Sizeable net export of base cations from a Carpathian flysch catchment indicates their geogenic origin while the 26Mg/24Mg, 44Ca/40Ca and 87Sr/86Sr isotope ratios in runoff are indistinguishable from atmospheric input

. 2024 Apr ; 31 (17) : 26261-26281. [epub] 20240318

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38499921

Grantová podpora
21-27420S Grantová Agentura České Republiky

Odkazy

PubMed 38499921
PubMed Central PMC11024055
DOI 10.1007/s11356-024-32866-1
PII: 10.1007/s11356-024-32866-1
Knihovny.cz E-zdroje

Nutrient imbalances may negatively affect the health status of forests exposed to multiple stress factors, including drought and bark beetle calamities. We studied the origin of base cations in runoff from a small Carpathian catchment underlain by base-poor flysch turbidites using magnesium (Mg), calcium (Ca) and strontium (Sr) isotope composition of 10 ecosystem compartments. Our objective was to constrain conclusions drawn from long-term hydrochemical monitoring of inputs and outputs. Annual export of Mg, Ca and Sr exceeds 5-to-15 times their atmospheric input. Mass budgets per se thus indicate sizeable net leaching of Mg, Ca and Sr from bedrock sandstones and claystones. Surprisingly, δ26Mg, δ44Ca and 87Sr/86Sr isotope ratios of runoff were practically identical to those of atmospheric deposition and soil water but significantly different from bedrock isotope ratios. We did not find any carbonates in the studied area as a hypothetical, easily dissolvable source of base cations whose isotope composition might corroborate the predominance of geogenic base cations in the runoff. Marine carbonates typically have lower δ26 Mg and 87Sr/86Sr ratios, and silicate sediments often have higher δ26Mg and 87Sr/86Sr ratios than runoff at the study site. Mixing of these two sources, if confirmed, could reconcile the flux and isotope data.

Zobrazit více v PubMed

Åberg G, Jacks G, Wickman T, Hamilton PJ. Strontium isotopes in trees as an indicator for calcium availability. Catena. 1990;17(1):1–11. doi: 10.1016/0341-8162(90)90011-2. DOI

Adamova M. Geochemical evaluation of the sediments of the Silesian unit. J Geol Sci Geol. 1986;41:167–245.

Alewell C, Lischeid G, Hell U, Manderscheid B. High temporal resolution of ion fluxes in semi-natural ecosystems–gain of information or waste of resources? Biogeochemistry. 2004;69(1):19–35. doi: 10.1023/B:BIOG.0000031029.46798.7f. DOI

Amrhein C, Suarez DL. Some factors affecting the dissolution kinetics of anorthite at 25°C. Geochim Cosmochim Acta. 1992;56:1815–1826. doi: 10.1016/0016-7037(92)90312-7. DOI

Andronikov AV, Novak M, Oulehle F, Chrastny V, Sebek O, Andronikova IE, Stepanova M, Sipkova A, Hruska J, Myska O, Chuman T, Veselovsky F, Curik J, Prechova E, Komarek A. Catchment runoff in industrial areas exports legacy pollutant zinc from the topsoil rather than geogenic Zn. Environ Sci Technol. 2021;55(12):8035–8044. doi: 10.1021/acs.est.1c01167. PubMed DOI

Antonelli MA, Yakymchuk C, Schauble EA, Foden J, Janousek V, Moyen JF, Hoffmann J, Moynier F, Bachmann O. Granite petrogenesis and the δ44Ca of continental crust. Earth Planet Sci Lett. 2023;608:118080. doi: 10.1016/j.epsl.2023.118080. DOI

Basdedios N, Wu Y, Wilcke W. Magnesium isotope ratios reflect the size and source of Mg loss along a glacial retreat chronosequence. ACS Earth Space Chem. 2023;7(5):1151–1161. doi: 10.1021/acsearthspacechem.3c00049. DOI

Bedel L, Poszwa A, van der Heijden G, Legout A, Aquilina L, Ranger J. Unexpected calcium sources in deep soil layers in low-fertility forest soils identified by strontium isotopes (Lorraine plateau, eastern France) Geoderma. 2016;264:103–116. doi: 10.1016/j.geoderma.2015.09.020. DOI

Belanger N, Holmden C. Influence of landscape on the apportionment of Ca nutrition in a Boreal Shield forest of Saskatchewan (Canada) using 87Sr/86Sr as a tracer. Can J Soil Sci. 2010;90:267–288. doi: 10.4141/CJSS09079. DOI

Black JR, Epstein E, Rains WD, Yin Q-Z, Casey WH. Magnesium-isotope fractionation during plant growth. Environ Sci Technol. 2008;42:7831–7836. doi: 10.1021/es8012722. PubMed DOI

Blättler CL, Higgins JA. Testing Urey's carbonate–silicate cycle using the calcium isotopic composition of sedimentary carbonates. Earth Planet Sci Lett. 2017;479:241–251. doi: 10.1016/j.epsl.2017.09.033. DOI

Bohdalkova L, Novak M, Stepanova M, Fottova D, Chrastny V, Mikova J, Kubena AA. The fate of atmospherically derived Pb in Central European catchments: insights from spatial and temporal pollution gradients and Pb isotope ratios. Environ Sci Technol. 2014;48(8):4336–4343. doi: 10.1021/es500393z. PubMed DOI

Bolou-Bi EB, Vigier N, Poszwa A, Boudot J-P, Dambrine E. Effects of biogeochemical processes on magnesium isotope variations in a forested catchment in the Vosges Mountains (France) Geochim Cosmochim Acta. 2012;87:341–355. doi: 10.1016/j.gca.2012.04.005. DOI

Bouchez J, von Blanckenburg F. The role of vegetation in setting strontium stable isotope ratios in the Critical Zone. Am J Sci. 2021;321(8):1246–1283. doi: 10.2475/08.2021.04. DOI

Brandt F, Bosbach D, Krawczyk-Barsch E, Arnold T, Bernhard G. Chlorite dissolution in the acid pH-range: a combined microscopic and macroscopic approach. Geochim Cosmochim Acta. 2003;67:1451–1461. doi: 10.1016/S0016-7037(02)01293-0. DOI

Brantley SL, White TS, White AF, Sparks D, Richter D, Pregitzer K, Derry L, Chorover J, Chadwick O, April L, Anderson S, Amundson R (2005) Frontiers in exploration of the critical zone. Workshop on Frontiers in Exploration of the critical Zone 24-26 Oct 2005, Report of a Workshop, National Science Foundation, Newark (Delaware)

Brazier J-M, Schmitt A-D, Gangloff S, Pelt E, Chabaux F, Tertre E. Calcium isotopic fractionation during adsorption onto and desorption from soil phyllosilicates (kaolinite, montmorillonite and muscovite) Geochim Cosmochim Acta. 2019;250:324–347. doi: 10.1016/j.gca.2019.02.017. DOI

Brenot A, Baran N, Petelet-Giraud E, Negrel P. Interaction between different water bodies in a small catchment in the Paris basin (Brevilles, France): tracing of multiple Sr sources through Sr isotopes coupled with Mg/Sr and Ca/Sr ratios. Appl Geochem. 2008;23(1):58–75. doi: 10.1016/j.apgeochem.2007.09.006. DOI

Brenot A, Cloquet C, Vigier N, Carignan J, France-Lanord C. Magnesium isotope systematics of the lithologically varied Moselle river basin, France. Geochim Cosmochim Acta. 2008;72(20):5070–5089. doi: 10.1016/j.gca.2008.07.027. DOI

Brewer A, Teng FZ, Dethier D. Magnesium isotope fractionation during granite weathering. Chem Geol. 2018;501:95–103. doi: 10.1016/j.chemgeo.2018.10.013. DOI

Bruker AXS (2014) Topas 5. Karlsruhe, Germany

Bruker AXS (2015) Diffrac.Eva, 4.1. Karlsruhe, Germany

Bukoski IS, Murphy SF, Birch AL, Barnard HR. Summer runoff generation in foothill catchments of the Colorado Front Range. J Hydrol. 2021;595:125672. doi: 10.1016/j.jhydrol.2020.125672. DOI

Bullen TD, Fitzpatrick JA, White AF, Schulz MS, Vivit DV (2004) Calcium stable isotope evidence for three soil calcium pools at a granitoid chronosequence. In Water–rock Interaction. Proceedings of the eleventh international symposium on water–rock interaction, Vol. 1. Saratoga Springs, New York, pp 813–817

Burger A, Lichtscheidl I. Strontium in the environment: review about reactions of plants towards stable and radioactive strontium isotopes. Sci Total Environ. 2019;653:1458–1512. doi: 10.1016/j.scitotenv.2018.10.312. PubMed DOI

Buzek F, Cejkova B, Hellebrandova L, Jackova I, Lollek V, Lnenickova Z, Matolakova R, Veselovsky F. Isotope composition of NH3, NOx and SO2 air pollution in the Moravia-Silesian region, Czech Republic. Atmos Pollut Res. 2017;8(2):221–232. doi: 10.1016/j.apr.2016.08.011. DOI

Buzek F, Cejkova B, Jackova I, Seibert R, Curik J, Veselovsky F, Petrash DA. Tracking sources of PM10 emissions and deposition in the industrial city of Ostrava, Czech Republic: a carbonaceous δ13C-based approach. Atmos Environ. 2023;295:119556. doi: 10.1016/j.atmosenv.2022.119556. DOI

Cai D, Henehan MJ, Uhlig D, Von Blanckenburg F. Mg isotope composition of runoff is buffered by the regolith exchangeable pool. Geochim Cosmochim Acta. 2022;321:99–114. doi: 10.1016/j.gca.2022.01.011. DOI

Capo RC, Stewart BW, Chadwick OA. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma. 1998;82:197–225. doi: 10.1016/S0016-7061(97)00102-X. DOI

Cenki-Tok B, Chabaux F, Lemarchand D, Schmitt A-D, Pierret M-C, Viville D, Bagard M-L, Stille P. The impact of water–rock interaction and vegetation on calcium isotope fractionation in soil- and stream waters of a small, forested catchment (the Strengbach case) Geochim Cosmochim Acta. 2009;73:2215–2228. doi: 10.1016/j.gca.2009.01.023. DOI

Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, Hedin LO. Changing sources of nutrients during four million years of ecosystem development. Nature. 1999;397(6719):491–497. doi: 10.1038/17276. DOI

Chapela Lara M, Buss HL, von Strandmann PAE, Schuessler JA, Moore OW. The influence of critical zone processes on the Mg isotope budget in a tropical, highly weathered andesitic catchment. Geochim Cosmochim Acta. 2017;202:77–100. doi: 10.1016/j.gca.2016.12.032. DOI

Chen BB, Li SL, von Strandmann PAP, Wilson DJ, Zhong J, Ma TT, Sun J, Liu CQ. Behaviour of Sr, Ca, and Mg isotopes under variable hydrological conditions in high-relief large river systems. Geochim Cosmochim Acta. 2023;343:142–160. doi: 10.1016/j.gca.2023.01.003. DOI

Cobert F, Schmitt A-D, Bourgeade P, Labolle F, Badot P-M, Chabaux F, Stille P. Experimental identification of Ca isotopic fractionations in higher plants. Geochim Cosmochim Acta. 2011;75:5467–5482. doi: 10.1016/j.gca.2011.06.032. DOI

Court M, van der Heijden G, Louvat P, Bolou-Bi E, Caro G, Bouchez J, Pollier B, Didier S, Nys C, Saint-Andre L, Legout A. Mg isotope composition in beech forest ecosystems and variations induced by liming: Insights from four experimental sites in Northern France. Biogeochemistry. 2021;153:115–134. doi: 10.1007/s10533-021-00766-y. DOI

de Villiers S, Dickson JAD, Ellam RM. The composition of the continental river weathering flux deduced from seawater Mg isotopes. Chem Geol. 2005;216(1–2):133–142. doi: 10.1016/j.chemgeo.2004.11.010. DOI

Demonterova EI, Ivanov AV, Sklyarov EV, Pashkova GV, Klementiev AM, Tyagun ML, Vanin VA, Vologina EG, Yakhnenko AS, Yakhnenko MS, Kozyreva EA. 87Sr/86Sr of Lake Baikal: evidence for rapid homogenization of water. Appl Geochem. 2022;144:105420. doi: 10.1016/j.apgeochem.2022.105420. DOI

Dove PM. The dissolution kinetics of quartz in sodium chloride solutions at 25 degrees to 300 degrees C. Am J Sci. 1994;294:665–712. doi: 10.2475/ajs.294.6.665. DOI

Drouet T, Herbauts J, Demaiffe D. Long-term records of strontium isotopic composition in tree rings suggest changes in forest calcium sources in the early 20th century. Glob Chang Biol. 2005;11:196–40. doi: 10.1111/j.1365-2486.2005.01034.x. DOI

Drouet T, Herbauts J, Demaiffe D. Influence of deep soil horizons on Ca nutrition of forest stands along a loessic soil sequence. Plant Soil. 2015;394:373–389. doi: 10.1007/s11104-015-2540-3. DOI

Erban Kochergina YV, Erban V, Hora JM. Sample preparation and chromatographic separation for Sr, Nd, and Pb isotope analysis in geological, environmental, and archaeological samples. J Geosci-Czech. 2022;67(3):273–285. doi: 10.3190/jgeosci.357. DOI

Fahad ZA, Bolou-Bi EB, Köhler SJ, Finlay RD, Mahmood S. Fractionation and assimilation of Mg isotopes by fungi is species dependent. Env Microbiol Rep. 2016;8(6):956–965. doi: 10.1111/1758-2229.12459. PubMed DOI

Fan B, Yang X, Jiang K, Zhao Z. Processes controlling the Mg isotope behavior during granite weathering. J Asian Earth Sci. 2023;251:105674. doi: 10.1016/j.jseaes.2023.105674. DOI

Fantle MS, Tipper ET. Calcium isotopes in the global biogeochemical Ca cycle: Implications for development of a Ca isotope proxy. Earth-Sci Rev. 2014;129:148–177. doi: 10.1016/j.earscirev.2013.10.004. DOI

Farkas J, Dejeant A, Novak M, Jacobsen SB. Calcium isotope constraints on the uptake and sources of Ca2+ in a base-poor forest: a new concept of combining stable (δ44/42Ca) and radiogenic (εCa) signals. Geochim Cosmochim Acta. 2011;75:7031–7046. doi: 10.1016/j.gca.2011.09.021. DOI

Faure G, Mensing TM (2004) Isotopes: principles and applications. 3rd. John Wiley & Sons Inc., p 546

Fottova D, Skorepova I. Changes in mass element fluxes and their importance for critical loads: GEOMON network, Czech Republic. Water Air Soil Pollut. 1998;105:365–376. doi: 10.1007/978-94-017-0906-4_33. DOI

Fries DM, James RH, Dessert C, Bouchez J, Beaumais A, Pearce CR. The response of Li and Mg isotopes to rain events in a highly-weathered catchment. Chem Geol. 2019;519:68–82. doi: 10.1016/j.chemgeo.2019.04.023. DOI

Ganor J, Mogollon JL, Lasaga AC. The effect of pH on kaolinite dissolution rates and on activation energy. Geochim Cosmochim Acta. 1995;59:1037–1052. doi: 10.1016/0016-7037(95)00021-Q. DOI

Garmo ØA, Skjelkvale BL, de Wit HA, Colombo L, Curtis C, Folster J, Hoffmann A, Hruška J, Høgasen T, Jeffries DS, Keller WB, Kram P, Majer V, Monteith DT, Paterson AM, Rogora M, Rzychon D, Steingruber S, Stoddard JL, Vuorenamaa J, Worsztynowicz A. Trends in surface water chemistry in acidified areas in Europe and North America from 1990 to 2008. Water Air Soil Pollut. 2014;225:1–14. doi: 10.1007/s11270-014-1880-6. DOI

Golonka J, Waskowska A, Slaczka (2019) The western outer Carpathians: origin and evolution. Journal of Applied and Regional Geology/Z Dtsch Ges Geowiss 170(3/4):229

Golonka J, Picha FJ (eds) (2006) The Carpathians and their foreland: Geology and hydrocarbon resources. AAPG Memoir 84, vol 84. AAPG, U.S.A., 835 p. ISBN print: 0891813651. ISBN electronic: 9781629810379. 10.1306/M84985

Guo B, Zhu X, Dong A, Yan B, Shi G, Zhao Z. Mg isotopic systematics and geochemical applications: a critical review. J Asian Earth Sci. 2019;176:368–385. doi: 10.1016/j.jseaes.2019.03.001. DOI

Gussone N, Schmitt A-D, Heuser A, Wombacher F, Dietzel M, Tipper E, Schiller M (Eds) (2016) Calcium stable isotope geochemistry. Springer-Verlag, Berlin. 10.1007/978-3-540-68953-9

Havel M, Krejci R and Cerny J (1996) Decrease in acid deposition in the Ore Mts. Czech Geological Survey, Final Project Report 6102, Prague, pp 176

Heliwell RC, Wright RF, Jackson-Blake LA, Ferrier RC, Aherne J, Cosby BJ, Evans CD, Forsius M, Hruška J, Jenkins A, Kram P, Kopacek J, Majer V, Moldan F, Posch M, Potts JM, Rogora M, Schopp W. Assessing recovery from acidification of European surface waters in the year 2010: evaluation of projections made with the MAGIC model in 1995. Environ Sci Technol. 2014;48:13280–13288. doi: 10.1021/es502533c. PubMed DOI

Higgins JA, Schrag DP. The Mg isotopic composition of Cenozoic seawater–evidence for a link between Mg-clays, seawater Mg/Ca, and climate. Earth Planet Sci Lett. 2015;416:73–81. doi: 10.1016/j.epsl.2015.01.003. DOI

Hindshaw RS, Reynolds BC, Wiederhold JG, Kiczka M, Kretzschmar R, Bourdon B. Calcium isotope fractionation in alpine plants. Biogeochemistry. 2013;112:373–388. doi: 10.1007/s10533-012-9732-1. DOI

Hindshaw RS, Tosca R, Tosca NJ, Tipper ET. Experimental constraints on Mg isotope fractionation during clay formation: implications for the global biogeochemical cycle of Mg. Earth Planet Sci Lett. 2020;531:115980. doi: 10.1016/j.epsl.2019.115980. DOI

Holmden C, Belanger N. Ca isotope cycling in a forested ecosystem. Geochim Cosmochim Acta. 2010;74:995–1015. doi: 10.1016/j.gca.2009.10.020. DOI

Holmden C (2005) Measurement of δ44Ca using a 43Ca-42Ca double-spike TIMS technique. In: Summary of Investigations 2003, volume 1, Saskatchewan Geological Survey, Saskatchewan Industry and Resources, Miscellaneous Report 2005–1,CD-ROM, Paper A-4 7p

Hruška J, Moldan F, Kram P. Recovery from acidification in central Europe–observed and predicted changes of soil and streamwater chemistry in the Lysina catchment, Czech Republic. Environ Pollut. 2002;120(2):261–274. doi: 10.1016/S0269-7491(02)00149-5. PubMed DOI

Hruška J, Oulehle F, Chuman T, Kolar T, Rybnicek M, Trnka M, McDowell WH. Forest growth responds more to air pollution than soil acidification. Plos One. 2023;18(3):e0256976. doi: 10.1371/journal.pone.0256976. PubMed DOI PMC

Huertas FJ, Chou L, Wollast R. Mechanism of kaolinite dissolution at room temperature and pressure. Part II. Kinetic study. Geochim Cosmochim Acta. 1999;63:3261–3275. doi: 10.1016/S0016-7037(99)00249-5. DOI

Hunova I, Brabec M, Maly M, Valerianova A. Revisiting fog as an important constituent of the atmosphere. Sci Total Environ. 2018;636:1490–1499. doi: 10.1016/j.scitotenv.2018.04.322. PubMed DOI

Hunova I, Maznová J, Kurfurst P. Trends in atmospheric deposition fluxes of sulphur and nitrogen in Czech forests. Environ Pollut. 2014;184:668–675. doi: 10.1016/j.envpol.2013.05.013. PubMed DOI

Hunova I (2020) Ambient air quality in the Czech Republic: past and present. Atmosphere 11(2):214. https://www.mdpi.com/2073-4433/11/2/214

Jacobson AD, Holmden C. δ44Ca evolution in a carbonate aquifer and its bearing on the equilibrium isotope fractionation factor for calcite. Earth Planet Sci Lett. 2008;270(3–4):349–353. doi: 10.1016/j.epsl.2008.03.039. DOI

Jacobson AD, Andrews MG, Lehn GO, Holmden C. Silicate versus carbonate weathering in Iceland: new insights from Ca isotopes. Earth Planet Sc Lett. 2015;416:132–142. doi: 10.1016/j.epsl.2015.01.030. DOI

Janousek V, Erban Kochergina YV, Andronikov A, Kusbach V. Decoupling of Mg from Sr–Nd isotopic compositions in Variscan subduction-related plutonic rocks from the Bohemian Massif: Implications for mantle enrichment processes and genesis of orogenic ultrapotassic magmatic rocks. Int J Earth Sci. 2022;111(5):1491–1518. doi: 10.1007/s00531-022-02199-w. DOI

Jochum KP, Nohl U. Reference materials in geochemistry and environmental research and the GeoReM database. Chem Geol. 2008;253:50–53. doi: 10.1016/j.chemgeo.2008.04.002. DOI

Kalinowski BE, Schweda P. Kinetics of muscovite, phlogopite, and biotite dissolution and alteration at pH 1–4, room temperature. Geochim Cosmochim Acta. 1996;60:367–385. doi: 10.1016/0016-7037(95)00411-4. DOI

Kimmig SR, Holmden C, Belanger N. Biogeochemical cycling of Mg and its isotopes in a sugar maple forest in Quebec. Geochim Cosmochim Acta. 2018;230:60–82. doi: 10.1016/j.gca.2018.03.020. DOI

Knauss KG, Wolery TJ. Dependence of albite dissolution kinetics on pH and time at 25°C and 70°C. Geochim Cosmochim Acta. 1986;50:2481–2497. doi: 10.1016/0016-7037(86)90031-1. DOI

Kohler SJ, Dufaud F, Oelkers EH. An experimental study of illite dissolution kinetics as a function of pH from 1.4 to 12.4 and temperatures from 5 to 50°C. Geochim Cosmochim Acta. 2003;67:3583–3594. doi: 10.1016/S0016-7037(03)00163-7. DOI

Kohler L, Leuschner C, Hauck M, Hertel D. Cloud water interception and element deposition differ largely between Norway spruce stands along an elevation transect in Harz Mountains, Germany. Ecohydrology. 2015;8(6):1048–1064. doi: 10.1002/eco.1563. DOI

Kopacek J, Posch M, Hejzlar J, Oulehle F, Volkova A. An elevation-based regional model for interpolating sulphur and nitrogen deposition. Atmos Environ. 2012;50:287–296. doi: 10.1016/j.atmosenv.2011.12.017. DOI

Kopacek J, Hejzlar J, Kram P, Oulehle F, Posch M. Effect of industrial dust on precipitation chemistry in the Czech Republic (Central Europe) from 1850 to 2013. Water Res. 2016;103:30–37. doi: 10.1016/j.watres.2016.07.017. PubMed DOI

Kram P, Hruška J, Shanley JB. Streamwater chemistry in three contrasting monolithologic Czech catchments. Appl Geochem. 2012;27(9):1854–1863. doi: 10.1016/j.apgeochem.2012.02.020. DOI

Li D, Shields G, Ling HF, Thirlwall M. Sequential leaching methods for strontium isotope stratigraphy: Analysis of marine authigenic carbonates and phosphates. Geochim Cosmochim Acta. 2010;74(12):A587–A587.

Li MYH, Teng FZ, Zhou MF. Phyllosilicate controls on magnesium isotopic fractionation during weathering of granites: Implications for continental weathering and riverine system. Earth Planet Sci Lett. 2021;553:116613. doi: 10.1016/j.epsl.2020.116613. DOI

Liu SA, Li SG. Tracing the deep carbon cycle using metal stable isotopes: Opportunities and challenges. Engineering. 2019;5(3):448–457. doi: 10.1016/j.eng.2019.03.007. DOI

Lucas Y, Chabaux F, Schaffhauser T, Fritz B, Ambroise B, Ackerer J, Clément A. Hydrogeochemical modeling (KIRMAT) of spring and deep borehole water compositions in the small granitic Ringelbach catchment (Vosges Mountains, France) Appl Geochem. 2017;87:1–21. doi: 10.1016/j.apgeochem.2017.10.005. DOI

Ma L, Teng FZ, Jin L, Ke S, Yang W, Gu HO, Brantley SL. Magnesium isotope fractionation during shale weathering in the Shale Hills Critical Zone Observatory: accumulation of light Mg isotopes in soils by clay mineral transformation. Chem Geol. 2015;397:37–50. doi: 10.1016/j.chemgeo.2015.01.010. DOI

Maguire ME, Cowan JA. Magnesium chemistry and biochemistry. BioMetals. 2002;15:203–210. doi: 10.1023/A:1016058229972. PubMed DOI

Maher K, von Blanckenburg F. The circular nutrient economy of terrestrial ecosystems and the consequences for rock weathering. Front Environ Sci. 2023;10:1066959. doi: 10.3389/fenvs.2022.1066959. DOI

Marschner H (1995) Mineral nutrition in higher plants. Academic Press San Diego, Elsevier Ltd., USA. 10.1016/B978-0-12-473542-2.X5000-7

McArthur JM, Howarth RJ, Shields GA, Zhou Y (2020) Sr-isotope stratigraphy. Chapter 7, Vol. 1, 211–238 In: Gradstein FM, Ogg JG, Schmitz MD, Ogg G M (Eds), A Geologic Time Scale 2020. Vol 2, Elsevier, pp 1357. 10.1016/B978-0-12-824360-2.00007-3

Mencik E and Pesl V (1995) Geological map on the scale 1:25 000, no. 2524 Turzovka and M-34–85-D-d (Bila). Czech Geological Survey

Mencik E, Adamova M, Dvorak J, Dudek A, Jetel J, Jurkova A, Hanzlikova E, Housa V, Peslova H, Rybarova L, Smid B, Sebesta J, Tyracek J, Vasicek Z (1983) Geology of the Moravo-Silesian Beskydy Mts. Academia, pp 304

Michel RL, Campbell D, Clow D, Turk JT. Timescales for migration of atmospherically derived sulphate through an alpine/subalpine watershed, Loch Vale Colorado. Water Resour Res. 2000;36(1):27–36. doi: 10.1029/1999WR900276. DOI

Miller EK, Friedland AJ, Arons EA, Mohnen VA, Battles J, Panek JA, Kadlecek J, Johnson AH. Atmospheric deposition to forests along an elevational gradient at Whiteface Mountain, NY, USA. Atmos Environ Part A Gen Top. 1993;27(14):2121–2136. doi: 10.1016/0960-1686(93)90042-W. DOI

Moldan B, Cerny J (1994) Biogeochemistry of small catchments – a tool for environmental research. Scope 51, John Wiley & Sons., Chichester, pp 419

Moore J, Jacobson AD, Holmden C, Craw D. Tracking the relationship between mountain uplift, silicate weathering, and long-term CO2 consumption with Ca isotopes: Southern Alps, New Zealand. Chem Geol. 2013;341:110–127. doi: 10.1016/j.chemgeo.2013.01.005. DOI

Nadaskay R, Kochergina YV, Cech S, Svabenicka L, Valecka J, Erban V, Halodova P, Cejkova B. Integrated stratigraphy of an offshore succession influenced by intense siliciclastic supply: implications for Coniacian tectono-sedimentary evolution of the West Sudetic area (NW Bohemian Cretaceous Basin, Czech Republic) Cretaceous Res. 2019;102:127–159. doi: 10.1016/j.cretres.2019.06.005. DOI

Nezat CA, Blum JD, Yanai RD, Hamburg SP. A sequential extraction to determine the distribution of apatite in granitoid soil mineral pools with application to weathering at the Hubbard Brook Experimental Forest, NH, USA. Appl Geochem. 2007;22:2406–2421. doi: 10.1016/j.apgeochem.2007.06.012. DOI

Nguyen TH, Watmough SA, Dang DH. Evaluating the use of Ca/Sr and 87Sr/86Sr ratios to track Ca sources in sugar maple in Ontario. Can J Forest Res. 2023 doi: 10.1139/cjfr-2022-0326. DOI

Novak M, Andronikov A , Kram P, Curik J, Veselovsky F, Stepanova M, Prechova E, Sebek O and Bohdalkova L (2021) Time-series of δ26Mg values in a headwater catchment reveal decreasing magnesium isotope variability from recipitation to runoff Hydrol. Proces 35:e14116. 10.1002/hyp.14116

Novak M, Bottrell SH, Fottova D, Buzek F, Groscheova H, Zak K. Sulfur isotope signals in forest soils of Central Europe along an air-pollution gradient. Environ Sci Technol. 1996;30(12):3473–3476. doi: 10.1021/es960106n. DOI

Novak M, Kirchner J, Groscheova H, Cerny J, Havel M, Krejci R, Buzek F. Sulfur isotope dynamics in two Central European watersheds affected by high atmospheric deposition of SOx. Geochim Cosmochim Acta. 2000;64:367–383. doi: 10.1016/S0016-7037(99)00298-7. DOI

Novak M, Michel RL, Prechova E, Stepanova M. The missing flux in a 35S budget for the soils of a small polluted catchment. Water Air Soil Pollut: Focus. 2004;4:517–529. doi: 10.1023/B:WAFO.0000028375.96356.eb. DOI

Novak M, Kirchner JW, Fottova D, Prechova E, Jackova I, Kram P, Hruška J. Isotopic evidence for processes of sulfur retention/release in 13 Central European catchments spanning a strong pollution gradient. Glob Biogeochem Cy. 2005;19:GB4012. doi: 10.1029/2004GB002396. DOI

Novak M, Holmden C, Farkas J, Kram P, Hruška J, Curik J, Veselovsky F, Stepanova M, Kochergina YV, Erban V, Fottova D, Simecek M, Bohdalkova L, Prechova E, Voldrichova P, Cernohous V (2020a) Calcium and strontium isotope dynamics in three polluted forest ecosystems of the Czech Republic, Central Europe. Chem Geol 536(UNSP):119472. 10.1016/j.chemgeo.2020.119472

Novak M, Farkas J, Kram P, Hruška J, Stepanova M, Veselovsky F, Curik J, Andronikov AV, Sebek O, Simecek M, Fottova D, Bohdalkova L, Prechova E, Koubova M, Vitkova H (2020b) Controls on δ26Mg variability in three Central European headwater catchments characterized by contrasting bedrock chemistry and contrasting inputs of atmospheric pollutants. Plos One 15(11)11):e0242915. 10.1371/journal.pone.0242915 PubMed PMC

Novak M, Andronikov AV, Holmden Ch, Erban Kochergina YV, Veselovsky F, Paces T, Vitková M, Kachlik V, Sebek O, Hruška J, Stepanova M, Curik J, Prechova E, Fottova D, Andronikova IE, Erban V, Koubova M, Vostra I, Houskova M, Komarek A (2023a) δ26Mg, δ44Ca and 87Sr/86Sr isotope differences among bedrock minerals constrain runoff generation in headwater catchments: an acidified granitic site in Central Europe as an example. Catena 221:106780. 10.1016/j.catena.2022.106780

Novak M, Holmden CH, Farkas J, Kram P, Hruška J, Curik J, Veselovsky F, Stepanova M, Kochergina YV, Erban V, Andronikov A, Sebek O, Koubova M, Bohdalkova L, Vitkova H (2020c) Magnesium and calcium isotope systematics in a headwater catchment underlain by amphibolite: Constraints on Mg–Ca biogeochemistry in an atmospherically polluted but well-buffered spruce ecosystem (Czech Republic, Central Europe). Catena 193. 10.1016/j.catena.2020.104637

Novak M, Holmden CH, Andronikov AV, Erban Kochergina YV, Paces T, Kachlik V, Veselovsky F, Hruška J, Stepanova M, Prechova E, Sebek O, Curik J, Tesar M, Fottova D, Andronikova IE, Koubova M, Komarek A (2023b) Magnesium, calcium and strontium isotope dynamics in a small forested catchment underlain by paragneiss: the role of geogenic, atmospheric, and biogenic sources of base cations Geoderma 442:116768. 10.1016/j.geoderma.2023.116768

Nuruzzama M, Rahaman W, Tripathy GR, Mohan R, Patil S (2020) Dissolved major ions, Sr and 87Sr/86Sr of coastal lakes from Larsemann Hills, East Antarctica: solute sources and chemical weathering in a polar environment. Hydrol Process 34(11):2351–2364. 10.1002/hyp.13734

Oehlerich M, Mayr C, Gussone N, Hahn A, Hölzl S, Lücke A, Ohlendorf C, Rummel S, Teichert BMA, Zolitschka B. Lateglacial and Holocene climatic changes in south-eastern Patagonia inferred from carbonate isotope records of Laguna Potrok Aike (Argentina) Quaternary Sci Rev. 2015;114:189–202. doi: 10.1016/j.quascirev.2015.02.006. DOI

Oelkers EH, Schott J. Experimental study of anorthite dissolution rates and the relative mechanism of feldspar hydrolysis. Geochim Cosmochim Acta. 1995;59:5039–5053. doi: 10.1016/0016-7037(95)00326-6. DOI

Opfergelt S, Georg RB, Delvaux B, Cabidoche Y-M, Burton KW, Halliday AN. Mechanisms of magnesium isotope fractionation in volcanic soil weathering sequences, Guadeloupe. Earth Planet Sci Lett. 2012;341–344:176–185. doi: 10.1016/j.epsl.2012.06.010. DOI

Opfergelt S, Burton KW, Georg RB, West AJ, Guicharnaud RA, Sigfusson B, Siebert C, Gislason SR, Halliday AN. Magnesium retention on the soil exchange complex controlling Mg isotope variations in soils, soil solutions and vegetation in volcanic soils, Iceland. Geochim Cosmochim Acta. 2014;125:110–130. doi: 10.1016/j.gca.2013.09.036. DOI

Oulehle F, Hofmeister J, Cudlin P, Hruška J. The effect of reduced atmospheric deposition on soil and soil solution chemistry at a site subjected to long-term acidification, Nacetin, Czech Republic. Sci Total Environ. 2006;370(2–3):532–544. doi: 10.1016/j.scitotenv.2006.07.031. PubMed DOI

Oulehle F, Hleb R, Houska J, Samonil P, Hofmeister J, Hruška J. Anthropogenic acidification effects in primeval forests in the Transcarpathian Mts., western Ukraine. Sci Total Environ. 2010;408:856–864. doi: 10.1016/j.scitotenv.2009.10.059. PubMed DOI

Oulehle F, Chuman T, Hruška J, Kram P, McDowell WH, Myska O, Navratil T, Tesar M. Recovery from acidification alters concentrations and fluxes of solutes from Czech catchments. Biogeochemistry. 2017;132:251–272. doi: 10.1007/s10533-017-0298-9. DOI

Oulehle F, Fischer M, Hruška J, Chuman T, Kram P, Navratil T, Tesar M, Trnka M. The GEOMON network of Czech catchments provides long-term insights into altered forest biogeochemistry: from acid atmospheric deposition to climate change. Hydrol Process. 2021;35(5):e14204. doi: 10.1002/hyp.14204. DOI

Oursin M, Pierret MC, Beaulieu E, Daval D, Legout A. Is there still something to eat for trees in the soils of the Strengbach catchment? Forest Ecol Manag. 2023;527:120583. doi: 10.1016/j.foreco.2022.120583. DOI

Page BD, Bullen TD, Mitchell MJ. Influences of calcium availability and tree species on Ca isotope fractionation in soil and vegetation. Biogeochemistry. 2008;88:1–13. doi: 10.1007/s10533-008-9188-5. DOI

Pin C, Gannoun A, Dupont A. Rapid, simultaneous separation of Sr, Pb, and Nd by extraction chromatography prior to isotope ratios determination by TIMS and MC-ICP-MS. J Anal Atom Spectrom. 2014;29:1858–1870. doi: 10.1039/C4JA00169A. DOI

Pogge von Strandmann PAE, Burton KW, James RH, van Calsteren P, Gislason SR, Sigfusson B. The influence of weathering processes on riverine magnesium isotopes in a basaltic terrain. Earth Planet Sci Lett. 2008;276(1–2):187–197. doi: 10.1016/j.epsl.2008.09.020. DOI

Pogge von Strandmann PAE, Elliott T, Marschall HR, Coath C, Lai Y-J, Jeffcoate AB, Ionov DA. Variations of Li and Mg isotope ratios in bulk chondrites and mantle xenoliths. Geochim Cosmochim Acta. 2011;75:5247–5268. doi: 10.1016/j.gca.2011.06.026. DOI

Pokharel R, Gerrits R, Schuessler JA, Floor GH, Gorbushina AA, von Blankenburg F. Mg isotope fractionation during uptake by a rock-inhabiting, model microcolonial fungus Knufia petricola at acidic and neutral pH. Environ Sci Technol. 2017;51:9691–9699. doi: 10.1021/acs.est.7b01798. PubMed DOI

Prechova E, Sebek O, Strnad L, Novak M, Chrastny V, Stepanova M, Pasava J, Veselovsky F, Curik J, Pacherova P, Bohdalkova L, Houskova M. Temporal changes in mountain-slope gradients in the concentrations of pollutants and Pb isotope ratios near the Ostrava conurbation (Upper Silesia, Czech-Polish Border) Water Air Soil Pollut. 2020;231:246. doi: 10.1007/s11270-020-04615-w. DOI

Prechova E, Sebek O, Novak M, Andronikov AV, Strnad L, Chrastny V, Cabala J, Stepanova M, Pasava J, Martinkova E, Pacherova P, Blaha V, Curik J, Veselovsky F, Vitkova H. Spatial and temporal trends in δ66Zn and 206Pb/207Pb isotope ratios along a rural transect downwind from the Upper Silesian industrial area: role of legacy vs. present-day pollution. Environ Pollut. 2023;328:121609. doi: 10.1016/j.envpol.2023.121609. PubMed DOI

Probst A, Dambrine E, Viville D, Fritz B. Influence of acid atmospheric inputs on surface water chemistry and mineral fluxes in a declining spruce stand within a small granitic catchment (Vosges Massif, France) J Hydrol. 1990;116(1–4):101–124. doi: 10.1016/0022-1694(90)90118-H. DOI

Pu G, Campbell JL, Green MB, Merriam JL, Zietlow D, Yanai RD. Estimating uncertainty in streamflow and solute fluxes at the Hubbard Brook Experimental Forest, New Hampshire, USA. Hydrol Process. 2023;37(8):e14961. doi: 10.1002/hyp.14961. DOI

Riebe CS, Kirchner JW, Finkel RC. Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes. Earth Planet Sci Lett. 2004;224(3–4):547–562. doi: 10.1016/j.epsl.2004.05.019. DOI

Ryan SE, Snoeck C, Crowley QG, Babechuk MG. 87Sr/86Sr and trace element mapping of geosphere–hydrosphere–biosphere interactions: a case study in Ireland. Appl Geochem. 2018;92:209–224. doi: 10.1016/j.apgeochem.2018.01.007. DOI

Ryu J-S, Jacobson AD, Holmden C, Lundstrom C, Zhang Z. The major ion, δ44/40Ca, δ44/42Ca, and δ26/24Mg geochemistry of granite weathering at pH = 1 and T = 25 °C: power-law processes and the relative reactivity of minerals. Geochim Cosmochim Acta. 2011;75:6004–6026. doi: 10.1016/j.gca.2011.07.025. DOI

Ryu JS, Vigier N, Derry L, Chadwick OA. Variations of Mg isotope geochemistry in soils over a Hawaiian 4 Myr chronosequence. Geochim Cosmochim Acta. 2021;292:94–114. doi: 10.1016/j.gca.2020.09.024. DOI

Schmitt A-D. Earth-surface Ca isotopic fractionations. In: Gussone N, Schmitt A-D, Heuser A, Wombacher F, Dietzel M, Tipper E, Schiller M, editors. Calcium Stable Isotope Geochemistry. Berlin: Springer-Verlag; 2016. pp. 145–172.

Schuessler JA, von Blanckenburg F, Bouchez J, Uhlig D, Hewawasam T. Nutrient cycling in a tropical montane rainforest under a supply-limited weathering regime traced by elemental mass balances and Mg stable isotopes. Chem Geol. 2018;497:74–87. doi: 10.1016/j.chemgeo.2018.08.024. DOI

Schwartz JS, Veeneman A, Kulp MA, Renfro JR. Throughfall deposition chemistry in the Great Smoky Mountains National Park: Landscape and Seasonal Effects. Water Air Soil Pollut. 2022;233(4):107. doi: 10.1007/s11270-022-05575-z. DOI

Shalev N, Farkas J, Fietzke J, Novak M, Schuessler JA, Pogge von Strandmann PAE, Torber PB. Mg isotope interlaboratory comparison of reference materials from earth-surface low-temperature environments. Geostand Geoanal Res. 2018;42:205–221. doi: 10.1111/ggr.12208. DOI

Siegel DI, Pfannkuch HO. Silicate mineral dissolution at pH 4 and near standard temperature and pressure. Geochim Cosmochim Acta. 1984;48:197–201. doi: 10.1016/0016-7037(84)90362-4. DOI

Soukhovolsky V, Kovalev A, Tarasova O, Modlinger R, Krenova Z, Mezei P, Skvarenina J, Roznovsky J, Korolyova N, Majdak A, Jakus R. Wind damage and temperature effect on tree mortality caused by Ips typographus L: Phase transition model. Forests. 2022;13(2):180. doi: 10.3390/f13020180. DOI

Sterner R (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. In: Ecological stoichiometry, Princeton, Princeton University Press. 10.1515/9781400885695

Stranik Z, Bubik M, Gilikova H, Tomanova Petrova P (Eds) (2021) Geology of the Outer Western Carpathians, Czech Republic. Czech Geological Survey, p 320. ISBN 978–80–7075–061–2

Sueker JK, Turk JT, Michel RL. Use of cosmogenic 35S for comparing ages of water from three alpine–subalpine basins in the Colorado Front Range. Geomorphology. 1999;27(1–2):61–74. doi: 10.1016/S0169-555X(98)00090-7. DOI

Swoboda-Colberg NG, Drever JI. Mineral dissolution rates in plot-scale field and laboratory experiments. Chem Geol. 1993;105:51–69. doi: 10.1016/0009-2541(93)90118-3. DOI

Tang J, Dietzel M, Böhm F, Köhler SJ, Eisenhauer A. Sr2+/Ca2+ and 44Ca/40Ca fractionation during inorganic calcite formation: II. Ca isotopes. Geochim Cosmochim Acta. 2008;72(15):3733–3745. doi: 10.1016/j.gca.2008.05.033. PubMed DOI PMC

Teng F-Z, Li W-Y, Ke S, Yang W, Liu S-A, Sedaghatpour F, Wang S-J, Huang K-J, Hu Y, Ling M-X, Xiao Y, Liu X-M, Li X-W, Gu H-O, Sio CK, Wallace DA, Su B-X, Zhao L, Chamberlin J, Harrington M, Brewer A (2015) Magnesium isotopic compositions of international geological reference materials. Geostand Geoanal Res 39:329–339. 10.1111/j.1751-908X.2014.00326.x

Teng F-Z, Watkins JM, Dauphas N (2017) Non-traditional Stable Isotopes, Reviews in Mineralogy and Geochemistry, vol. 82, Mineralogical Society of America, Geochemical Society, p 885

Teng F-Z (2017) Magnesium isotope geochemistry In: Teng F-Z, Watkins JM, Dauphas N (Eds), Non-traditional stable isotopes, reviews in Mineralogy and Geochemistry, vol. 82, Mineralogical Society of America, Geochemical Society, pp 219–287. 10.2138/rmg.2017.82.7

Tipper ET, Galy A, Bickle MJ. Riverine evidence for a fractionated reservoir of Ca and Mg on the continents: implications for the oceanic Ca cycle. Earth Planet Sci Lett. 2006;247(3–4):267–279. doi: 10.1016/j.epsl.2006.04.033. DOI

Tipper ET, Galy A, Bickle MJ. Calcium and magnesium isotope systematics in rivers draining the Himalaya-Tibetan-Plateau region: lithological or fractionation control? Geochim Cosmochim Acta. 2008;72(4):1057–1075. doi: 10.1016/j.gca.2007.11.029. DOI

Tipper ET, Calmels D, Gaillardet J, Louvat P, Capmas F, Dubacq B. Positive correlation between Li and Mg isotope ratios in the river waters of the Mackenzie Basin challenges the interpretation of apparent isotopic fractionation during weathering. Earth Planet Sci Lett. 2012;333:35–45. doi: 10.1016/j.epsl.2012.04.023. DOI

Tipper E, Schmitt AD, Gussone N. Global Ca cycles: Coupling of continental and oceanic processes. In: Gussone N, Schmitt A-D, Heuser A, Wombacher F, Dietzel M, Tipper E, Schiller M, editors. Calcium Stable Isotope Geochemistry. Berlin: Springer-Verlag; 2016. pp. 173–222.

Tukey JW (1953) The problem of multiple comparisons In: Braun HI (Ed), The Collected Works of John W. Tukey, volume 8, 1994. Chapman & Hall, New York. ISBN 9780412051210

van der Heijden G, Legout A, Pollier B, Ranger J, Dambrine E. The dynamics of calcium and magnesium inputs by throughfall in a forest ecosystem on base poor soil are very slow and conservative: evidence from an isotopic tracing experiment (26Mg and 44Ca) Biogeochemistry. 2014;118:413. doi: 10.1007/s10533-013-9941-2. DOI

van der Heijden G, Dambrine E, Pollier B, Zeller B, Ranger J, Legout A. Mg and Ca uptake by roots in relation to depth and allocation to aboveground tissues: results from an isotopic labeling study in a beech forest on base-poor soil. Biogeochemistry. 2015;122:375–393. doi: 10.1007/s10533-014-0047-2. DOI

Vicha Z. Evaluation of the hydrological year 2017 in experimental basins Cervik and Mala Raztoka, the Moravian-Silesian Beskids, Czech Republic. Rep For Res. 2019;64(1):51–55.

Voldrichova P, Chrastny V, Sipkova A, Farkas J, Novak M, Stepanova M, Krachler M, Veselovsky F, Blaha V, Prechova E, Komarek A, Bohdalkova L, Curik J, Mikova J, Erbanova L, Pacherova P. Zinc isotope systematics in snow and ice accretions in Central European mountains. Chem Geol. 2014;388:130–141. doi: 10.1016/j.chemgeo.2014.09.008. DOI

von Blanckenburg F, Schuessler JA, Bouchez J, Frings PJ, Uhlig D, Oelze M, Frick DA, Hewawasam T, Dixon J, Norton K. Rock weathering and nutrient cycling along an erodosequence. Am J Sci. 2021;321(8):1111–1163. doi: 10.2475/08.2021.01. DOI

Welch SA, Ullman WJ. Feldspar dissolution in acidic and organic solutions. Compositional and pH dependence of dissolution rate. Geochim Cosmochim Acta. 1996;60:2939–2948. doi: 10.1016/0016-7037(96)00134-2. DOI

Wiegand BA, Chadwick OA, Vitousek PM, Wooden JL (2005) Ca cycling and isotopic fluxes in forested ecosystems in Hawaii. Geophys Res Lett 32(11). 10.1029/2005GL022746.

Wiggenhauser M, Moore RE, Wang P, Bienert GP, Laursen KH, Blotevogel S. Stable isotope fractionation of metals and metalloids in plants: a review. Front Plant Sci. 2022;13:840941. doi: 10.3389/fpls.2022.840941. PubMed DOI PMC

Wimpenny J, Burton KW, James RH, Gannoun A, Mokadem F, Gíslason SR. The behaviour of magnesium and its isotopes during glacial weathering in an ancient shield terrain in West Greenland. Earth Planet Sci Lett. 2011;304(1–2):260–269. doi: 10.1016/j.epsl.2011.02.008. DOI

Wolff-Boenisch D, Gislason SR, Oelkers EH (2006) The effect of crystallinity on dissolution rates and CO2 consumption capacity of silicates. Geochim Cosmochim Acta 70(4):858–870. 10.1016/j.gca.2005.10.016

Xu Y, Jin Z, Gou LF, Galy A, Jin C, Chen C, Li Ch, Deng L. Carbonate weathering dominates magnesium isotopes in large rivers: clues from the Yangtze River. Chem Geol. 2022;588:120677. doi: 10.1016/j.chemgeo.2021.120677. DOI

Zahradnik P, Zahradnikova M (2023) Dynamics of emergent clearings during the current bark-beetle calamity. In: Plans on reforestation of bark-beetle induced open areas, P Zahradnik and Z Vacek (eds.) National Museum of Agriculture, Czech Forestry Society, pp 7–14

Zhao T, Liu W, Xu Z, Sun H, Zhou X, Zhou L, Zang J, Zhang X, Jiang H, Liu T. The influence of carbonate precipitation on riverine magnesium isotope signals: new constrains from Jinsha River Basin, Southeast Tibetan Plateau. Geochim Cosmochim Acta. 2019;248:172–184. doi: 10.1016/j.gca.2019.01.005. DOI

Zhao T, Liu W, Li Y, Xu Z. Magnesium isotopic composition of rivers draining karst-dominated regions in Southwest China. Chem Geol. 2022;606:121002. doi: 10.1016/j.chemgeo.2022.121002. DOI

Zhao T, Liu W, Xu Z. Magnesium isotope fractionation during silicate weathering: constrains from riverine Mg isotopic composition in the southeastern coastal region of China. Geochem Geophys Geosyst. 2022;23(4):e2021GC010100. doi: 10.1029/2021GC010100. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace