Population Trends of Central European Montane Birds Provide Evidence for Adverse Impacts of Climate Change on High-Altitude Species
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26426901
PubMed Central
PMC4591356
DOI
10.1371/journal.pone.0139465
PII: PONE-D-15-33177
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- chov MeSH
- druhová specificita MeSH
- ekosystém MeSH
- klimatické změny * MeSH
- nadmořská výška * MeSH
- populační dynamika MeSH
- ptáci klasifikace fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
Climate change is among the most important global threats to biodiversity and mountain areas are supposed to be under especially high pressure. Although recent modelling studies suggest considerable future range contractions of montane species accompanied with increased extinction risk, data allowing to test actual population consequences of the observed climate changes and identifying traits associated to their adverse impacts are very scarce. To fill this knowledge gap, we estimated long-term population trends of montane birds from 1984 to 2011 in a central European mountain range, the Giant Mountains (Krkonoše), where significant warming occurred over this period. We then related the population trends to several species' traits related to the climate change effects. We found that the species breeding in various habitats at higher altitudes had more negative trends than species breeding at lower altitudes. We also found that the species moved upwards as a response to warming climate, and these altitudinal range shifts were associated with more positive population trends at lower altitudes than at higher altitudes. Moreover, long-distance migrants declined more than residents or species migrating for shorter distances. Taken together, these results indicate that the climate change, besides other possible environmental changes, already influences populations of montane birds with particularly adverse impacts on high-altitude species such as water pipit (Anthus spinoletta). It is evident that the alpine species, predicted to undergo serious climatically induced range contractions due to warming climate in the future, already started moving along this trajectory.
Zobrazit více v PubMed
Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science. 2014;344: 1246752 10.1126/science.1246752 PubMed DOI
La Sorte FA, Jetz W. Projected range contractions of montane biodiversity under global warming. Proc R Soc B. 2010;277: 3401–3410. 10.1098/rspb.2010.0612 PubMed DOI PMC
Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu Q, Casassa G, et al. Attributing physical and biological impacts to anthropogenic climate change. Nature 2008;453: 353–357. 10.1038/nature06937 PubMed DOI
Lehikoinen A, Green M, Husby M, Kålås JA, Lindström A. Common montane birds are declining in northern Europe. J Avian Biol. 2014;45: 3–14.
Popy S, Bordignon L, Prodon R. A weak upward elevational shift in the distributions of breeding birds in the Italian Alps. J Biogeogr. 2010;37: 57–67.
Maggini R, Lehmann A, Kéry M, Schmid H, Beniston M, Jenni L, et al. Are Swiss birds tracking climate change? Detecting elevational shifts using response curve shapes. Ecol Model. 2011;222: 21–32.
Reif J, Flousek J. The role of species' ecological traits in climatically driven altitudinal range shifts of central European birds. Oikos. 2012;121: 1053–1060.
Auer SK, King DI. Ecological and life-history traits explain recent boundary shifts in elevation and latitude of western North American songbirds. Global Ecol Biogeogr. 2014;23: 867–875.
Tryjanowski P, Sparks TH, Profus P. Uphill shifts in the distribution of the white stork Ciconia ciconia in southern Poland: the importance of nest quality. Divers Distrib. 2005;11: 219–223.
Pautasso M. Observed impacts of climate change on terrestrial birds in Europe: an overview. Ital J Zool. 2012;79: 296–314.
Sekercioglu CH, Schneider SH, Fay JP, Loarie SR Climate change, elevational range shifts, and bird extinctions. Conserv Biol. 2008;22: 140–150. 10.1111/j.1523-1739.2007.00852.x PubMed DOI
Chamberlain DE, Negro M, Caprio E, Rolando A. Assessing the sensitivity of alpine birds to potential future changes in habitat and climate to inform management strategies. Biol Conserv. 2013;167: 127–135.
Harris J, Berton C, Putra DD, Gregory SD, Brook BW, Prawiradilaga DM, et al. Rapid deforestation threatens mid-elevational endemic birds but climate change is most important at higher elevations. Divers Distrib. 2014;20: 773–785.
Chamberlain D, Arlettaz R, Caprio E, Maggini R, Pedrini P, Rolando A, et al. The altitudinal frontier in avian climate impact research. Ibis. 2012;154: 205–209.
Flousek J. Impact of industrial emissions on bird populations breeding in mountain spruce forests in central Europe. Ann Zool Fenn. 1989;26: 255–263.
Webb CT, Hoeting JA, Ames GM, Pyne MI, Poff NL. A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecol Lett. 2010;13: 267–283. 10.1111/j.1461-0248.2010.01444.x PubMed DOI
Both C, Van Turnhout CAM, Bijlsma RG, Siepel H, Van Strien AJ, Foppen RPB. Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proc R Soc B. 2010;277: 1259–1266. 10.1098/rspb.2009.1525 PubMed DOI PMC
Vickery JA, Ewing SR, Smith KW, Pain DJ, Bairlein F, Škorpilová J, et al. The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis. 2014;156: 1–22.
Sæther BE, Lande R, Engen S, Weimerskirch H, Lillegard L, Altwegg R, et al. Generation time and temporal scaling of bird population dynamics. Nature. 2005;436: 99–102. PubMed
Owens IPF, Bennett PM. Ecological basis of extinction risk in birds: habitat loss versus human persecution and introduced predators. Proc Natl Acad Sci USA. 2000;97: 12144–12148. PubMed PMC
Jiguet F, Gadot AS, Julliard R, Newson SE, Couvet D. Climate envelope, life history traits and the resilience of birds facing global change. Global Change Biol. 2007;13: 1672–1684.
Sol D, Maspons J, Vall-llosera M, Bartomeus I, García-Peña GE, Piñol J, Freckleton RP. Unraveling the life history of successful invaders. Science 2012;337: 580–583. 10.1126/science.1221523 PubMed DOI
Koleček J, Schleuning M, Burfield IJ, Báldi A, Böhning-Gaese K, Devictor V, et al. Birds protected by national legislation show improved population trends in Eastern Europe. Biol Conserv 2014;172: 109–116.
Gregory RD, Willis SG, Jiguet F, Voříšek P, Klvaňová A, van Strien A, et al. An ndicator of the impact of climatic change on European bird populations. PLoS ONE. 2009;4: e4678 10.1371/journal.pone.0004678 PubMed DOI PMC
Reif J, Böhning-Gaese K, Flade M, Schwarz J, Schwager M. Population trends of birds across the iron curtain: brain matters. Biol Conserv. 2011;144: 2524–2533.
Devictor V, van Swaay C, Brereton T, Brotons L, Chamberlain D, Heliola J, et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nature Clim. Change. 2012;2: 121–124.
Parmesan C. Ecological and evolutionary responses to recent climate change. Annual Rev Ecol Evol Syst. 2006;37: 637–669.
Bellard C, Bertelsmeier C, Leadley C, Thuiller W, Courchamp S. Impacts of climate change on future of biodiversity. Ecol Lett. 2012;15: 365–377. 10.1111/j.1461-0248.2011.01736.x PubMed DOI PMC
Flousek J. Krkonoše/Karkonosze Bilateral Biosphere Reserve In: Jeník J, Price M, editors. Biosphere Reserves on the Crossroads of Central Europe. Czech Republic—Slovak Republic. Praha: Unesco MAB; 1994. pp. 17–32.
Štursa J. The development of opinions on the geo-biodiversity of the Giant Mountains’ arctic-alpine tundra and its conservation. Opera Corcontica. 2013;50/S: 55–74.
Flousek J, Hartmanová O, Štursa J, Potocki J, editors. Giant Mountains—Nature, History, Life. Praha: Nakladatelstvi Milos Uhlir—Baset; 2007.
Soukupová L, Kociánová M, Jeník J, Sekyra J. Arctic-alpine tundra in the Krkonoše, the Sudetes. Opera Corcontica. 1995;32: 5–88.
Krahulec F, Blažková D, Balátová-Tuláčková E, Štursa J, Pecháčková S, Fabšičová M. Grasslands of the Krkonoše Mountains: plant communities and their dynamics. Opera Corcontica. 1996;33: 3–250.
Newson SE, Massimino D, Johnston A, Baillie SR, Pearce-Higgins JW. Should we account for detectability in population trends? Bird Study. 2013;60: 384–390.
Pannekoek J, van Strien AJ. TRIM 3 Manual. Voorburg: Statistics Netherlands; 2005.
Salido L, Purse BV, Marrs R, Chamberlain DE, Schultz S. Flexibility in phenology and habitat use act as buffers to long-term population declines in UK passerines. Ecography. 2012;35: 604–613.
Laaksonen T, Lehikoinen A. Population trends in boreal birds: Continuing declines in agricultural, northern, and long-distance migrant species. Biol. Conserv. 2013;168: 99–107.
Herrando S, Anton M, Sardà -Palomera F, Bota G, Gregory RD, Brotons L. Indicators of the impact of land use changes using large-scale bird surveys: Land abandonment in a Mediterranean region. Ecol Indic. 2014;45: 235–244.
Virkkala R, Lehikoinen A. Patterns of climate-induced density shifts of species: poleward shifts faster in northern boreal birds than in southern birds. Global Change Biol. 2014;20: 2995–3003. PubMed
Cepák J, Klvaňa P, Škopek J, Schröpfer L, Jelínek M, Hořák D et al. Bird Migration Atlas of the Czech Republic and Slovakia. Praha: Aventinum; 2008.
Koleček J, Reif J. Differences between the predictors of abundance, trend and distribution as three measures of avian population change. Acta Ornit. 2011;46: 143–153.
Reif J, Prylová K, Šizling AL, Vermouzek Z, Šťastný K, Bejček V. Changes in bird community composition in the Czech Republic from 1982 to 2004: increasing biotic homogenization, impacts of warming climate, but no trend in species richness. J Ornithol. 2013;154: 359–370.
Hagemeijer WJM, Blair MJ, editors. The EBCC atlas of European breeding birds. Their distribution and abundance London: T and AD Poyser; 1997.
Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carre G, et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography. 2013;36: 27–46.
Schielzeth H. Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol. 2010;1: 103–113.
Harvey PH, Purvis A. Comparative methods for explaining adaptations. Nature. 1991;351: 619–624. PubMed
Paradis E. Analysis of phylogenetics and evolution with R New York: Springer; 2006.
Paradis E, Bolker B, Claude J, Cuong HS, Desper R, Durand B, et al. Package ‘ape’. Analyses of phylogenetics and evolution, version 2.4–1 Vienna: R Foundation for Statistical Computing; 2009.
Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. The global diversity of birds in space and time. Nature. 2012;491: 444–448. 10.1038/nature11631 PubMed DOI
Melendez L, Laiolo P. The role of climate in constraining the elevational range of the Water Pipit Anthus spinoletta in an alpine environment. Ibis. 2014;156: 276–287.
Jenouvrier S. Impacts of climate change on avian populations. Global Change Biol. 2013;19: 2036–2057. PubMed
Fletcher K, Howarth D, Kirby A, Dunn R, Smith A. Effect of climate change on breeding phenology, clutch size and chick survival of an upland bird. Ibis. 2013;155: 456–463.
Adamík P, Král M. Climate and resource-driven long-term changes in dormice populations negatively affect hole-nesting songbirds. J Zool. 2008;275: 209–215.
Jankowski JE, Robinson SK, Levey DJ. Squeezed at the top: Interspecific aggression may constrain elevational ranges in tropical birds. Ecology. 2010;91: 1877–1884. PubMed
Robinson RA, Baillie SR, Crick HQP. Weather-dependent survival: implications of climate change for passerine population processes. Ibis. 2007;149: 357–364.
Barbosa A, Merino S, Benzal J, Martınez J, Garcıa-Fraile S. Population variability in heat shock proteins among three Antarctic penguin species. Polar Biol. 2007;30: 1239–1244.
Mantyka-Pringle CS, Martin TG, Rhodes JR. Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Global Change Biol. 2012;18: 1239–1252.
Metelka L, Kliegrová S. Systematic changes of basic climatic characteristics in the Giant Mountains between 1961 and 2005 Hradec Kralove: Czech Hydrometeorological Institute; 2006.
Both C, Visser ME. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature. 2001;411: 296–298. PubMed
Both C, Bouwhuis S, Lessells CM, Visser ME. Climate change and population declines in a long-distance migratory bird. Nature. 2006;441: 81–83. PubMed
Tryjanowski P, Sparks TH, Kuźniak S, Czechowski P, Jerzak L. Bird migration advances more strongly in urban environments. PLoS ONE. 2013;8: e63482 10.1371/journal.pone.0063482 PubMed DOI PMC
Reed TE, Jenouvrier S, Visser ME. Phenological mismatch strongly affects individual fitness but not population demography in a woodland passerine. J Anim Ecol. 2013;82: 131–144. 10.1111/j.1365-2656.2012.02020.x PubMed DOI
Lenoir J, Gegout JC, Marquet PA, de Ruffray P, Brisse H. A significant upward shift in plant species optimum elevation during the 20th century. Science. 2008;320: 1768–1771. 10.1126/science.1156831 PubMed DOI
Chen I. Elevation increases in moth assemblages over 42 years on a tropical mountain. Proc. Natl. Acad. Sci. USA. 2009;106: 1479–1483. 10.1073/pnas.0809320106 PubMed DOI PMC
Grytnes J-A, Kapfer J, Jurasinski G, Birks HH, Henriksen H, Klanderud K, et al. Identifying the driving factors behind observed elevational range shifts on European mountains. Global Ecol Biogeogr. 2014;23: 876–884.
Schaefer H-C, Jetz W, Böhning-Gaese K. Impact of climate change on migratory birds: community reassembly versus adaptation. Global Ecol. Biogeogr. 2008;17: 38–49.
Devictor V, Julliard R, Couvet D, Jiguet F. Birds are tracking climate warming, but not fast enough. Proc. R. Soc B. 2008;275: 2743–2748. 10.1098/rspb.2008.0878 PubMed DOI PMC
Clavero M, Villero D, Brotons L 2011. Climate change or land use dynamics: Do we know what climate change indicators indicate? PLoS ONE. 2011;6: e18581 10.1371/journal.pone.0018581 PubMed DOI PMC
Laiolo P, Dondero F, Ciliento E, Rolando A. Consequences of pastoral abandonment for the structure and diversity of the alpine avifauna. J Appl Ecol. 2004;41: 294–304.
Álvarez-Martínez JM, Suárez-Seoane S, Stoorvogel JJ, Calabuig ED. Influence of land use and climate on recent forest expansion: a case study in the Eurosiberian-Mediterranean limit of north-west Spain. J Ecol. 2014;102: 905–919.
Flousek J, Gramsz B. Atlas of breeding bird distribution in the Giant Mountains (1991–1994) Vrchlabi: Sprava KRNAP; 1999.
Büttner G, Feranec G, Jaffrain G. Corine land cover update 2000 Technical guidelines. Copenhagen: European Environment Agency; 2002.
European Environment Agency. CLC2006 technical guidelines Copenhagen: European Environment Agency; 2007.
Tryjanowski P, Sparks TH. Is the detection of the first arrival date of migrating birds influenced by population size? A case study of the red-backed shrike Lanius collurio . Int J Biometeor. 2001;45: 217–219. PubMed
Lehikoinen A. Climate change, phenology and species detectability in a monitoring scheme. 2013;55: 315–323.
Arlettaz R, Patthey P, Baltic M, Leu T, Schaub M, Palme R, et al. Spreading free-riding snow sports represent a novel serious threat for wildlife. Proc R Soc B. 2007;274: 1219–1224. PubMed PMC
Patthey P, Wirthner S, Signorell N, Arlettaz R. Impact of outdoor winter sports on the abundance of a key indicator species of alpine ecosystems. J Appl Ecol. 2008;45: 1704–1711.
Caprio E, Chamberlain DE, Isaia M, Rolando A. Landscape changes caused by high altitude ski-pistes affect bird species richness and distribution in the Alps. Biol Conserv. 2011;144: 2958–2967.
Sato CF, Wood JT, Lindenmayer DB. The effect of winter recreation on alpine and subalpine fauna: a systematic review and meta-analysis. PLoS ONE. 2013;8: e64282 10.1371/journal.pone.0064282 PubMed DOI PMC