Thi-Hong N., Duong-Thi-Ly H., Nguyen-Huy B., Ngo-Minh X., Nguyen-Thi-Dieu T., et al. Correlations between exhaled nitric oxide, rs28364072 polymorphism of FCER2 gene, asthma control, and inhaled corticosteroid responsiveness in children with asthma. J. Breath Res. 2020 doi: 10.1088/1752-7163/abc4ec. PubMed DOI
Wardlaw A.J. Molecular basis for selective eosinophil trafficking in asthma: A multistep paradigm. J. Allergy Clin. Immunol. 1999;104:917–926. doi: 10.1016/S0091-6749(99)70069-2. PubMed DOI
Pavord I.D., Lettis S., Locantore N. Blood eosinophils and inhaled corticosteroid/long-acting β-2 agonist efficacy in COPD. Thorax. 2016;71:118–125. doi: 10.1136/thoraxjnl-2015-207021. PubMed DOI PMC
Mehta V., Campeau N.G., Kita H., Hagan J.B. Blood and sputum eosinophil levels in asthma and their relationship to sinus computed tomographic findings. Mayo Clin. Proc. 2008;83:671–678. doi: 10.1016/S0025-6196(11)60895-1. PubMed DOI PMC
Santing R.E., Hoekstra Y., Pasman Y., Zaagsma J., Meurs H. The importance of eosinophil activation for the development of allergen-induced bronchial hyperreactivity in conscious, unrestrained guinea-pigs. Clin. Exp. Allergy. 1994;24:1157–1163. doi: 10.1111/j.1365-2222.1994.tb03322.x. PubMed DOI
Walsh G.M., Dewson G., Wardlaw A.J., Levi-Schaffer F., Moqbel R. A comparative study of the different methods for assessment of apoptosis and necrosis in human eosinophils. J. Immunol. Methods. 1998;217:153–163. doi: 10.1016/S0022-1759(98)00103-3. PubMed DOI
Sexton D.W., Blaylock M.G., Walsh G.M. Human alveolar epithelial cells engulf apoptotic eosinophils by means of integrin- and phosphatidylserine receptor-dependent mechanisms: A process upregulated by dexamethasone. J. Allergy Clin. Immunol. 2001;108:962–969. doi: 10.1067/mai.2001.119414. PubMed DOI
Sexton D.W., Al-Rabia M., Blaylock M.G., Walsh G.M. Phagocytosis of apoptotic eosinophils but not neutrophils by bronchial epithelial cells. Clin. Exp. Allergy. 2004;34:1514–1524. doi: 10.1111/j.1365-2222.2004.02054.x. PubMed DOI
Walsh G.M. Mechanisms of human eosinophil survival and apoptosis. Clin. Exp. Allergy. 1997;27:482–487. doi: 10.1111/j.1365-2222.1997.tb00735.x. PubMed DOI
Walsh G.M. Eosinophils, their accumulation activation and fate. Br. J. Haematol. 1997;97:701–709. doi: 10.1046/j.1365-2141.1997.00125.x. PubMed DOI
Vignola A.M., Chanez P., Chiappara G. Evaluation of apoptosis of eosinophils, macrophages and T lymphocytes in mucosal biopsy specimens of patients with asthma and chronic bronchitis. J. Allergy Clin. Immunol. 1999;103:563–573. doi: 10.1016/S0091-6749(99)70225-3. PubMed DOI
Leifferman K.M. A current perspective on the role of eosinophils in dermatologic diseases. J. Am. Acad. Dermatol. 1991;24:1101–1112. doi: 10.1016/0190-9622(91)70166-Y. PubMed DOI
Davis M.D.P., Plager D.A., George T.J., Weiss E.A., Gleich G.J., Leiferman K.M. Interactions of eosinophil granule proteins with skin: Limits of detection, persistence, and vasopermeabilization. J. Allergy Clin. Immunol. 2003;112:988–994. doi: 10.1016/j.jaci.2003.08.028. PubMed DOI
Park Y.M., Bochner B.S. Eosinophil survival and apoptosis in health and disease. Allergy Asthma Immunol. Res. 2010;2:87–101. doi: 10.4168/aair.2010.2.2.87. PubMed DOI PMC
Lampinen M., Carlson M., Hakansson L.D., Venge P. Cytokine-regulated accumulation of eosinophils in inflammatory disease. Allergy. 2004;59:793–805. doi: 10.1111/j.1398-9995.2004.00469.x. PubMed DOI
Schwartz C., Willebrand R., Huber S., Rupec R.A., Wu D., Locksley R., Voehringer D. Eosinophil-specific deletion of IκBα in mice reveals a critical role of NF-κB–induced Bcl-xL for inhibition of apoptosis. Blood. 2015;125:3896–3904. doi: 10.1182/blood-2014-10-607788. PubMed DOI PMC
Kano G., Almanan M., Bochner B.S., Zimmermann N. Mechanism of Siglec-8-mediated cell death in IL-5-activated Eosinophils: Role for reactive oxygen species-enhanced MEK/ERK activation. J. Allergy Clin. Immunol. 2013;132:437–445. doi: 10.1016/j.jaci.2013.03.024. PubMed DOI PMC
Tsuyuki S., Bertrand C., Erard F., Trifilieff A., Tsuyuki J., Wesp M., Anderson G.P., Coyle A.J. Activation of the Fas receptor on lung eosinophils leads to apoptosis and the resolution of eosinophilic inflammation of the airways. J. Clin. Investig. 1995;96:2924–2931. doi: 10.1172/JCI118364. PubMed DOI PMC
Uller E., Rydell-Törmänen K., Persson C.G.A., Erjefalt J.S. Anti-Fas mAb-induced apoptosis and cytolysis of airway tissue eosinophils aggravates rather than resolves established inflammation. Respir. Res. 2005;6:90. doi: 10.1186/1465-9921-6-90. PubMed DOI PMC
Kankaanranta H., Lindsay M.A., Giembycz M.A., Zhang X., Moilanen E., Barnes P.J. Delayed eosinophil apoptosis in asthma. J. Allergy Clin. Immunol. 2000;106:77–83. doi: 10.1067/mai.2000.107038. PubMed DOI
Leung D.Y. Molecular basis of allergic diseases. Mol. Genet. Metab. 1998;63:157–167. doi: 10.1006/mgme.1998.2682. PubMed DOI
O´Sullivan J.A., Bochner B.S. Eosinophils and eosinophil-associated diseases: An update. J. Allergy Clin. Immunol. 2018;141:505–517. doi: 10.1016/j.jaci.2017.09.022. PubMed DOI PMC
Walker C., Bode E., Boer L., Hansel T.T., Blaser K., Virchow J.C., Jr. Allergic and nonallergic asthmatics have distinct patterns of T-cell activation and cytokine production in peripheral blood and bronchoalveolar lavage. Am. Rev. Respir. Dis. 1992;146:109–115. doi: 10.1164/ajrccm/146.1.109. PubMed DOI
Cohen<sc> J.J. Apoptosis: Mechanisms of life and death in the immune system. J. Allergy Clin. Immunol. 1999;103:548–554. PubMed
Cheng J.F., Ott N.L., Peterson E.A., George T.J., Hukee M.J., Gleich G.J., Leiferman K.M. Dermal eosinophils in atopic dermatitis undergo cytolytic degeneration. J. Allergy Clin. Immunol. 1997;99:683–692. doi: 10.1016/S0091-6749(97)70031-9. PubMed DOI
Horvathova M. Human eosinophils as potent inflammatory cells and their apoptosis. Bratisl. Lek. Listy. 2004;105:359–361. PubMed
Savill J. Recognition and phagocytosis of cells undergoing apoptosis. Br. Med Bull. 1997;53:491–508. doi: 10.1093/oxfordjournals.bmb.a011626. PubMed DOI
Fadok V.A., Voelker D.R., Campbell P.A., Cohen J.J., Bratton D.L., Henson P.M. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 1992;148:2207–2216. PubMed
Watkins A.D., Hatfield C.A., Fidler S.F., Winterrowd D.E., Brashler J.R., Sun F.F., Taylor B.M., Vonderfecht S.L., Conder G.A., Holgate S.T., et al. Phenotypic analysis of airway eosinophils and lymphocytes in a Th-2-driven murine model of pulmonary inflammation. Am. J. Respir. Cell Mol. Biol. 1996;15:20–34. doi: 10.1165/ajrcmb.15.1.8679219. PubMed DOI
Slama P., Sladek Z., Rysanek D., Buresova I. The effect of temperature on apoptosis of bovine blood eosinophil granulocytes in vitro. Acta Univ. Agric.Silvic. Mendel. Brun. 2008;56:173–178. doi: 10.11118/actaun200856010173. DOI
Ponath P.D., Qin S., Ringler D.J., Clark-Lewis I., Wang J., Kassam N., Smith H., Shi X., Gonzalo J.A., Newman W., et al. Cloning of the human eosinophil chemoattractant, eotaxin. Expression, receptor binding, and functional properties suggest a mechanism for the selective recruitment of eosinophils. J. Clin. Investig. 1996;97:604–612. doi: 10.1172/JCI118456. PubMed DOI PMC
Pasparakis M., Vandenabeele P. Necroptosis and its role in inflammation. Nature. 2015;517:311–320. doi: 10.1038/nature14191. PubMed DOI
Radonjic-Hoesli S., Wang X., de Graauw E., Stoeckle C., Styp-Rekowska B., Hlushchuk R., Simon D., Spaeth P.J., Yousefi S., Simon H.U. Adhesion-induced eosinophil cytolysis requires thereceptor-interacting protein kinase 3 (RIPK3)–mixedlineage kinase-like (MLKL) signaling pathway, which is counterregulated by autophagy. J. Allergy Clin. Immunol. 2017;140:1632–1642. doi: 10.1016/j.jaci.2017.01.044. PubMed DOI
Bray K., Mathew R., Lau A., Kamphorst J.J., Fan J., Chen J., Chen H.Y., Ghavami A., Stein M., DiPaola R.S., et al. Autophagy suppresses RIP kinase-dependent necrosis enabling survival to mTOR inhibition. PLoS ONE. 2012;7:e41831. doi: 10.1371/journal.pone.0041831. PubMed DOI PMC
Basit F., Cristofanon S., Fulda S. Obatoclax (GX15-070) triggers necroptosis by promoting the assembly of the necrosome on autophagosomal membranes. Cell Death Differ. 2014;21:1183–1184. doi: 10.1038/cdd.2014.52. PubMed DOI PMC
Radonjic-Hoesli S., Valent P., Klion A.D., Wechsler M.E., Simon H.U. Novel targeted therapies for eosinophil-associated diseases and allergy. Annu. Rev. Pharmacol. Toxicol. 2015;55:633–656. doi: 10.1146/annurev-pharmtox-010814-124407. PubMed DOI PMC
Sharmi R., Xenakis J.J., Spencer L.A. Eosinophils in innate immunity: An evolving story. Cell Tissue Res. 2011;343:57–83. PubMed PMC
Tefferi A., Gotlib J., Pardanani A. Hypereosinophilic syndrome and clonal eosinophilia: Point-of-care diagnostic algorithm and treatment update. Mayo Clin. Proc. 2010;85:158–164. doi: 10.4065/mcp.2009.0503. PubMed DOI PMC
Dal Berto A.S., Camina R.H., Machado E.S., Baptistella A.R. FIP1L1-PDGFRA fusion-negative hypereosinophilic syndrome with uncommon cardiac involvement responding to imatinib treatment: A case report. Mol. Clin. Oncol. 2018;9:35–39. doi: 10.3892/mco.2018.1637. PubMed DOI PMC
Gleich G.J., Leiferman K.M., Pardanani A., Tefferi A., Butterfield J.H. Treatment of hypereosinophilic syndrome with imatinib mesilate. Lancet. 2002;359:1577–1578. doi: 10.1016/S0140-6736(02)08505-7. PubMed DOI
Havelange V., Demoulin J.B. Review of current classification, molecular alterations, and tyrosine kinase inhibitor therapies in myeloproliferative disorders with hypereosinophilia. J. Blood Med. 2013;4:111–121. PubMed PMC
Fukakusa M., Bergeron C., Tulic M.K., Fiset P.O., Al Dewachi O., Laviolette M., Hamid O., Chakir J. Oral corticosteroids decrease eosinophil and CC chemokine expression but increase neutrophil, IL-8, and IFN-γ–inducible protein 10 expression in asthmatic airway mucosa. J. Allergy Clin. Immunol. 2005;115:280–286. doi: 10.1016/j.jaci.2004.10.036. PubMed DOI
Stellato C., Matsukura S., Fal A., White J., Beck L.A., Proud L.A., Schleimer R.P. Differential regulation of epithelial-derived C-C chemokine expression by IL-4 and the glucocorticoid budesonide. J. Immunol. 1999;163:5624–5632. PubMed
Bates M.E., Busse W.W., Bertics P.J. Interleukin 5 signals through Shc and Grb2 in human eosinophils. Am. J. Respir. Cell Mol. Biol. 1998;18:75–83. doi: 10.1165/ajrcmb.18.1.2766. PubMed DOI
Pazdrak K., Moon Y., Straub C., Stafford S., Kurosky A. Eosinophil resistance to glucocorticoid-induced apoptosis is mediated by the transcription factor NFIL3. Apoptosis. 2016;21:421–431. doi: 10.1007/s10495-016-1226-5. PubMed DOI PMC
Rothenberg M.E. Eosinophilia. N. Engl. J. Med. 1998;338:1592–1600. doi: 10.1056/NEJM199805283382206. PubMed DOI
Aldebert D., Lamkhioued B., Desaint C., Gounni A.S., Goldman M., Capron A., Prin L., Capron M. Eosinophils express a functional receptor for interferon α: Inhibitory role of interferon α on the release of mediators. Blood. 1996;87:2354–2360. doi: 10.1182/blood.V87.6.2354.bloodjournal8762354. PubMed DOI
Blanchard C., Mishra A., Saito-Akei H., Monk P., Anderson I., Rothenberg M.E. Inhibition of human interleukin-13-induced respiratory and oesophageal inflammation by anti-human-interleukin-13 antibody (CAT-354) Clin. Exp. Allergy. 2005;35:1096–1103. doi: 10.1111/j.1365-2222.2005.02299.x. PubMed DOI
Hunt L.W., Frigas E., Butterfield J.H., Kita H., Blomgren J., Dunnette S.L., Offord K.P., Gleich G.J. Treatment of asthma with nebulized lidocaine: A randomized, placebo-controlled study. J. Allergy Clin. Immunol. 2004;113:853–859. doi: 10.1016/j.jaci.2004.02.039. PubMed DOI
Kane G.C., Pollice M., Kim C.J., Cohn J., Dworski R.T., Murray J.J., Sheller J.R., Fish J.E., Peters S.P. A controlled trial of the effects of the 5-lipoxygenase inhibitor, zileuton, on lung inflammation produced by segmental antigen challenge in human beings. J. Allergy Clin. Immunol. 1996;97:646–654. doi: 10.1016/S0091-6749(96)70310-X. PubMed DOI
Gaddy J.N., Margolskee D.J., Bush R.K., Williams V.C., Busse W.W. Bronchodilation with a potent and selective leukotriene D4 (LTD4) receptor antagonist (MK-571) in patients with asthma. Am. Rev. Respir. Dis. 1992;146:358–363. doi: 10.1164/ajrccm/146.2.358. PubMed DOI
Snyman J.R., Sommers D.K., Gregorowski M.D., Boraine H. Effect of cetirizine, ketotifen and chlorpheniramine on the dynamics of the cutaneous hypersensitivity reaction: A comparative study. Eur. J. Clin. Pharmacol. 1992;42:359–362. doi: 10.1007/BF00280118. PubMed DOI
Rand T.H., Lopez A.F., Gamble J.R. Nedocromil sodium and cromolyn (sodium cromoglycate) selectively inhibit antibody-dependent granulocyte-mediated cytotoxicity. Int. Arch. Allergy Appl. Immunol. 1988;87:151–158. doi: 10.1159/000234665. PubMed DOI
Wegner C.D., Gundel R.H., Reilly P., Haynes N., Letts L.G., Rothlein R. Intracellular adhesion molekule-1 (ICAM-1) in the pathogenesis of asthma. Science. 1990;247:456–459. doi: 10.1126/science.1967851. PubMed DOI
Kuijpers T.W., Mul E.P., Blom M., Kovach N.L., Gaeta F.C. Freezing adhesion molecules in a state of high-avidity binding blocks eosinophil migration. J. Exp. Med. 1993;178:279–284. doi: 10.1084/jem.178.1.279. PubMed DOI PMC
Yusuf-Makagiansar H., Anderson M.E., Yakovleva T.V., Murray J.S., Siahaan T.J. Inhibition of LFA-1/ICAM-1 and VLA-4/VCAM-1 as a therapeutic approach to inflammation and autoimmune diseases. Med. Res. Rev. 2002;22:146–167. doi: 10.1002/med.10001. PubMed DOI
Egan R.W., Athwahl D., Chou C.C. Inhibition of pulmonary eosinophilia and hyperaktivity by antibodies to interleukin 5. Int. Arch. Immunol. 1995;107:321–322. doi: 10.1159/000237014. PubMed DOI
Mauser P.J., Pitman A.M., Fernandez X. Effects of an antibody to interleukin-5 in a money model of asthma. Am. J. Respir. Crit. Care Med. 1995;152:467–472. doi: 10.1164/ajrccm.152.2.7633694. PubMed DOI
Zimmermann N., Hershey G.K., Foster P.S. Chemokines in asthma: Cooperative interaction between chemokines and IL-13. J. Allergy Clin. Immunol. 2003;111:227–242. PubMed
Nutku E., Aizawa H., Hudson S.A., Bochner B.S. Ligation of Siglec-8: A selective mechanism for induction of human eosinophil apoptosis. Blood. 2003;101:5014–5020. doi: 10.1182/blood-2002-10-3058. PubMed DOI
Seguier J., Gelsi-Boyer V. Autoimmune diseases in myelodysplastic syndrome favors patient’s survival: A case control study and literature review. Autoimmun. Rev. 2019;1:36–42. doi: 10.1016/j.autrev.2018.07.009. PubMed DOI
Haldar P., Brightling C.E., Hargadon B., Gupta S., Monteiro W., Sousa A., Marshall R.P., Bradding P., Green R.H., Wardlaw A.J., et al. Mepolizumab and exacerbations of refractory eosinophilic asthma N. Engl. J. Med. 2009;360:973–984. doi: 10.1056/NEJMoa0808991. PubMed DOI PMC
Matera M.G., Calzetta L., Rinaldi B., Cazzola M. Pharmacokinetic/pharmacodynamic drug evaluation of benralizumab for the treatment of asthma. Expert Opin. Drug Metab. Toxicol. 2017;13:1007–1013. doi: 10.1080/17425255.2017.1359253. PubMed DOI
Pelaia C., Calabrese C., Vatrella A., Busceti M.T., Garofalo E., Lombardo N., Terracciano R., Pelaia G. Benralizumab: From the basic mechanism of action to the potential use in the biological therapy of severe eosinophilic asthma. Biomed Res. Int. 2018;2018:4839230. doi: 10.1155/2018/4839230. PubMed DOI PMC
Slama P., Sladek Z., Rysanek D., Langrova T. Effect of Staphylococcus aureus and Streptococcus uberis on apoptosis of bovine mammary gland lymphocytes. Res. Vet. Sci. 2009;87:233–238. doi: 10.1016/j.rvsc.2009.03.005. PubMed DOI
Slama P., Kabourkova E., Sladek Z., Zavadilova T., Kratochvilova L., Kharkevich K., Roychoudhury S., Pavlik A., Roztocilova A., Uhrincat M., et al. Effect of lipopolysaccharide and muramyl dipeptide on apoptosis of bovine mammary gland lymphocytes. Animals. 2020;10:990. doi: 10.3390/ani10060990. PubMed DOI PMC
Slama P., Sladek Z., Rysanek D. Effect of isolation techniques on viability of bovine blood neutrophils. Acta Vet. Brno. 2006;75:343–353. doi: 10.2754/avb200675030343. DOI
Slama P., Sladek Z., Rysanek D. The thermal treatment effects on bovine blood neutrophil granulocytes apoptosis and necrosis in vitro. Gen. Physiol. Biophys. 2007;26:118–125. PubMed
Luo X.Q., Ma F., Wang S., Zhao M.Z., Shao J.B., Geng X.R., Liu J.Q., Mo L.H., Guan L., Liu Z.G., et al. Interleukin-5 induces apoptotic defects in CD4 + T cells of patients with allergic rhinitis. J. Leukoc. Biol. 2020;105:719–727. doi: 10.1002/JLB.3A0718-287RR. PubMed DOI
Yang G., Liu J.Q., Mo L.H., Luo X.Q., Li J., Liu Z.O., Liu D.B., Liu Z.G., Yang P.C., Shi J.B. Bcl2 like protine-12 (Bcl2L12) facilitates experimental airway allergic inflammation by inducing autocrine eotaxin in eosinophils. Immunol. Lett. 2020;228:93–102. doi: 10.1016/j.imlet.2020.10.007. PubMed DOI
Gonzalo J.A., Jia G.Q., Aguirre V., Friend D., Coyle A.J., Jenkins N.A., Lin G.S., Katz H., Lichtman A., Copeland N., et al. Mouse eotaxin expression parallels eosinophil accumulation during lung allergic inflammation but it is not restricted to a Th2-type response. Immunity. 1996;4:1–14. doi: 10.1016/S1074-7613(00)80293-9. PubMed DOI
Simon H.U., Grotzer M., Nikolaizik W.H., Blaser K., Schöni M.H. High altitude climate therapy reduces peripheral blood T lymphocyte activation, eosinophilia, and bronchial obstruction in children with house-dust mite allergic asthma. Pediatric Pulmonol. 1994;17:304–311. doi: 10.1002/ppul.1950170507. PubMed DOI
Rankin J.A., Picarella D.E., Geba G.P., Temann U.A., Prasad B., DiCosmo B., Tarallo A., Stripp B., Whitsett J., Flavell R.A. Phenotypic and physiologic characterization of transgenic mice expressing interleukin 4 in the lung: Lymphocytic and eosinophilic inflammation without airway hyperreactivity. Proc. Natl. Acad. Sci. USA. 1996;93:7821–7825. doi: 10.1073/pnas.93.15.7821. PubMed DOI PMC
Jakobi M., Kiefer A., Mirzakhani H., Rauh M., Zimmermann T., Xepapadaki P., Stanic B., Akdis M., Papadopoulos N.G., Raby B.A., et al. Role of nuclear factor of activated T cells 2 (NFATc2) in allergic asthma. Immun. Inflamm. Dis. 2020 doi: 10.1002/iid3.360. PubMed DOI PMC
Robinson D.S., Hamid Q., Ying S., Tsicopoulos A., Barkans J., Bentley A.M., Corrigan C., Durham S.R., Kay A.B. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. New Engl. J. Med. 1992;326:298–304. doi: 10.1056/NEJM199201303260504. PubMed DOI
Yamaguchi Y., Suda T., Ohta S., Tominaga K., Miura Y., Kasahara T. Analysis of the survival of mature human eosinophils: Interleukin-5 prevents apoptosis in mature human eosinophils. Blood. 1991;78:2542–2547. doi: 10.1182/blood.V78.10.2542.2542. PubMed DOI
Morita M., Lamkhioued B., Gounni A.S., Aldebert D., Delaporte E., Capron A., Capron M. Induction by interferons of human eosinophil apoptosis and regulation by interleukin-3, granulocyte/macrophage-colony stimulating factor and interleukin-5. Eur. Cytokine Netw. 1996;7:725–732. PubMed
Ilmarinen P., Moilanen E., Kankaanranta H. Regulation of spontaneous eosinophil apoptosis—A neglected area of importance. J. Cell Death. 2014;7:1–9. doi: 10.4137/JCD.S13588. PubMed DOI PMC
Pazdrak K., Straub C., Maroto R., Stafford S., White W.I., Calhoun W.J., Kurosky A. Cytokine-Induced Glucocorticoid Resistance from Eosinophil Activation: Protein Phosphatase 5 Modulation of Glucocorticoid Receptor Phosphorylation and Signaling. J. Immunol. 2016;197:3782–3791. doi: 10.4049/jimmunol.1601029. PubMed DOI PMC
Moser R., Fehr J., Bruijnzeel P.L. IL-4 controls the selective endothelium-driven transmigration of eosinophils from allergic individuals. J. Immunol. 1992;149:1432–1438. PubMed
Kemeny D.M., Noble A., Holmes B.J., Diaz-Sanchez D. Immune regulation: A new role for the CD8+ T cell. Immunol. Today. 1994;15:107–110. doi: 10.1016/0167-5699(94)90152-X. PubMed DOI
Montefort S., Gratziou C., Goulding D., Polosa R., Haskard D.O., Howarth P.H., Holgate S.T., Carroll M.P. Bronchial biopsy evidence for leukocyte infiltration and upregulation of leukocyte-endothelial cell adhesion molecules 6 hours after local allergen challenge of sensitized asthmatic airways. J. Clin. Investig. 1994;93:1411–1421. doi: 10.1172/JCI117118. PubMed DOI PMC
Erriah M., Pabreja K., Fricker M., Baines K.J., Donnelly L.E., Bylund J., Karlsson A., Simpson J.L. Galectin-3 enhances monocyte-derived macrophage efferocytosis of apoptotic granulocytes in asthma. Respir. Res. 2019;20:1. doi: 10.1186/s12931-018-0967-9. PubMed DOI PMC
Lacy P., Moqbel R. Eosinophil cytokines. Chem. Immunol. 2000;76:134–155. PubMed
Reis A.C., Alessandri A.L., Athayde R.M., Perez D.A., Vago J.P., Avila T.V., Ferreira T.P.T., de Arantes A.C.S., de Sa Coutinho D., Rachid M.A., et al. Induction of eosinophil apoptosis by hydrogen peroxide promotes the resolution of allergic inflammation. Cell Death Dis. 2015;6:e1632. doi: 10.1038/cddis.2014.580. PubMed DOI PMC
Woolley K.L., Gibson P.G., Carty K., Wilson A.J., Twaddell S.H., Woolley M.J. Eosinophil apoptosis and the resolution of airway inflammation in asthma. Am. J. Respir. Crit. Care Med. 1996;154:237–243. doi: 10.1164/ajrccm.154.1.8680686. PubMed DOI
Wedi B., Raap U., Lewrick H., Kapp A. Delayed eosinophil programmed cell death in vitro: A common feature of inhalant allergy and extrinsic and intrinsic atopic dermatitis. J. Allergy Clin. Immunol. 1997;100:536–543. doi: 10.1016/S0091-6749(97)70147-7. PubMed DOI
Barthel S.R., Johansson M.W., McNamee D.M., Mosher D.F. Roles of integrin activation in eosinophil function and the eosinophilic inflammation of asthma. J. Leukoc. Biol. 2008;83:1–12. doi: 10.1189/jlb.0607344. PubMed DOI PMC
Schleimer R.P., Bochner B.S. The effects of glucocorticoids on human eosinophils. J. Allergy Clin. Immunol. 1994;94:1202–1213. doi: 10.1016/0091-6749(94)90333-6. PubMed DOI
Schleimer R.P., Sterbinsky S.A., Kaiser J. IL-4 induces adherence of human eosinophils and basophils but not neutrophils to endothelium. Association with expression of VCAM-1. J. Immunol. 1992;148:1086–1092. PubMed
Sakkal S., Miller S., Apostolopoulos V., Nurgali K. Eosinophils in cancer: Favourable or unfavourable? Curr. Med. Chem. 2016;23:650–666. doi: 10.2174/0929867323666160119094313. PubMed DOI
Nielsen H.J., Hanse U., Christensen I.J., Reimert C.M., Brunner N., Moesgaard F. Independent prognostic value of eosinophil and mast cell infiltration in colorectal cancer tissue. J. Pathol. 1999;189:487–495. doi: 10.1002/(SICI)1096-9896(199912)189:4<487::AID-PATH484>3.0.CO;2-I. PubMed DOI
Yousefi S., Green D.R., Blaser K., Simon H.U. Protein-tyrosine phosphorylation regulates apoptosis in human eosinophils and neutrophils. Proc. Natl. Acad. Sci. USA. 1994;91:10868–10872. doi: 10.1073/pnas.91.23.10868. PubMed DOI PMC
Ying S., Meng Q., Taborda-Barata L., Kay A.B. Association of apoptosis of neutrophils and eosinophils and their ingestion by macrophages with resolution of the-allergen induced cutaneous late-phase response in atopic human subjects. Proc. Assoc. Am. Phys. 1997;109:42–50. PubMed
Idzko M., Panther E., Bremer H.C., Sorichter S., Luttmann W., Virchow C.J., Jr., Di Virgilio F., Herouy J., Norgauer J., Ferrari D. Stimulation of P2 purinergic receptors induces the release of eosinophil cationic protein and interleukin-8 from human eosinophils. Br. J. Pharmacol. 2003;138:1244–1250. doi: 10.1038/sj.bjp.0705145. PubMed DOI PMC
French B.M., Sendil S., Sepuru K.M., Ranek J., Burdorf L., Harris D., Redding E., Cheng X., Laird C., Zhao Y., et al. Interleukin-8 mediates neutrophil-endothelial interactions in pig-to-human xenogeneic models. Xenotransplantation. 2018;25:e12385. doi: 10.1111/xen.12385. PubMed DOI PMC
Dibbert B., Daigle I., Braun D., Schranz C., Weber M., Blaser K., Zangemeister-Wittke U., Akbar A.N., Simon H.U. Role for Bcl-xL in delayed eosinophil apoptosis mediated by granulocyte-macrophage colony-stimulating factor and interleukin-5. Blood. 1998;92:778–783. doi: 10.1182/blood.V92.3.778. PubMed DOI
Hebestreit H., Dibbert B., Balatti I., Braun D., Schapowal A., Blaser K., Simon H.U. Disruption of Fas receptor signaling by nitric oxide in eosinophils. J. Exp. Med. 1998;187:415–425. doi: 10.1084/jem.187.3.415. PubMed DOI PMC
Melo R.C.N., Liu L., Xenakis J.J., Spencer L.A. Eosinophil-derived cytokines in health and disease: Unraveling novel mechanisms of selective secretion. Allergy. 2013;68:274–284. doi: 10.1111/all.12103. PubMed DOI PMC
Hebestreit H., Yousefi S., Balatti I., Weber M., Crameri R., Simon D., Hatung K., Schapolaw A., Blaser K., Simon H.U. Expression and function of the Fas receptor on human blood and tissue eosinophils. Eur. J. Immunol. 1996;26:1775–1780. doi: 10.1002/eji.1830260817. PubMed DOI
Kodama T., Matsuyama T., Miyata S., Nishimura H., Nishioka Y., Kitada O., Sugita M. Kinetics of apoptosis in the lung of mice with allergic airway inflammation. Clin. Exp. Allergy. 1998;28:1435–1443. doi: 10.1046/j.1365-2222.1998.00374.x. PubMed DOI
Ilmarinen P., Kankaanranta H. Eosinophil apoptosis as a therapeutic target in allergic asthma. Basic Clin. Pharmacol. Toxicol. 2014;114:109–117. doi: 10.1111/bcpt.12163. PubMed DOI
Felton J.M., Lucas C.D., Rossi A.G., Dransfield I. Eosinophils in the lung-modulating apoptosis and efferocytosis in airway inflammation. Front. Immunol. 2014;5:302. doi: 10.3389/fimmu.2014.00302. PubMed DOI PMC
Vasku J. Kolik Čechů Trpí Alergiemi? Infografika, 2018. [(accessed on 22 November 2020)]; Available online: https://ceskeinfografiky.cz/kolik-cechu-trpi-alergiemi-infografika/