p38-Mitogen Activated Kinases Mediate a Developmental Regulatory Response to Amino Acid Depletion and Associated Oxidative Stress in Mouse Blastocyst Embryos
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31788473
PubMed Central
PMC6856562
DOI
10.3389/fcell.2019.00276
Knihovny.cz E-zdroje
- Klíčová slova
- cell fate, developmental origin of health and disease (DOHaD), mouse blastocyst, oxidative stress, p38-mitogen activated kinases, primitive endoderm,
- Publikační typ
- časopisecké články MeSH
Maternal starvation coincident with preimplantation development has profound consequences for placental-fetal development, with various identified pathologies persisting/manifest in adulthood; the 'Developmental Origin of Health and Disease' (DOHaD) hypothesis/model. Despite evidence describing DOHaD-related incidence, supporting mechanistic and molecular data relating to preimplantation embryos themselves are comparatively meager. We recently identified the classically recognized stress-related p38-mitogen activated kinases (p38-MAPK) as regulating formation of the extraembryonic primitive endoderm (PrE) lineage within mouse blastocyst inner cell mass (ICM). Thus, we wanted to assay if PrE differentiation is sensitive to amino acid availability, in a manner regulated by p38-MAPK. Although blastocysts appropriately mature, without developmental/morphological or cell fate defects, irrespective of amino acid supplementation status, we found the extent of p38-MAPK inhibition induced phenotypes was more severe in the absence of amino acid supplementation. Specifically, both PrE and epiblast (EPI) ICM progenitor populations remained unspecified and there were fewer cells and smaller blastocyst cavities. Such phenotypes could be ameliorated, to resemble those observed in groups supplemented with amino acids, by addition of the anti-oxidant NAC (N-acetyl-cysteine), although PrE differentiation deficits remained. Therefore, p38-MAPK performs a hitherto unrecognized homeostatic early developmental regulatory role (in addition to direct specification of PrE), by buffering blastocyst cell number and ICM cell lineage specification (relating to EPI) in response to amino acid availability, partly by counteracting induced oxidative stress; with clear implications for the DOHaD model.
Zobrazit více v PubMed
Bowling S., Di Gregorio A., Sancho M., Pozzi S., Aarts M., Signore M., et al. (2018). P53 and mTOR signalling determine fitness selection through cell competition during early mouse embryonic development. Nat. Commun. 9:1763. 10.1038/s41467-018-04167-y PubMed DOI PMC
Brown J. J., Whittingham D. G. (1991). The roles of pyruvate, lactate and glucose during preimplantation development of embryos from F1 hybrid mice in vitro. Development 112 99–105. PubMed
Bulut-Karslioglu A., Biechele S., Jin H., Macrae T. A., Hejna M., Gertsenstein M., et al. (2016). Inhibition of mTOR induces a paused pluripotent state. Nature 540 119–123. 10.1038/nature20578 PubMed DOI PMC
Cargnello M., Roux P. P. (2011). Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 75 50–83. 10.1128/MMBR.00031-10 PubMed DOI PMC
Casas-Terradellas E., Tato I., Bartrons R., Ventura F., Rosa J. L. (2008). ERK and p38 pathways regulate amino acid signalling. Biochim. Biophys. Acta 1783 2241–2254. 10.1016/j.bbamcr.2008.08.011 PubMed DOI
Chazaud C., Yamanaka Y. (2016). Lineage specification in the mouse preimplantation embryo. Development 143 1063–1074. 10.1242/dev.128314 PubMed DOI
Chazaud C., Yamanaka Y., Pawson T., Rossant J. (2006). Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev. Cell 10 615–624. 10.1016/j.devcel.2006.02.020 PubMed DOI
Corcelle E., Djerbi N., Mari M., Nebout M., Fiorini C., Fenichel P., et al. (2007). Control of the autophagy maturation step by the MAPK ERK and p38: lessons from environmental carcinogens. Autophagy 3 57–59. 10.4161/auto.3424 PubMed DOI
Cuadrado A., Nebreda A. R. (2010). Mechanisms and functions of p38 MAPK signalling. Biochem. J. 429 403–417. 10.1042/BJ20100323 PubMed DOI
Cully M., Genevet A., Warne P., Treins C., Liu T., Bastien J., et al. (2010). A role for p38 stress-activated protein kinase in regulation of cell growth via TORC1. Mol. Cell. Biol. 30 481–495. 10.1128/MCB.00688-09 PubMed DOI PMC
Desideri E., Vegliante R., Cardaci S., Nepravishta R., Paci M., Ciriolo M. R. (2014). MAPK14/p38alpha-dependent modulation of glucose metabolism affects ROS levels and autophagy during starvation. Autophagy 10 1652–1665. 10.4161/auto.29456 PubMed DOI PMC
Fleming T. P., Watkins A. J., Sun C., Velazquez M. A., Smyth N. R., Eckert J. J. (2015). Do little embryos make big decisions? How maternal dietary protein restriction can permanently change an embryo’s potential, affecting adult health. Reprod. Fertil. Dev. 27 684–692. 10.1071/RD14455 PubMed DOI
Fleming T. P., Watkins A. J., Velazquez M. A., Mathers J. C., Prentice A. M., Stephenson J., et al. (2018). Origins of lifetime health around the time of conception: causes and consequences. Lancet 391 1842–1852. 10.1016/S0140-6736(18)30312-X PubMed DOI PMC
Frankenberg S., Gerbe F., Bessonnard S., Belville C., Pouchin P., Bardot O., et al. (2011). Primitive endoderm differentiates via a three-step mechanism involving Nanog and RTK signaling. Dev. Cell 21 1005–1013. 10.1016/j.devcel.2011.10.019 PubMed DOI
Frum T., Ralston A. (2015). Cell signaling and transcription factors regulating cell fate during formation of the mouse blastocyst. Trends Genet. 31 402–410. 10.1016/j.tig.2015.04.002 PubMed DOI PMC
Gutierrez-Uzquiza A., Arechederra M., Bragado P., Aguirre-Ghiso J. A., Porras A. (2012). p38alpha mediates cell survival in response to oxidative stress via induction of antioxidant genes: effect on the p70S6K pathway. J. Biol. Chem. 287 2632–2642. 10.1074/jbc.M111.323709 PubMed DOI PMC
Harding H. P., Zhang Y., Zeng H., Novoa I., Lu P. D., Calfon M., et al. (2003). An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell. 11 619–633. 10.1016/s1097-2765(03)00105-9 PubMed DOI
Harvey A. J. (2019). Mitochondria in early development: linking the microenvironment, metabolism and the epigenome. Reproduction 157 R159–R179. 10.1530/REP-18-0431 PubMed DOI
Henson S. M., Lanna A., Riddell N. E., Franzese O., Macaulay R., Griffiths S. J., et al. (2014). p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8(+) T cells. J. Clin. Invest. 124 4004–4016. 10.1172/JCI75051 PubMed DOI PMC
Hornbeck P. V., Kornhauser J. M., Latham V., Murray B., Nandhikonda V., Nord A., et al. (2019). 15 years of PhosphoSitePlus(R): integrating post-translationally modified sites, disease variants and isoforms. Nucleic Acids Res. 47 D433–D441. 10.1093/nar/gky1159 PubMed DOI PMC
Jackson J. R., Bolognese B., Hillegass L., Kassis S., Adams J., Griswold D. E., et al. (1998). Pharmacological effects of SB 220025, a selective inhibitor of P38 mitogen-activated protein kinase, in angiogenesis and chronic inflammatory disease models. J. Pharmacol. Exp. Ther. 284 687–692. PubMed
Kang M., Piliszek A., Artus J., Hadjantonakis A. K. (2013). FGF4 is required for lineage restriction and salt-and-pepper distribution of primitive endoderm factors but not their initial expression in the mouse. Development 140 267–279. 10.1242/dev.084996 PubMed DOI PMC
Kuo C. T., Morrisey E. E., Anandappa R., Sigrist K., Lu M. M., Parmacek M. S., et al. (1997). GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 11 1048–1060. 10.1101/gad.11.8.1048 PubMed DOI
Kwong W. Y., Miller D. J., Ursell E., Wild A. E., Wilkins A. P., Osmond C., et al. (2006). Imprinted gene expression in the rat embryo-fetal axis is altered in response to periconceptional maternal low protein diet. Reproduction 132 265–277. 10.1530/rep.1.01038 PubMed DOI
Kwong W. Y., Wild A. E., Roberts P., Willis A. C., Fleming T. P. (2000). Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development 127 4195–4202. PubMed
Leese H. J. (2012). Metabolism of the preimplantation embryo: 40 years on. Reproduction 143 417–427. 10.1530/REP-11-0484 PubMed DOI
Li Z., Chang C. M., Wang L., Zhang P., Shu H. G. (2017). Cyclooxygenase-2 induction by amino acid deprivation requires p38 mitogen-activated protein kinase in human glioma cells. Cancer Invest. 35 237–247. 10.1080/07357907.2017.1292517 PubMed DOI PMC
Linares J. F., Duran A., Reina-Campos M., Aza-Blanc P., Campos A., Moscat J., et al. (2015). Amino acid activation of mtorc1 by a pb1-domain-driven kinase complex cascade. Cell Rep. 12 1339–1352. 10.1016/j.celrep.2015.07.045 PubMed DOI PMC
Madan P., Rose K., Watson A. J. (2007). Na/K-ATPase beta1 subunit expression is required for blastocyst formation and normal assembly of trophectoderm tight junction-associated proteins. J. Biol. Chem. 282 12127–12134. 10.1074/jbc.m700696200 PubMed DOI
Mihajlovic A. I., Thamodaran V., Bruce A. W. (2015). The first two cell-fate decisions of preimplantation mouse embryo development are not functionally independent. Sci. Rep. 5:15034. PubMed PMC
Moruno-Manchon J. F., Perez-Jimenez E., Knecht E. (2013). Glucose induces autophagy under starvation conditions by a p38 MAPK-dependent pathway. Biochem. J. 449 497–506. 10.1042/BJ20121122 PubMed DOI
Murphy M. P. (2009). How mitochondria produce reactive oxygen species. Biochem. J. 417 1–13. 10.1042/BJ20081386 PubMed DOI PMC
Niakan K. K., Ji H., Maehr R., Vokes S. A., Rodolfa K. T., Sherwood R. I., et al. (2010). Sox17 promotes differentiation in mouse embryonic stem cells by directly regulating extraembryonic gene expression and indirectly antagonizing self-renewal. Genes Dev. 24 312–326. 10.1101/gad.1833510 PubMed DOI PMC
Nichols J., Silva J., Roode M., Smith A. (2009). Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development 136 3215–3222. 10.1242/dev.038893 PubMed DOI PMC
O’Brien P. M. S., Wheeler T., Barker D. J. P. (1999). Fetal Programming: Influences on Development and Disease in Later Life. London: RCOG Press, 414–421.
Parente R., Trifiro E., Cuozzo F., Valia S., Cirone M., Di Renzo L. (2013). Cyclooxygenase-2 is induced by p38 MAPK and promotes cell survival. Oncol. Rep. 29 1999–2004. 10.3892/or.2013.2308 PubMed DOI
Remy G., Risco A. M., Inesta-Vaquera F. A., Gonzalez-Teran B., Sabio G., Davis R. J., et al. (2010). Differential activation of p38MAPK isoforms by MKK6 and MKK3. Cell. Signal. 22 660–667. 10.1016/j.cellsig.2009.11.020 PubMed DOI
Rossant J. (2016). Making the mouse blastocyst: past, present, and future. Curr. Top. Dev. Biol. 117 275–288. 10.1016/bs.ctdb.2015.11.015 PubMed DOI
Smith W. L., Dewitt D. L., Garavito R. M. (2000). Cyclooxygenases: structural, cellular, and molecular biology. Annu. Rev. Biochem. 69 145–182. 10.1146/annurev.biochem.69.1.145 PubMed DOI
Sun C., Denisenko O., Sheth B., Cox A., Lucas E. S., Smyth N. R., et al. (2015). Epigenetic regulation of histone modifications and Gata6 gene expression induced by maternal diet in mouse embryoid bodies in a model of developmental programming. BMC Dev. Biol. 15:3. 10.1186/s12861-015-0053-1 PubMed DOI PMC
Sun C., Velazquez M. A., Marfy-Smith S., Sheth B., Cox A., Johnston D. A., et al. (2014). Mouse early extra-embryonic lineages activate compensatory endocytosis in response to poor maternal nutrition. Development 141 1140–1150. 10.1242/dev.103952 PubMed DOI
Thamodaran V., Bruce A. W. (2016). p38 (Mapk14/11) occupies a regulatory node governing entry into primitive endoderm differentiation during preimplantation mouse embryo development. Open Biol. 6:160190. 10.1098/rsob.160190 PubMed DOI PMC
Trempolec N., Dave-Coll N., Nebreda A. R. (2013). SnapShot: p38 MAPK substrates. Cell 152:924-924.e1. PubMed
Vucetic M., Cormerais Y., Parks S. K., Pouyssegur J. (2017). The central role of amino acids in cancer redox homeostasis: vulnerability points of the cancer redox code. Front. Oncol. 7:319. 10.3389/fonc.2017.00319 PubMed DOI PMC
Webber J. L. (2010). Regulation of autophagy by p38alpha MAPK. Autophagy 6 292–293. 10.4161/auto.6.2.11128 PubMed DOI
Webber J. L., Tooze S. A. (2010). Coordinated regulation of autophagy by p38alpha MAPK through mAtg9 and p38IP. EMBO J. 29 27–40. 10.1038/emboj.2009.321 PubMed DOI PMC
Wu X. N., Wang X. K., Wu S. Q., Lu J., Zheng M., Wang Y. H., et al. (2011). Phosphorylation of raptor by p38beta participates in arsenite-induced mammalian target of rapamycin complex 1 (mTORC1) activation. J. Biol. Chem. 286 31501–31511. 10.1074/jbc.M111.233122 PubMed DOI PMC
Yamanaka Y., Lanner F., Rossant J. (2010). FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development 137 715–724. 10.1242/dev.043471 PubMed DOI