Forest growth responds more to air pollution than soil acidification

. 2023 ; 18 (3) : e0256976. [epub] 20230308

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36888624

The forests of central Europe have undergone remarkable transitions in the past 40 years as air quality has improved dramatically. Retrospective analysis of Norway spruce (Picea abies) tree rings in the Czech Republic shows that air pollution (e.g. SO2 concentrations, high acidic deposition to the forest canopy) plays a dominant role in driving forest health. Extensive soil acidification occurred in the highly polluted "Black Triangle" in Central Europe, and upper mineral soils are still acidified. In contrast, acidic atmospheric deposition declined by 80% and atmospheric SO2 concentration by 90% between the late 1980s and 2010s. In this study we oserved that annual tree ring width (TRW) declined in the 1970s and subsequently recovered in the 1990s, tracking SO2 concentrations closely. Furthermore, recovery of TRW was similar in unlimed and limed stands. Despite large increases in soil base saturation, as well as soil pH, as a result of repeated liming starting in 1981, TRW growth was similar in limed and unlimed plots. TRW recovery was interrupted in 1996 when highly acidic rime (originating from more pronounced decline of alkaline dust than SO2 from local power plants) injured the spruce canopy, but recovered soon to the pre-episode growth. Across the long-term site history, changes in soil chemistry (pH, base saturation, Bc/Al soil solution ratio) cannot explain observed changes in TRW at the two study sites where we tracked soil chemistry. Instead, statistically significant recovery in TRW is linked to the trajectory of annual SO2 concentrations or sulfur deposition at all three stands.

Zobrazit více v PubMed

Moldan B, Schnoor JL. Czechoslovakia: examining a critically ill environment. Environ. Sci. Technol. 1992; 26(1): 14–21. doi: 10.1021/es00025a001 DOI

Hůnová I. Ambient Air Quality in the Czech Republic: Past and Present. Atmosphere. 2020; 11(2): 214. doi: 10.3390/atmos11020214 DOI

Kubíková J. Forest dieback in Czechoslovakia. Vegetatio. 1991; 93: 101–108.

Sullivan TJ, Driscoll CT, Beier CM, Burtraw D, Fernandez IJ, Galloway JN, et al.. Air pollution success stories in the United States: the value of long-term observations. Environ Sci Policy. 2018; 84: 69–73. doi: 10.1016/j.envsci.2018.02.016 DOI

Grennfelt P, Engleryd A, Forsius M, Hov Ø, Rodhe H, Cowling E. Acid rain and air pollution– 50 years of progress in environmental science and policy. Ambio. 2020; 49: 849–864. doi: 10.1007/s13280-019-01244-4 PubMed DOI PMC

Oulehle F, Kopáček J, Chuman T, Černohous V, Hůnová I, Hruška J, et al.. Predicting sulphur and nitrogen deposition using a simple statistical method. Atmospheric Environ. 2016; 140: 456–468. doi: 10.1016/j.atmosenv.2016.06.028 DOI

Sverdrup H, de Vries W, Henriksen A. Mapping critical loads. Copenhagen: Nordic Council of Ministers. Nord. 1990; 98.

De Vries W, Reinds GJ, Posch M. Assessment of critical loads and their exceedance on European forests using a one-layer steady-state model. Water, Air, and Soil Pollut. 1994; 72: 357–394.

Godbold DL, Fritz H‐ W, Jentschke G, Meesenburg H, Rademacher P. Root turnover and root necromass accumulation of Norway spruce (Picea abies) are affected by soil acidity. Tree Physiol. 2003; 23: 915–921. doi: 10.1093/treephys/23.13.915 PubMed DOI

Kandler O, Innes JL. Air pollution and forest decline in Central Europe: Environ. Pollut. 1995; 90(2): 171–180. doi: 10.1016/0269-7491(95)00006-d PubMed DOI

Schulze E-D. Air Pollution and Forest Decline in a Spruce (Picea abies) Forest. Science. 1989; 244 (4906): 776–783. doi: 10.1126/science.244.4906.776 PubMed DOI

Krause GMH. Impact of air pollution on above-ground plant parts of forest trees. In: Mathy p (ed) Air Pollution and ecosystems. Riedel Publ. Co. Dordrecht; 1988. pp. 168–216.

Büntgen U. Urban O. Krusic PJ. et al.. Recent European drought extremes beyond Common Era background variability. Nat. Geosci. 2021; 14: 190–196. 10.1038/s41561-021-00698-0 DOI

Kolář T, Čermák P, Oulehle F, Trnka M, Štěpánek P, Cudlín P, et al.. Pollution control enhanced spruce growth in the “Black Triangle” near the Czech–Polish border. Sci Total Environ. 2015; 538: 703–711. doi: 10.1016/j.scitotenv.2015.08.105 PubMed DOI

Black BA, Griffin D, van der Sleen P, Wanamaker AD Jr, Speer JH, Frank DC, et al.. The value of crossdating to retain high-frequency variability, climate signals, and extreme events in environmental proxies. Glob Change Biol. 2016; 22(7): 2582–2595. doi: 10.1111/gcb.13256 PubMed DOI

Altman J, Fibich P, Leps J, Uemura S, Hara T, Dolezal J. Linking spatiotemporal disturbance history with tree regeneration and diversity in an old-growth forest in northern Japan. Perspect. Plant Ecol. Evol. Syst. 2016; 21: 1–131.

Sohar K, Altman J, Leheckova E, Dolezal J. Growth–climate relationships of Himalayan conifers along elevational and latitudinal gradients. Int J Climatol. 2017; 37(5): 2593–26051.

Rybníček M, Kolář T, Ač A, Balek J, Koňasová E, Trnka M, et al.. Non-pooled oak (Quercus spp.) stable isotopes reveal enhanced climate sensitivity compared to ring widths. Clim Res. 2021; 83: 27–41. 10.3354/cr01632 DOI

Dambrine E, Kinkor V, Jehlička J, Gelhaye D. Fluxes of dissolved mineral elements through a forest ecosystem submitted to extremely high atmopsheric pollution inputs (Czech Republic). Ann Sci For. 1993; 50: 147–157.

Oulehle F, Evans CD, Hofmeister J, Krejčí R, Tahovská K, Persson T, et al.. Major changes in forest carbon and nitrogen cycling caused by declining sulphur deposition. Glob Change Biol. 2011; 17: 3115–3129.

Růžek M, Tahovská K, Guggenberger G, Oulehle F. Litter decomposition in European coniferous and broadleaf forests under experimentally elevated acidity and nitrogen addition. Plant Soil. 2021; 463: 471–485. doi: 10.1007/s11104-021-04926-9 DOI

Gut U, Árvai M, Bijak S, Camarero JJ, Cedro A, Cruz-García R, et al.. No systematic effects of sampling direction on climate-growth relationships in a large-scale, multi-species tree-ring data set. Dendrochronologia. 2019; 57: 125624.

Knibbe B. PAST4—Personal Analysis System for Treering Research Version 4. Instruction Manual. Vienna: SCIEM/Bernhard Knibbe; 2004.

Grissino-Mayer HD. Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree Ring Res. 2001; 57 (2): 205–221.

Cook ER, Peters K. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree Ring Bull. 1981; 41: 45–53.

Cook ER, Krusic PJ. ARSTAN v. 41d: a Tree-ring Standardization Program Based on Detrending and Autoregressive Time Series Modeling, with Interactive Graphics. Palisades; New York; USA: Tree-Ring Laboratory: Lamont-Doherty Earth Observatory of Columbia University; 2005.

Büntgen U, Frank DC, Wilson R, Carrer M, Urbinati C, Esper J. Testing for tree-ring divergence in the European Alps. Glob Chang Biol 2008; 14: 2443–2453.

Cook ER, Peters K. Calculating unbiased tree-ring indices for the study ofclimatic and environmental change. Holocene. 1997; 7: 361–370.

Eckstein D, Bauch J. Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit. Forstwissenschaftliches Zentralblatt. 1969; 88: 230–250.

Huntington TG, Ryan DF, Hamburg SP. Estimating soil-nitrogen and carbon pools in northern hardwood forest ecosystem. Soil Sci Soc Am J. 1988; 52: 1162–1167.

Cosby BJ, Hornberger GM, Galloway JN, Wright RF. Time scales of catchment acidification: a quantitative model for estimating freshwater acidification. Environ Sci Technol. 1985; 19: 1144–1149. PubMed

Cosby BJ, Ferrier RC, Jenkins A, Wright RF. Modelling the effects of acid deposition: refinements, adjustments and inclusion of nitrogen dynamics in the MAGIC model. Hydrol Earth Syst Sci. 2001; 5: 499–518.

Oulehle F, Cosby BJ, Wright RF, Hruska J, Kopacek J, Kram P, et al.. Modeling soil nitrogen: the MAGIC model with nitrogen retention linked to carbon turnover using decomposer dynamics. Environ Pollut. 2012; 165: 158–166. doi: 10.1016/j.envpol.2012.02.021 PubMed DOI

Heliwell RC, Wright RF, Jackson-Blake LA, Ferrier RC, Aherne J, Cosby BJ, et al.. Assesing recovery from acidification of European surface waters in the year 2010: Evaluation of projections made with the MAGIC model in 1995. Environ Sci Technol. 2014, 48: 13280−13288. PubMed

Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie [cited 17 July 2021]. Available from: https://www.lfulg.sachsen.de/.

Štěpánek P, Zahradníček P, Huth R.) Interpolation techniques used for data quality control and calculation of technical series: An example of a Central European daily time series. Idojaras. 2011, 115: 87–98.

Hlavinka P, Trnka M, Balek J, et al.. Development and evaluation of the SoilClim model for water balance and soil climate estimates. Agric Water Manag. 2011, 98: 1249–1261. doi: 10.1016/J.AGWAT.2011.03.011 DOI

Wells N, Goddard S, Hayes MJ. A Self-Calibrating Palmer Drought Severity Index. J Clim. 2004, 17: 2335–2351. doi: 10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2 DOI

Pinheiro J, Bates D, DebRoy S, Sarkar DR, Core Team. nlme: Linear and nonlinear mixed effect models. R package, Version 3.1–155, 2022. https://cran.r-project.org/web/packages/nlme/nlme.pdf.

Barton K. MuMln: Multi-Model Inference. R package, Version 1.43.17, 2020. https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf.

Mac Nally R, Walsh CJ. Hierarchical Partitioning Public-domain Software. Biodivers. Conserv. 2004, 13, 659–660.

Kopáček J, Hejzlar J, Krám P, Oulehle F, Posch M. Effect of industrial dust on precipitation chemistry in the Czech Republic (Central Europe) from 1850 to 2013. Water Res. 2016; 103: 30–37. doi: 10.1016/j.watres.2016.07.017 PubMed DOI

Krejčí R. Poškození smrkového lesa v Krušných horách. Vesmír. 2001; 10: 576–80.

Kubelka L, Karásek A, Rybář V, Badalík V, Slodičák M. Obnova lesa v imisemi poškozované oblasti severovýchodního Krušnohoří. Praha: Ministerstvo zemědělství České republiky; 1992.

Hruška J, Cienciala E. Long-term acidification and nutrient degradation of forest soils—limiting factors of forestry today. Praha: Ministry of the Environmet of the Czech Republic; 2003. ISBN 80-7212-190-1.

Wigley TML, Briffa KR, Jones PD. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol. 1984; 23: 201–213.

Rein F, Štekl J. The extremeness of the cold front of Dec. 31, 1978 over the CSR. Trav Géophys. 1981; 29: 379–404.

Kolář T, Čermák P, Trnka M, Žid T, Rybníček M. Temporal changes in the climate sensitivity of Norway spruce and European beech along an elevation gradient in Central Europe. Agric For Meteorol. 2017; 239: 24–33. doi: 10.1016/j.agrformet.2017.02.028 DOI

Rydval M, Wilson R. The impact of industrial SO2 pollution on North Bohemia conifers. Water Air Soil Pollut. 2012; 223 (9): 5727–5744. doi: 10.1007/s11270-012-1310-6 DOI

Sverdrup H, Warfvinge P, Rosén K. A model for the impact of soil solution Ca:Al ratio, soil moisture and temperature on tree base cation uptake. Water Soil Air Pollut. 1992; 61: 365–373.

Cronan CS, Grigal DF. Use of calcium/aluminum ratios as indicators of stress in forest ecosystems. J Environ Qual. 1995; 24: 209–216.

Hruška J, Cudlín P, Krám P. Relationship between Norway spruce status and soil water base cations/aluminum ratios in the Czech Republic. Water Air Soil Pollut. 2001; 130: 983–988.

de Wit HA, Eldhuset TD, Mulder J. Dissolved Al reduces Mg uptake in Norway spruce forest: Results from a long‐term field manipulation experiment in Norway. For Ecol Manage. 2010; 259: 2072–2082. doi: 10.1016/j.foreco.2010.02.018 DOI

Schaaf W. Evaluation of different magnesium fertilization strategies. In: Hüttl RF, Schaff WW, editors. Magnesium deficiency in Forest Ecosystems. Kluwer Academic Publishers; 1997. pp. 333–355.

Šantrůčková H, Cienciala E, Kaňa J, Kopáček J. The chemical composition of forest soils and their degree of acidity in Central Europe. Sci Total Environ. 2019; 687: 96–103. doi: 10.1016/j.scitotenv.2019.06.078 PubMed DOI

Cienciala E, Russ R, Šantrůčková H, Altman J, Kopáček J, Hůnová I, et al.. Discerning environmental factors affecting current tree growth in Central Europe. Sci Total Environ. 2016; 573: 541–554. doi: 10.1016/j.scitotenv.2016.08.115 PubMed DOI

de Vries W, Dobbertin HH, Solberg SH, van Dobben HF, Schau F. Impacts of acid deposition, ozone exposure and weatherconditions on forest ecosystems in Europe: an overview. Plant Soil. 2014; 380: 1–45, doi: 10.1007/s11104-014-2056-2 DOI

Oulehle F, Hofmeister J, Cudlín P, Hruška J. The effect of reduced atmospheric deposition on soil and soil solution chemistry at a site subjected to long‐term acidification, Načetín, Czech Republic. Sci Total Environ. 2006; 370: 532–544. doi: 10.1016/j.scitotenv.2006.07.031 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...