Long-term changes in chemical components in the meadow pipit (Anthus pratensis) in the formerly heavily polluted Eastern Sudetes Mountains
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA_PrF_2024_006
Univerzita Palackého v Olomouci
PubMed
40325293
PubMed Central
PMC12119660
DOI
10.1007/s11356-025-36446-9
PII: 10.1007/s11356-025-36446-9
Knihovny.cz E-zdroje
- Klíčová slova
- Aluminum, Cadmium, Calcium, Invertebrates, Lead, Passerines, Recovery, Soil chemistry, Upland,
- MeSH
- hliník MeSH
- kadmium MeSH
- látky znečišťující půdu * analýza MeSH
- monitorování životního prostředí MeSH
- olovo MeSH
- půda chemie MeSH
- vápník MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- hliník MeSH
- kadmium MeSH
- látky znečišťující půdu * MeSH
- olovo MeSH
- půda MeSH
- vápník MeSH
The Eastern Sudetes Mountains (Northern Moravia, Czech Republic) were among the most polluted regions of Europe due to toxic metal depositions and acid rain, until the desulfurization of emissions from coal power stations and reduction of heavy industry which took place in the 1990s. This study provides a comparison of data on the levels of calcium, lead, cadmium, and aluminum in soil, meadow pipit (Anthus pratensis) nestlings, and their available diet in 1994-1999 and in 2017-2019. The soil pH and exchangeable amount of calcium and lead increased slightly. The concentration of calcium in potential prey (invertebrates) increased slightly, and lead and cadmium levels decreased. The amount of calcium and lead in nestling bodies decreased in 2017-2019, while cadmium and aluminum levels remained unchanged after accounting for nestling age. The age of nestlings had an effect on aluminum only, when its content decreased with age. The principal component analysis revealed close association between calcium and lead. The consequences of recent leaching of basic cations, mainly calcium, and increasing bioavailability of lead in soils for future reproduction of the meadow pipit are discussed.
Zobrazit více v PubMed
Ackermann R, Hanrahan D (1999) Pollution prevention and abatement handbook 1998. The World Bank Group, Washington
Ardestani MM, van Straalen NM, van Gestel CAM (2014) Uptake and elimination kinetics of metals in soil invertebrates: a review. Environ Pollut 193:277–295. 10.1016/j.envpol.2014.06.026 PubMed
Babič Leko M, Pleič N, Gunjača I (2022) Environmental factors that affect parathyroid hormone and calcitonin levels. Int J Mol Sci 23:44. 10.3390/ijms23010040 PubMed PMC
Barton MG, Henderson I, Border JA, Siriwardena G (2023) A review of the impacts of air pollution on terrestrial birds. Sci Total Environ 873:162136. 10.1016/j.scitotenv.2023:162136 PubMed
Becker PH (2003) Biomonitoring with birds. In: Markert BA, Breure AM, Zechmeister HG (Eds.) Trace metals and other contaminants in the environment. Elsevier, 6: 677–736. 10.1016/S0927-5215(03)80149-2
Belskii E, Belskaya E (2021) Trophic match/mismatch and reproduction of the pied flycatcher Ficedulahypoleuca in a metal-polluted area. Environ Pollut 276:116754. 10.1016/j.envpol.2021.116754 PubMed
Belskii E, Lyakhov A (2022) Improved breeding parameters in the pied flycatcher with reduced pollutant emissions from a copper smelter. Environ. Pollut. 302:119089. 10.1016/j.envpol.2022.119089 PubMed
Berg LR, Nordstrom JO, Ousterhout LE (1980) The prevention of chick growth depression due to dietary lead by increased dietary calcium and phosphorus levels. Poult Sci 59:1860–1863 PubMed
Berghof (2010) Speedwave microwave digestion system. Manual, Berghof, Eningen
Berglund AMM, Nyholm NEI (2011) Slow improvements of metal exposure, health- and breeding conditions of pied flycatcher (Ficedulahypoleuca) after decreased industrial heavy metal emissions. Sci Total Environ 409:4326–4334. 10.1016/j.scitotenv.2011.07.004 PubMed
Berglund AMM, Koivula MJ, Eeva T (2011) Species-and age-related variation in metal exposure and accumulation of two passerine bird species. Environ Pollut 159:2368–2374 PubMed
Berglund AMM, Rainio M, Eeva T (2012) Decreased metal accumulation in passerines as a result of reduced emissions. Environ Toxicol Chem 31:1317–1323. 10.1002/etc.1814 PubMed
Beyer WN, Spann JW, Sileo L, Franson JC (1988) Lead poisoning in six captive avian species. Arch Environ Contam Toxicol 17:121–130 PubMed
Bobbink R, Hettelingh P (2010) Review and revision of empirical critical loads and dose-response relationships. Proceedings of an expert workshop, Noordwijkerhout 23–25 June 2010
Bureš S (1994) Segregation of the diet in water pipit (Anthusspinoletta) and meadow pipit (Anthuspratensis) in an area damaged by air pollution. Folia Zool 43:43–48
Bureš S, Pokorná D (1996) A test of ability of snails to find calcium rich sources on acidified soils. Acta Univ Palacki Olomouc Fac Rer Nat Biol 34:13–16
Bureš S, Weidinger K (2000) Estimation of calcium intake by Meadow Pipit nestlings in an acidified area. J Avian Biol 31:426–429
Bureš S, Weidinger K (2001) Do pipits use experimentally supplemented rich sources of calcium more often in an acidified area? J Avian Biol 32:194–198
Bureš S, Václavíková K, Tukač V (1999) Severe alpine weather, prey availability and reproduction in two species of passerine: a test of the permanent prey availability hypothesis. Folia Zool 48:279–285
Bureš S, Baláž P, Hajný L (2000) Aktuální problémy ochrany ptáků a jejich prostředí v ČR. 3.6. Jeseníky. Sylvia 36:31–34. In Czech with a summary in English: 84
Chapin FS, Dhaver GR, Ginlin AE, Nadelhoffer KJ, Laundrea JA (1995) Responses of arctic tundra to experimental and observed changes in climate. Ecology 76:694–711
Dauwe T, Janssens E, Bervoets L, Blust R, Eens M (2004) Relationships between metal concentrations in great tit nestlings and their environment and food. Environ Pollut 131:373–380 PubMed
Dauwe T, Snoeijs T, Bervoets L, Blust R, Eens M (2006) Anim Biol 56:289–298
Di Liberto JF, Griffith SC, Hall CJ, Mendelsohn AS, Swaddle JP (2024) Exposure to sublethal concentrations of lead (Pb) affects ecologically relevant behaviors in house sparrow (Passerdomesticus). Arch Environ Contam Toxicol 86:199–216. 10.1007/s00244-024-01062-0 PubMed PMC
Ding J, Yang W, Shengnan W, Zhang H, Yang Y, Bao X, Zhang Y (2020) Effects of environmental metal pollution on reproduction of a free-living resident songbird, the tree sparrow (Passermontanus). Sci Total Environ 721:137674. 10.1016/j.scitotenv.2020.137674 PubMed
Eeva T, Lehikoinen E (1995) Egg shell quality, clutch size and hatching success of the great tit (Parusmajor) and the pied flycatcher (Ficedulahypoleuca) in an air pollution gradient. Oecologia 102:312–323 PubMed
Eeva T, Lehikoinen E (1996) Growth and mortality of nestling great tits (Parusmajor) and pied flycatcher (Ficedulahypoleuca) in a heavy metal pollution gradient. Oecologia 108:631–639 PubMed
Eeva T, Lehikoinen E (2000) Recovery of breeding success in wild birds. Nature 403:851–852 PubMed
Eeva T, Lehikoinen E (2004) Rich calcium availability diminishes heavy metal toxicity in Pied Flycatcher. Funct Ecol 18:548–553
Eeva T, Lehikoinen E (2015) Long-term recovery of clutch size and egg shell quality of the pied flycatcher (Ficedulahypoleuca) in a metal polluted area. Environ Pollut 201:26–33. 10.1016/j.envpol.2015.02.027 PubMed
Flousek J, Telenský T, Hanzelka J, Reif J (2015) Population trends of Central European montane birds provide evidence for adverse impact of climate change om high-altitude species. Plos One 10(10):e0139465. 10.1371/journal.pone.0139465 PubMed PMC
Frey-Roos F, Brodmann PA, Reyer HU (1995) Relations between food resources, foraging patterns, and reproductive success in the water pipit, Anthus sp. spinoletta. Behav Ecol 6:287–295
Fullmer CS (1992) Intestinal interactions of lead and calcium. Neurotoxicol 13:799–808 PubMed
Fullmer CS (1997) Lead-calcium interactions: involvement of 1,25-dihydroxyvitamin D1. Environ Res 72:45–55 PubMed
Fullmer CS, Edelstein S, Wasserman RH (1985) Lead-binding properties of intestinal-calcium binding proteins. J Biol Chem 260:6861–6819 PubMed
Furness RW (1993) Birds as monitors of pollutants. In: Furness RW, Greenwood JJD (eds) Birds as monitors of environmental change. Chapman and Hall, London, pp 86–143
Grafická ročenka IX (2017) Atmosferická depozice na území České republiky. https://www.chmi.cz/files/portal/docs/uoco/isko/grafroc/17groc/gr17cz/IX_depozice_CZ.html
Graveland J (1998) Effects of acid rain on bird populations. Environ Rev 6:41–54
Graveland J, Berends AE (1997) Timing of the calcium intake and effect of calcium deficiency on behaviour and egg laying in captive great tits, Parusmajor. Physiol Zool 70:74–84 PubMed
Graveland J, Van Gijzen TV (1994) Arthropods and seeds are not sufficient as calcium sources for shell formation and skeletal growth in passerines. Ardea 82:299–314
Graveland J, van der Wal R, van Balen JH, van Noordwijk AJ (1994) Poor reproduction in forest passerines from decline of snail abundance on acidified soils. Nature 368:446–448
Hagen J, Hagen A, Østbye E, Skar HJ (1976) Some chemical elements in the body of the Meadow Pipit Anthuspratensis (L.). Norw J Zool 24:279–289
Hagner C (2002) Regional and long-term patterns of lead concentrations in riverine, marine and terrestrial systems and humans in Northwest Europe. Water Air Soil Pollut 134:1–40
Hédl R, Petřík P, Boublík K (2011) Long-term patterns in soil acidification due to pollution in forests of the Eastern Sudetes Mountains. Environ Pollut 159:2586–2593 PubMed
Holopainen JK, Kainulainen E, Oksanen J, Wulf A, Karenlampi L (1991) Effect of exposure to fluoride, nitrogen compounds and SO2 on the numbers of spruce shoot aphids on Norway spruce seedlings. Oecologia 86:51–56 PubMed
Hruška J, Oulehle F, Chuman T, Kolář T, Rybníček M, Trnka M, McDowell WH (2023) Forest growth responds more to air pollution than soil acidificazion. PLoS ONE. 10.1371/journal.pone.0256976 PubMed PMC
Hůnová I (2020) Ambient air quality in the Czech Republic: past and present. Atmosphere 11:214. 10.3390/atmos11020214
Janiga M (2001) Birds as bio-indicators of long transported lead in the alpine environment. In: Visconti G, Beniston M, Iannorelli ED, Barba D (eds) Global change and protected areas. Kluwer Publishers, London, pp 253–247
Janiga M (2002) Príjem atmosférického olova u Prunella collaris závisí od sezón. Oecologia Montana 11:94–95. In Slovak with summary in English
Janiga M (2008) Potential effects of global warming on atmospheric lead contamination in the mountains. In: Behnke R (ed) The socioeconomic causes and consequences of desertification in Central Asia. Springer Science, Berlin, pp 231–247
Janiga M, Haas M (2019) Alpine accentors as monitors of atmospheric long-range lead and mercury pollution in alpine environments. Environ Sci Pollut Res 26:2445–2454. 10.1007/s11356-018-3742-z PubMed
Janiga M, Janiga M (2023) Different accumulation of some elements in the fry and adults of alpine bullheads (Cottuspoecilopus). Environ Sci Pollut Res 30:44724–44732 PubMed
Kirberger M, Wong HC, Jiang J, Yang JJ (2013) Metal toxicity and opportunistic binding of Pb2+ in proteins. J Inorg Biochem 125:40–49. 10.1016/j.jinorgbio.2013.04.002 PubMed PMC
Kopáček J, Veselý J (2005) Sulfur and nitrogen emissions in the Czech Republic and Slovakia from 1850 till 2000. Atmos Environ 39:2179–2188
Krementz DG, Ankney CD (1995) Changes in total body calcium and diet of breeding house sparrows. J Avian Biol 26:162–167
Le Roux G, Hansson SV, Claustres A, Binet S (2020) Trace metal legacy in mountain environments: a view from the Pyrenees Mountains. In: XXX Biogeochemical Cycles (191–206)
Lehikoinen A, Brotons L, Calladine J, Campedelli T, Escandell V, Flousek J, Grueneberg Ch, Haas F, Harris S, Herrando S, Husby M, Jiguet F, Kålås JA, Lindström A, Lorrillière R, Molina B, Pladevall C, Calvi G, Sattler T, Schmid H, Sirkiä PM, Teufelbauer N, Trautmann S (2019) Declining population trends of European mountain birds. Glob Change Biol 25:577–588 PubMed
Maskall J, Whitehead K, Thornton I (1995) Heavy metal migration in soils and rocks at historical smelting sites. Environ Geochem Health 17:127–138 PubMed
Mc Neil JR (2000) Something new under the sun: an environmental history of the twentieth-century world. W. W. Norton & Company, New York, NY
Moldan B, Schnoor JL (1992) Czecho-slovakia examining a critically ill environment. Environ Sci Technol 39:14–21
Mörth CM, Torssander P, Kjønaas OJ, Stuanes AO, Moldan F, Giesler R (2005) Mineralization of organic sulfur delays recocery from anthropogenic acidification. Environ Sci Technol 39:5234–5240 PubMed
Novák M, Kirchner JW, Groscheová H, Havel M, Černý J, Krejčí R, Buzek F (2000) Sulfur isotope dynamics in two Central European watersheds affected by high atmospheric deposition of SOx. Geochim Cosmochim Acta 64:367–383
Nyholm NEI (1995) Monitoring of terrestrial environmental metal pollution by means of free-living insectivorous birds. Ann Chim 85:343–351
Nyholm NEI (1998) Influence of heavy metal exposure during different phases of the ontogeny on the development of pied flycatchers, Ficedulahypoleuca, in natural populations. Arch Environ Contam Toxicol 35:632–637 PubMed
Orlowski G, Halupka L, Pokorny P, Klimczuk E, Sztwiertnia H, Dobicki W (2016) The effect of embryonic development on metal and calcium in eggs and eggshells in a small passerine. Ibis 158:144–154
Oulehle F, Kopáček J, Chuman T, Černohous V, Hůnová I, Hruška J, Krám P, Lachmanová Z, Navrátil T, Štěpánek P, Tesař M, Evans ChD (2016) Predicting sulphur and nitrogen deposition using a simple statistical method. Atmos Environ 140:456–468. 10.1016/j.atmosenv.2016.06.028
Pinowska B, Krasnicki K (1985) Changes in the content of magnesium, copper, calcium, nitrogen and phosphorus in female House Sparrow during the breeding cycle. Ardea 73:175–182
Pinowski J, Romanowski J, Barkowska M, Sawicka-Kapusta K, Kaminski P, Kruszewicz A (1993) Lead and cadmium in relation to body weight and mortality of the house sparrow Passerdomesticus and tree sparrow Passermontanus nestlings. Acta Ornithologica 28:63–68
Reiners WA, Marks RH, Vitousek PM (1975) Heavy metals in subalpine and alpine soils of New Hampshire. Oikos 26:264–275
Roth M (1993) Investigations on lead in the soil invertebrates of a forest ecosystem. Pedobiologia 37:270–279
Rotter P, Purchart L (2022) Ekologie lesa. Jak se les mění a funguje. Brno: Mendelova univerzita v Brně. 10.11118/978-80-7509-927-3
Rühling A, Tyler G (2004) Changes in atmospheric deposition of minor and rare elements between 1975 and 2000 in south Sweden, as measured by moss analysis. Environ Pollut 131:417–423 PubMed
Saulnier A, Bleu J, Boos AE, Masoudi I, Ronot P, Zahn S, Del Nero M, Massemin S (2020) Consequences of trace metal cocktail exposure in zebra finch (Taeniopygiaguttata) and effect of calcium supplementation. Ecotoxicol Environ Saf 193:110357. 10.1016/j.ecoenv.2020.110357 PubMed
Scheuhammer AM (1987) The chronic toxicity of aluminium, cadmium, mercury, and lead in birds: a review. Environ Pollut 46:263–295 PubMed
Scheuhammer AM (1991) Effects of acidification on the availability of toxic metals and calcium to wild birds and mammals. Environ Pollut 71:329–375 PubMed
Scheuhammer AM (1996) Influence of reduced dietary calcium on the accumulation and effects of lead, cadmium, and aluminum in birds. Environ Pollut 94:337–343 PubMed
Shotyk W, Le Roux G (2005) Biogeochemistry and cycling of lead. Met Ions Biol Syst 43:239–275 PubMed
Shotyk W, Weiss D, Heisterkamp M, Cheburkin AK, Adams FC (2002) A new peat bog record of atmospheric lead pollution in Switzerland: Pb concentrations, enrichment factors, isotopic composition and organolead species. Environ Sci Technol 36:3893–3900 PubMed
Six KM, Goyer RA (1970) Experimental enhancement of lead toxicity by low dietary calcium. J Lab Clin Med 76:933–942 PubMed
Snoeijs T, Dauwe T, Pinxten R, Darras VM, Arckens L, Eens M (2005) The combined effect of lead exposure and high or low dietary calcium on health and immunocompetence in the zebra finch (Taeniopygiaguttata). Environ Pollut 134:123–132 PubMed
Steinnes E, Lierhagen S (2018) Geographical distribution of trace elements in natural surface soils: atmospheric influence from natural and anthropogenic sources. Appl Geochem 88:2–9
Studier EH, Sevick SH (1992) Live mass, water content nitrogen and mineral levels in some insects from south-central lower Michigan. Comp. Biochem. Physiol. 103(3):579–595
Tyler G (1978) Leaching rates of heavy metal ions in forest soil. Water, Air, Soil Pollut 9:137–148
Tyler G (1992) Critical concentrations of heavy metals in the mor horizon of Swedish forests. SNV-Report 4078, Solna
Vanmechelen L, Groenemans R, van Ranst E (1997) Forest soil condition in Europe, results of a large-scale soil survey, a report of the United Nations Economic Commission for Europe and the European Commission, Brussels
Vorobeichik EL, Kaigorodova SY (2017) Long-term dynamics of heavy metals in the upper horizons of soils in the region of a cooper smelter impacts during the period of reduced emission. Eurasian Soil Sci 50:977–990
White JH, Heppner JJ, Ouyang JQ (2022) Increased lead and glucocorticoid concentrations reduce reproductive success in house sparrows along an urban gradient. Ecol Appl 32(8):e2688. 10.1002/eap.2688 PubMed PMC
Williams RJ, Holladay SD, Williams SM, Gogal RM Jr (2017) Environmental lead and wild birds: a review. Rev Environ Contam Toxicol 245:157–180 PubMed
Zbíral J (1995) Analýza půd I, Státní kontrolní a zkušební ústav zemědělský, Brno (In Czech)
Zechmeister HG (1995) Correlation between altitude and heavy metal deposition in the Alps. Environ Pollut 89:73–80
Zhuang P, Zou H, Shu W (2009) Biotransfer of heavy metals along a soil-plant-insect-chicken food chain: field study. J Environ Sci 21:849–853 PubMed