DDX21 is a p38-MAPK-sensitive nucleolar protein necessary for mouse preimplantation embryo development and cell-fate specification

. 2021 Jul ; 11 (7) : 210092. [epub] 20210714

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34255976

Successful navigation of the mouse preimplantation stages of development, during which three distinct blastocyst lineages are derived, represents a prerequisite for continued development. We previously identified a role for p38-mitogen-activated kinases (p38-MAPK) regulating blastocyst inner cell mass (ICM) cell fate, specifically primitive endoderm (PrE) differentiation, that is intimately linked to rRNA precursor processing, polysome formation and protein translation regulation. Here, we develop this work by assaying the role of DEAD-box RNA helicase 21 (DDX21), a known regulator of rRNA processing, in the context of p38-MAPK regulation of preimplantation mouse embryo development. We show nuclear DDX21 protein is robustly expressed from the 16-cell stage, becoming exclusively nucleolar during blastocyst maturation, a localization dependent on active p38-MAPK. siRNA-mediated clonal Ddx21 knockdown within developing embryos is associated with profound cell-autonomous and non-autonomous proliferation defects and reduced blastocyst volume, by the equivalent peri-implantation blastocyst stage. Moreover, ICM residing Ddx21 knockdown clones express the EPI marker NANOG but rarely express the PrE differentiation marker GATA4. These data contribute further significance to the emerging importance of lineage-specific translation regulation, as identified for p38-MAPK, during mouse preimplantation development.

Zobrazit více v PubMed

Chazaud C, Yamanaka Y. 2016. Lineage specification in the mouse preimplantation embryo. Development 143, 1063-1074. (10.1242/dev.128314) PubMed DOI

Płusa B, Piliszek A. 2020. Common principles of early mammalian embryo self-organisation. Development 147, dev183079. (10.1242/dev.183079) PubMed DOI

Shahbazi MN. 2020. Mechanisms of human embryo development: from cell fate to tissue shape and back. Development 147, dev190629. (10.1242/dev.190629) PubMed DOI PMC

Alberio R. 2020. Regulation of cell fate decisions in early mammalian embryos. Annu. Rev. Anim. Biosci. 8, 377-393. (10.1146/annurev-animal-021419-083841) PubMed DOI

Ryan AQ, Chan CJ, Graner F, Hiiragi T. 2019. Lumen expansion facilitates epiblast-primitive endoderm fate specification during mouse blastocyst formation. Dev. Cell 51, 684-697. (10.1016/j.devcel.2019.10.011) PubMed DOI PMC

Maître J-L, Niwayama R, Turlier H, Nédélec F, Hiiragi T. 2015. Pulsatile cell-autonomous contractility drives compaction in the mouse embryo. Nat. Cell Biol. 17, 849-855. (10.1038/ncb3185) PubMed DOI

Chan CJ, Costanzo M, Ruiz-Herrero T, Mönke G, Petrie RJ, Bergert M, Diz-Munoz A, Mahadevan L, Hiiragi T. 2019. Hydraulic control of mammalian embryo size and cell fate. Nature 571, 112-116. (10.1038/s41586-019-1309-x) PubMed DOI

Corsini NS, Peer AM, Moeseneder P, Roiuk M, Burkard TR, Theussl HC, Moll I, Knoblich JA. 2018. Coordinated control of mRNA and rRNA processing controls embryonic stem cell pluripotency and differentiation. Cell Stem Cell 22, 543-558. (10.1016/j.stem.2018.03.002) PubMed DOI

Bulut-Karslioglu A, Biechele S, Jin H, Macrae TA, Hejna M, Gertsenstein M, Song JS, Ramalho-Santos M. 2016. Inhibition of mTOR induces a paused pluripotent state. Nature 540, 119-123. (10.1038/nature20578) PubMed DOI PMC

Bulut-Karslioglu A, et al. 2018. The transcriptionally permissive chromatin state of embryonic stem cells is acutely tuned to translational output. Cell Stem Cell 22, 369-383. (10.1016/j.stem.2018.02.004) PubMed DOI PMC

Bora P, et al. 2021. p38-MAPK-mediated translation regulation during early blastocyst development is required for primitive endoderm differentiation in mice. Commun. Biol. 4, 788. (10.1038/s42003-021-02290-z) PubMed DOI PMC

Thamodaran V, Bruce AW. 2016. p38 (Mapk14/11) occupies a regulatory node governing entry into primitive endoderm differentiation during preimplantation mouse embryo development. Open Biol. 6, 15034. (10.1098/rsob.160190) PubMed DOI PMC

Bora P, Thamodaran V, Šušor A, Bruce AW. 2019. p38-mitogen activated kinases mediate a developmental regulatory response to amino acid depletion and associated oxidative stress in mouse blastocyst embryos. Front. Cell Dev. Biol. 7, 276. (10.3389/fcell.2019.00276) PubMed DOI PMC

Bessonnard S, Vandormael-Pournin S, Coqueran S, Cohen-Tannoudji M, Artus J. 2019. PDGF Signaling in primitive endoderm cell survival is mediated by PI3 K-mTOR through p53-independent mechanism. Stem Cells 37, 888-898. (10.1002/stem.3008) PubMed DOI

Natale DR, Paliga AJM, Beier F, D'Souza SJA, Watson AJ. 2004. p38 MAPK signaling during murine preimplantation development. Dev. Biol. 268, 76-88. (10.1016/j.ydbio.2003.12.011) PubMed DOI

Bell CE, Watson AJ. 2013. p38 MAPK regulates cavitation and tight junction function in the mouse blastocyst. PLoS ONE 8, e59528. (10.1371/journal.pone.0059528) PubMed DOI PMC

Paliga AJM, Natale DR, Watson AJ. 2005. p38 mitogen-activated protein kinase (MAPK) first regulates filamentous actin at the 8-16-cell stage during preimplantation development. Biol. Cell 97, 629-640. (10.1042/BC20040146) PubMed DOI

Mori S, Bernardi R, Laurent A, Resnati M, Crippa A, Gabrieli A, Keough R, Gonda TJ, Blasi F. 2012. Myb-binding protein 1A (MYBBP1A) is essential for early embryonic development, controls cell cycle and mitosis, and acts as a tumor suppressor. PLoS ONE 7, e39723. (10.1371/journal.pone.0039723) PubMed DOI PMC

Hochstatter J, et al. 2012. Myb-binding protein 1a (Mybbp1a) regulates levels and processing of pre-ribosomal RNA. J. Biol. Chem. 287, 24 365-24 377. (10.1074/jbc.M111.303719) PubMed DOI PMC

Calo E, Flynn RA, Martin L, Spitale RC, Chang HY, Wysocka J. 2015. RNA helicase DDX21 coordinates transcription and ribosomal RNA processing. Nature 518, 249-253. (10.1038/nature13923) PubMed DOI PMC

Yang H, Zhou J, Ochs RL, Henning D, Jin R, Valdez BC. 2003. Down-regulation of RNA helicase II/Gu results in the depletion of 18 and 28 S rRNAs in Xenopus oocyte. J. Biol. Chem. 278, 38 847-38 859. (10.1074/jbc.M302258200) PubMed DOI

Henning D, So RB, Jin R, Lau LF, Valdez BC. 2003. Silencing of RNA helicase II/Gualpha inhibits mammalian ribosomal RNA production. J. Biol. Chem. 278, 52 307-52 314. (10.1074/jbc.M310846200) PubMed DOI

Romanova L, Grand A, Zhang L, Rayner S, Katoku-Kikyo N, Kellner S, Kikyo N. 2009. Critical role of nucleostemin in pre-rRNA processing. J. Biol. Chem. 284, 4968-4977. (10.1074/jbc.M804594200) PubMed DOI PMC

Calo E, et al. 2018. Tissue-selective effects of nucleolar stress and rDNA damage in developmental disorders. Nature 554, 112-117. (10.1038/nature25449) PubMed DOI PMC

Santoriello C, et al. 2020. RNA helicase DDX21 mediates nucleotide stress responses in neural crest and melanoma cells. Nat. Cell Biol. 22, 372-379. (10.1038/s41556-020-0493-0) PubMed DOI PMC

Xing Y-H, et al. 2017. SLERT regulates DDX21 rings associated with Pol I transcription. Cell 169, 664-678. (10.1016/j.cell.2017.04.011) PubMed DOI

Zhang Y, Baysac KC, Yee L-F, Saporita AJ, Weber JD. 2014. Elevated DDX21 regulates c-Jun activity and rRNA processing in human breast cancers. Breast Cancer Res. 16, 449. (10.1186/s13058-014-0449-z) PubMed DOI PMC

Song C, Hotz-Wagenblatt A, Voit R, Grummt I. 2017. SIRT7 and the DEAD-box helicase DDX21 cooperate to resolve genomic R loops and safeguard genome stability. Genes Dev. 31, 1370-1381. (10.1101/gad.300624.117) PubMed DOI PMC

Qu J, Bishop JM. 2012. Nucleostemin maintains self-renewal of embryonic stem cells and promotes reprogramming of somatic cells to pluripotency. J. Cell Biol. 197, 731-745. (10.1083/jcb.201103071) PubMed DOI PMC

Farley-Barnes KI, Ogawa LM, Baserga SJ. 2019. Ribosomopathies: old concepts, new controversies. Trends Genet. 35, 754-767. (10.1016/j.tig.2019.07.004) PubMed DOI PMC

Mills EW, Green R. 2017. Ribosomopathies: there's strength in numbers. Science 358, aan2755. (10.1126/science.aan2755) PubMed DOI

De Wever V, Lloyd DC, Nasa I, Nimick M, Trinkle-Mulcahy L, Gourlay R, Morrice N, Moorhead GB. 2012. Isolation of human mitotic protein phosphatase complexes: identification of a complex between protein phosphatase 1 and the RNA helicase Ddx21. PLoS ONE 7, e39510. (10.1371/journal.pone.0039510) PubMed DOI PMC

Holder J, Poser E, Barr FA. 2019. Getting out of mitosis: spatial and temporal control of mitotic exit and cytokinesis by PP1 and PP2A. FEBS Lett. 593, 2908-2924. (10.1002/1873-3468.13595) PubMed DOI

Zhang B, et al. 2016. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature 537, 553-557. (10.1038/nature19361) PubMed DOI

Wang C, et al. 2018. Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development. Nat. Cell Biol. 20, 620-631. (10.1038/s41556-018-0093-4) PubMed DOI

Beekman C, Nichane M, De Clercq S, Maetens M, Floss T, Wurst W, Bellefroid E, Marine JC. 2006. Evolutionarily conserved role of nucleostemin: controlling proliferation of stem/progenitor cells during early vertebrate development. Mol. Cell. Biol. 26, 9291-9301. (10.1128/MCB.01183-06) PubMed DOI PMC

Zhu Q, Yasumoto H, Tsai RYL. 2006. Nucleostemin delays cellular senescence and negatively regulates TRF1 protein stability. Mol. Cell. Biol. 26, 9279-9290. (10.1128/MCB.00724-06) PubMed DOI PMC

Strumpf D, Mao CA, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F, Rossant J. 2005. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132, 2093-2102. (10.1242/dev.01801) PubMed DOI

Canovas B, Nebreda AR. 2021. Diversity and versatility of p38 kinase signalling in health and disease. Nat. Rev. Mol. Cell Biol. 22, 346-366. (10.1038/s41580-020-00322-w) PubMed DOI PMC

Kuijk EW, van Tol LT, Van de Velde H, Wubbolts R, Welling M, Geijsen N, Roelen BA. 2012. The roles of FGF and MAP kinase signaling in the segregation of the epiblast and hypoblast cell lineages in bovine and human embryos. Development 139, 871-882. (10.1242/dev.071688) PubMed DOI PMC

Roode M, Blair K, Snell P, Elder K, Marchant S, Smith A, Nichols J. 2012. Human hypoblast formation is not dependent on FGF signalling. Dev. Biol. 361, 358-363. (10.1016/j.ydbio.2011.10.030) PubMed DOI PMC

Messerschmidt DM, Kemler R. 2010. Nanog is required for primitive endoderm formation through a non-cell autonomous mechanism. Dev. Biol. 344, 129-137. (10.1016/j.ydbio.2010.04.020) PubMed DOI

Kang M, Garg V, Hadjantonakis A. 2017. Lineage establishment and progression within the inner cell mass of the mouse blastocyst requires FGFR1 and FGFR2. Dev. Cell 41, 496-510. (10.1016/j.devcel.2017.05.003) PubMed DOI PMC

Molotkov A, Mazot P, Brewer JR, Cinalli RM, Soriano P. 2017. Distinct requirements for FGFR1 and FGFR2 in primitive endoderm development and exit from pluripotency. Dev. Cell 41, 511-526. (10.1016/j.devcel.2017.05.004) PubMed DOI PMC

Ohnishi Y, et al. 2014. Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages. Nat. Cell Biol. 16, 27-37. (10.1038/ncb2881) PubMed DOI PMC

Wicklow E, Blij S, Frum T, Hirate Y, Lang RA, Sasaki H, Ralston A. 2014. HIPPO pathway members restrict SOX2 to the inner cell mass where it promotes ICM fates in the mouse blastocyst. PLoS Genet. 10, e1004618. (10.1371/journal.pgen.1004618) PubMed DOI PMC

van Sluis M, McStay B. 2019. Nucleolar DNA double-strand break responses underpinning rDNA genomic stability. Trends Genet. 35, 743-753. (10.1016/j.tig.2019.07.001) PubMed DOI

Fulka H, Aoki F. 2016. Nucleolus precursor bodies and ribosome biogenesis in early mammalian embryos: old theories and new discoveries. Biol. Reprod. 94, 143. (10.1095/biolreprod.115.136093) PubMed DOI

Courtois A, Schuh M, Ellenberg J, Hiiragi T. 2012. The transition from meiotic to mitotic spindle assembly is gradual during early mammalian development. J. Cell Biol. 198, 357-370. (10.1083/jcb.201202135) PubMed DOI PMC

Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. 2015. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 43, D512-D520. (10.1093/nar/gku1267) PubMed DOI PMC

Bardwell L. 2006. Mechanisms of MAPK signalling specificity. Biochem. Soc. Trans. 34, 837-841. (10.1042/BST0340837) PubMed DOI PMC

Posfai E, Petropoulos S, de Barros FR, Schell JP, Jurisica I, Sandberg R, Lanner F, Rossant J. 2017. Position- and Hippo signaling-dependent plasticity during lineage segregation in the early mouse embryo. eLife 6, e22906. (10.7554/eLife.22906) PubMed DOI PMC

Bessonnard S, Coqueran S, Vandormael-Pournin S, Dufour A, Artus J, Cohen-Tannoudji M. 2017. ICM conversion to epiblast by FGF/ERK inhibition is limited in time and requires transcription and protein degradation. Sci. Rep. 7, 12285. (10.1038/s41598-017-12120-0) PubMed DOI PMC

Perez-Riverol Y, et al. 2019. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442-D450. (10.1093/nar/gky1106) PubMed DOI PMC

Schindelin J, et al. 2012. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676-682. (10.1038/nmeth.2019) PubMed DOI PMC

McCloy RA, Rogers S, Caldon CE, Lorca T, Castro A, Burgess A. 2014. Partial inhibition of Cdk1 in G2 phase overrides the SAC and decouples mitotic events. Cell Cycle 13, 1400-1412. (10.4161/cc.28401) PubMed DOI PMC

Potapova TA, Sivakumar S, Flynn JN, Li R, Gorbsky GJ. 2011. Mitotic progression becomes irreversible in prometaphase and collapses when Wee1 and Cdc25 are inhibited. Mol. Biol. Cell 22, 1191-1206. (10.1091/mbc.e10-07-0599) PubMed DOI PMC

Bora P, Gahurova L, Hauserova A, Stiborova M, Collier R, Potěšil D, Zdráhal Z, Bruce AW. 2021. DDX21 Is a p38-MAPK sensitive nucleolar protein necessary for mouse preimplantation embryo development and cell-fate specification. Figshare. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...