Association of Elite Sports Status with Gene Variants of Peroxisome Proliferator Activated Receptors and Their Transcriptional Coactivator

. 2019 Dec 25 ; 21 (1) : . [epub] 20191225

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31881714

Grantová podpora
UNCE/HUM/032 Univerzita Karlova v Praze
GACR GA19-12150S Grantová Agentura České Republiky

BACKGROUND: Although the scientific literature regarding sports genomics has grown during the last decade, some genes, such as peroxisome proliferator activated receptors (PPARs), have not been fully described in terms of their role in achieving extraordinary sports performance. Therefore, the purpose of this systematic review was to determine which elite sports performance constraints are positively influenced by PPARs and their coactivators. METHODS: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were used, with a combination of PPAR and sports keywords. RESULTS: In total, 27 studies that referred to PPARs in elite athletes were included, where the Ala allele in PPARG rs1801282 was associated with strength and power elite athlete status in comparison to subelite athlete status. The C allele in PPARA rs4253778 was associated with soccer, and the G allele PPARA rs4253778 was associated with endurance elite athlete status. Other elite status endurance alleles were the Gly allele in PPARGC1A rs8192678 and the C allele PPARD rs2016520. CONCLUSIONS: PPARs can be used for estimating the potential to achieve elite status in human physical performance in strength and power, team, and aerobic sports disciplines. Carrying specific PPAR alleles can provide a partial benefit to achieving elite sports status, but does not preclude achieving elite status if they are absent.

Zobrazit více v PubMed

Semenova E.A., Fuku N., Ahmetov I.I. Sports, Exercise, and Nutritional Genomics. Elsevier Academic Press; London, UK: 2019. Genetic profile of elite endurance athletes; pp. 73–104.

Maciejewska-Skrendo A., Sawczuk M., Cięszczyk P., Ahmetov I.I. Sports, Exercise, and Nutritional Genomics. Elsevier Academic Press; London, UK: 2019. Genes and power athlete status; pp. 41–72.

Maciejewska-Skrendo A., Cięszczyk P., Chycki J., Sawczuk M., Smółka W. Genetic Markers Associated with Power Athlete Status. J. Hum. Kinet. 2019;68:17. doi: 10.2478/hukin-2019-0053. PubMed DOI PMC

Petr M., Stastny P., Zajac A., Tufano J.J., Maciejewska-Skrendo A. The Role of Peroxisome Proliferator-Activated Receptors and Their Transcriptional Coactivators Gene Variations in Human Trainability: A Systematic Review. Int. J. Mol. Sci. 2018;19:1472. doi: 10.3390/ijms19051472. PubMed DOI PMC

Valeeva E.V., Ahmetov I.I., Rees T. Psychogenetics and sports. Sports, Exercise, and Nutritional Genomics. Elsevier; Amsterdam, The Netherlands: 2019. pp. 147–165.

Kersten S., Desvergne B., Wahli W. Roles of PPARs in health and disease. Nature. 2000;405:421–424. doi: 10.1038/35013000. PubMed DOI

Pozzi A., Ibanez M.R., Gatica A.E., Yang S., Wei S., Mei S., Falck J.R., Capdevila J.H. Peroxisomal proliferator-activated receptor-α-dependent inhibition of endothelial cell proliferation and tumorigenesis. J. Biol. Chem. 2007;282:17685–17695. doi: 10.1074/jbc.M701429200. PubMed DOI

Dubuquoy L., Dharancy S., Nutten S., Pettersson S., Auwerx J., Desreumaux P. Role of peroxisome proliferator-activated receptor γ and retinoid X receptor heterodimer in hepatogastroenterological diseases. Lancet. 2002;360:1410–1418. doi: 10.1016/S0140-6736(02)11395-X. PubMed DOI

Cabrero A., Laguna J., Vazquez M. Peroxisome proliferator-activated receptors and the control of inflammation. Curr. Drug Targets-Inflamm. Allergy. 2002;1:243–248. doi: 10.2174/1568010023344616. PubMed DOI

Leonardini A., Laviola L., Perrini S., Natalicchio A., Giorgino F. Cross-talk between PPAR and insulin signaling and modulation of insulin sensitivity. PPAR Res. 2009 doi: 10.1155/2009/818945. PubMed DOI PMC

Yessoufou A., Wahli W. Multifaceted roles of peroxisome proliferator-activated receptors (PPARs) at the cellular and whole organism levels. Swiss Med Wkly. 2010;140 doi: 10.4414/smw.2010.13071. PubMed DOI

Kliewer S., Forman B., Blumberg B., Ong E., Borgmeyer U., Mangelsdorf D., Umesono K., Evans R.M. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc. Natl. Acad. Sci. USA. 1994;91:7355–7359. doi: 10.1073/pnas.91.15.7355. PubMed DOI PMC

Manickam R., Wahli W. Roles of peroxisome proliferator-activated receptor β/δ in skeletal muscle physiology. Biochimie. 2017;136:42–48. doi: 10.1016/j.biochi.2016.11.010. PubMed DOI

Cagnin S., Chemello F., Ahmetov I.I. Sports, Exercise, and Nutritional Genomics. Elsevier Academic Press; London, UK: 2019. Genes and response to aerobic training; pp. 169–188.

Gleyzer N., Scarpulla R.C. PGC-1-related coactivator (PRC), a sensor of metabolic stress, orchestrates a redox-sensitive program of inflammatory gene expression. J. Biol. Chem. 2011;286:39715–39725. doi: 10.1074/jbc.M111.291575. PubMed DOI PMC

Handschin C., Spiegelman B.M. Peroxisome proliferator-activated receptor γ coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr. Rev. 2006;27:728–735. doi: 10.1210/er.2006-0037. PubMed DOI

Franks P.W., Christophi C.A., Jablonski K.A., Billings L.K., Delahanty L.M., Horton E.S., Knowler W.C., Florez J.C., Diabetes Prevention Program Research Group Common variation at PPARGC1A/B and change in body composition and metabolic traits following preventive interventions: The Diabetes Prevention Program. Diabetologia. 2014;57:485–490. doi: 10.1007/s00125-013-3133-4. PubMed DOI PMC

Ahmetov I.I., Williams A.G., Popov D.V., Lyubaeva E.V., Hakimullina A.M., Fedotovskaya O.N., Mozhayskaya I.A., Vinogradova O.L., Astratenkova I.V., Montgomery H.E., et al. The combined impact of metabolic gene polymorphisms on elite endurance athlete status and related phenotypes. Hum. Gen. 2009;126:751–761. doi: 10.1007/s00439-009-0728-4. PubMed DOI

Ahmetov I.I., Popov D.V., Mozhaiskaia I.A., Missina S.S., Astratenkova I.V., Vinogradova O.L., Rogozkin V.A. Association of regulatory genes polymorphisms with aerobic and anaerobic performance of athletes. Rossiǐskii fiziologicheskiǐ zhurnal imeni IM Sechenova/Rossiǐskaia akademiia nauk. 2007;93:837–843. PubMed

Franks P.W., Barroso I., Luan J., Ekelund U., Crowley V.E.F., Brage S., Sandhu M.S., Jakes R.W., Middelberg R.P., Harding A.H., et al. PGC-1α Genotype Modifies the Association of Volitional Energy Expenditure with V̇O2max. Med. Sci. Sports. Exerc. 2003;35:1998–2004. doi: 10.1249/01.MSS.0000099109.73351.81. PubMed DOI

Petr M., Št’Astný P., Pecha O., Šteffl M., Šeda O., Kohlíková E. PPARA intron polymorphism associated with power performance in 30-s anaerobic wingate test. PLoS ONE. 2014;9:e107171. doi: 10.1371/journal.pone.0107171. PubMed DOI PMC

Tharabenjasin P., Pabalan N., Jarjanazi H. Association of PPARGC1A Gly428Ser (rs8192678) polymorphism with potential for athletic ability and sports performance: A meta-analysis. PLoS ONE. 2019;14:e0200967. doi: 10.1371/journal.pone.0200967. PubMed DOI PMC

Mathai A.S., Bonen A., Benton C.R., Robinson D.L., Graham T.E. Rapid exercise-induced changes in PGC-1α mRNA and protein in human skeletal muscle. J. Appl. Physiol. 2008;105:1098–1105. doi: 10.1152/japplphysiol.00847.2007. PubMed DOI

Nezhad F.Y., Verbrugge S.A.J., Schönfelder M., Becker L., De Angelis M.H., Wackerhage H. Genes whose gain or loss-of-function increases endurance performance in Mice: A systematic literature review. Front. Physiol. 2019;10:262. doi: 10.3389/fphys.2019.00262. PubMed DOI PMC

Ahmetov I.I., Mozhayskaya I.A., Flavell D.M., Astratenkova I.V., Komkova A.I., Lyubaeva E.V., Tarakin P.P., Shenkman B.S., Vdovina A.B., Netreba A.I., et al. PPARα gene variation and physical performance in Russian athletes. Eur. J. Appl. Physiol. 2006;97:103–108. doi: 10.1007/s00421-006-0154-4. PubMed DOI

Ahmetov I.I., Astratenkova I.V., Rogozkin V.A. Association of a PPARD polymorphism with human physical performance. Mol. Biol. 2007;41:776–780. doi: 10.1134/S002689330705010X. PubMed DOI

Ahmetov I.I., Mozhayskaya I.A., Lyubaeva E.V., Vinogradova O.L., Rogozkin V.A. PPARG Gene polymorphism and locomotor activity in humans. Bull. Exp. Biol. Med. 2008;146:630–632. doi: 10.1007/s10517-009-0364-y. PubMed DOI

Cieszczyk P., Sawczuk M., Maciejewska A., Ficek K., Eider A. Variation in peroxisome proliferator activated receptor α gene in elite combat athletes. Eur. J. Sport. Sci. 2011;11:119–123. doi: 10.1080/17461391.2010.487120. DOI

Cocci P., Pistolesi L., Guercioni M., Belli L., Carli D., Palermo F.A. Genetic Variants and Mixed Sport Disciplines: A Comparison among Soccer, Combat and Motorcycle Athletes. Ann. Appl. Sport. Sci. 2019;7:1–9. doi: 10.29252/aassjournal.7.1.1. PubMed DOI

Drozdovska S.B., Dosenko V.E., Ahmetov I.I., Ilyin V.N. The association of gene polymorphisms with athlete status in Ukrainians. Biol. Sport. 2013;30:163–167. doi: 10.5604/20831862.1059168. PubMed DOI PMC

Eynon N., Ruiz J.R., Meckel Y., Morán M., Lucia A. Mitochondrial biogenesis related endurance genotype score and sports performance in athletes. Mitochondrion. 2011;11:64–69. doi: 10.1016/j.mito.2010.07.004. PubMed DOI

Eynon N., Meckel Y., Sagiv M., Yamin C., Amir R., Sagiv M., Goldhammer E., Duarte J.A., Oliveira J. Do PPARGC1A and PPARα polymorphisms influence sprint or endurance phenotypes? Scand. J. Med. Sci. Sports. 2010;20:e145–e150. doi: 10.1111/j.1600-0838.2009.00930.x. PubMed DOI

Egorova E.S., Borisova A.V., Mustafina L.J., Arkhipova A.A., Gabbasov R.T., Druzhevskaya A.M., Astratenkova I.V., Ahmetov I.I. The polygenic profile of Russian football players. J. Sports. Sci. 2014;32:1286–1293. doi: 10.1080/02640414.2014.898853. PubMed DOI

Ginevičiene V., Pranckevičiene E., Milašius K., Kučinskas V. Gene variants related to the power performance of the Lithuanian athletes. Cen. Eur. J. Biol. 2011;6:48–57. doi: 10.2478/s11535-010-0102-5. DOI

Eynon N., Alves A.J., Yamin C., Meckel Y. PPARA intron 1 A/C polymorphism and elite athlete status. Eur. J. Sport Sci. 2011;11:177–181. doi: 10.1080/17461391.2010.499975. DOI

Gineviciene V., Jakaitiene A., Tubelis L., Kucinskas V. Variation in the ACE, PPARGC1A and PPARA genes in Lithuanian football players. Eur. J. Sport Sci. 2014;14:S289–S295. doi: 10.1080/17461391.2012.691117. PubMed DOI

Gineviciene V., Jakaitiene A., Aksenov M.O., Aksenova A.V., Druzhevskaya A.M., Astratenkova I.V., Egorova E.S., Gabdrakhmanova L.J., Tubelis L., Kucinskas V., et al. Association analysis of ACE, ACTN3 and PPARGC1A gene polymorphisms in two cohorts of European strength and power athletes. Biol. Sport. 2016;33:199–206. doi: 10.5604/20831862.1201051. PubMed DOI PMC

Gonzalez-Freire M., Santiago C., Verde Z., Lao J.I., Olivan J., Gallego F.G., Lucia A. Unique among unique. Is it genetically determined? Br. J. Sports Med. 2009;43:307–309. doi: 10.1136/bjsm.2008.049809. PubMed DOI

Grealy R., Herruer J., Smith C.L.E., Hiller D., Haseler L.J., Griffiths L.R. Evaluation of a 7-gene genetic profile for athletic endurance phenotype in ironman championship triathletes. PLoS ONE. 2015;10:e0145171. doi: 10.1371/journal.pone.0145171. PubMed DOI PMC

Lucia A., Gomez-Gallego F., Barroso I., Rabadan M., Bandres F., San Juan A.F., Chicharro J.L., Ekelund U., Brage S., Earnest C.P., et al. PPARGC1A genotype (Gly482Ser) predicts exceptional endurance capacity in European men. J. Appl. Physiol. (1985) 2005;99:344–348. doi: 10.1152/japplphysiol.00037.2005. PubMed DOI

Maciejewska A., Sawczuk M., Cieszczyk P. Variation in the PPARalpha gene in Polish rowers. J. Sci. Med. Sport. 2011;14:58–64. doi: 10.1016/j.jsams.2010.05.006. PubMed DOI

Maciejewska A., Sawczuk M., Cieszczyk P., Mozhayskaya I.A., Ahmetov I.I. The PPARGC1A gene Gly482Ser in Polish and Russian athletes. J. Sports Sci. 2012;30:101–113. doi: 10.1080/02640414.2011.623709. PubMed DOI

Maciejewska-Karlowska A., Sawczuk M., Cieszczyk P., Zarebska A., Sawczyn S. Association between the Pro12Ala Polymorphism of the Peroxisome Proliferator-Activated Receptor Gamma Gene and Strength Athlete Status. PLoS ONE. 2013;8:e67172. doi: 10.1371/journal.pone.0067172. PubMed DOI PMC

Maciejewska-Karlowska A., Hanson E.D., Sawczuk M., Cieszczyk P., Eynon N. Genomic haplotype within the Peroxisome Proliferator-Activated Receptor Delta (PPARD) gene is associated with elite athletic status. Scand. J. Med. Sci. Sports. 2014;24:e148–e155. doi: 10.1111/sms.12126. PubMed DOI

Muniesa C.A., González-Freire M., Santiago C., Lao J.I., Buxens A., Rubio J.C., Martín M.A., Arenas J., Gomez-Gallego F., Lucia A. World-class performance in lightweight rowing: Is it genetically influenced? A comparison with cyclists, runners and non-athletes. Br. J. Sports Med. 2010;44:898–901. doi: 10.1136/bjsm.2008.051680. PubMed DOI

Peplonska B., Adamczyk J.G., Siewierski M., Safranow K., Maruszak A., Sozanski H., Gajewski A.K., Zekanowski C. Genetic variants associated with physical and mental characteristics of the elite athletes in the Polish population. Scand. J. Med. Sci. Sports. 2017;27:788–800. doi: 10.1111/sms.12687. PubMed DOI

Santiago C., Ruiz J.R., Muniesa C.A., González-Freire M., Gómez-Gallego F., Lucia A. Does the polygenic profile determine the potential for becoming a world-class athlete? Insights from the sports of rowing. Scand. J. Med. Sci. Sports. 2010;20:e188–e194. doi: 10.1111/j.1600-0838.2009.00943.x. PubMed DOI

Tsianos G.I., Evangelou E., Boot A., Carola Zillikens M., Van Meurs J.B.J., Uitterlinden A.G., Ioannidis J.P. Associations of polymorphisms of eight muscle—Or metabolism-related genes with performance in Mount Olympus marathon runners. J. Appl. Physiol. 2010;108:567–574. doi: 10.1152/japplphysiol.00780.2009. PubMed DOI

Tural E., Kara N., Agaoglu S.A., Elbistan M., Tasmektepligil M.Y., Imamoglu O. PPAR-α and PPARGC1A gene variants have strong effects on aerobic performance of Turkish elite endurance athletes. Mol. Biol. Rep. 2014;41:5799–5804. doi: 10.1007/s11033-014-3453-6. PubMed DOI

Yvert T., Miyamoto-Mikami E., Murakami H., Miyachi M., Kawahara T., Fuku N. Lack of replication of associations between multiple genetic polymorphisms and endurance athlete status in Japanese population. Physiol. Rep. 2016;4:e13003. doi: 10.14814/phy2.13003. PubMed DOI PMC

Eynon N., Birk R., Meckel Y., Lucia A., Nemet D., Eliakim A. Physiological variables and mitochondrial-related genotypes of an athlete who excels in both short and long-distance running. Mitochondrion. 2011;11:774–777. doi: 10.1016/j.mito.2011.05.009. PubMed DOI

Lucia A., Oliván J., Gómez-Gallego F., Santiago C., Montil M., Foster C. Citius and longius (faster and longer) with no α-actinin-3 in skeletal muscles? Br. J. Sports Med. 2007;41:616–617. doi: 10.1136/bjsm.2006.034199. PubMed DOI PMC

Aksenov M.O., Ilyin A.B. Training process design in weightlifting sports customized to genetic predispositions. Teoriya i Praktika Fizicheskoy Kultury. 2017;6:75–77.

Stefan N., Thamer C., Staiger H., Machicao F., Machann J., Schick F., Venter C., Niess A., Laakso M., Fritsche A., et al. Genetic variations in PPARD and PPARGC1A determine mitochondrial function and change in aerobic physical fitness and insulin sensitivity during lifestyle intervention. J. Clin. Endocrin. Metabol. 2007;92:1827–1833. doi: 10.1210/jc.2006-1785. PubMed DOI

Steinbacher P., Feichtinger R.G., Kedenko L., Kedenko I., Reinhardt S., Schönauer A.L., Leitner I., Sänger A.M., Stoiber W., Kofler B., et al. The single nucleotide polymorphism Gly482Ser in the PGC-1α gene impairs exercise-induced slow-twitch muscle fibre transformation in humans. PLoS ONE. 2015;10:e0123881. doi: 10.1371/journal.pone.0123881. PubMed DOI PMC

Ring-Dimitriou S., Kedenko L., Kedenko I., Feichtinger R.G., Steinbacher P., Stoiber W., Forster H., Felder T.K., Muller E., Kolfer B. Does genetic variation in PPARGC1A affect exercise-induced changes in ventilatory thresholds and metabolic syndrome? J. Exerc. Physiol. Online. 2014;17:1–18.

Hautala A.J., Leon A.S., Skinner J.S., Rao D.C., Bouchard C., Rankinen T. Peroxisome proliferator-activated receptor-delta polymorphisms are associated with physical performance and plasma lipids: The HERITAGE Family Study. Am. J. Physiol. Heart Circ. Physiol. 2007;292:H2498–H2505. doi: 10.1152/ajpheart.01092.2006. PubMed DOI

Zhang S.-L., Lu W.-S., Yan L., Wu M.-C., Xu M.-T., Chen L.-H., Cheng H. Association between peroxisome proliferator-activated receptor-gamma coactivator-1alpha gene polymorphisms and type 2 diabetes in southern Chinese population: Role of altered interaction with myocyte enhancer factor 2C. Chin. Med. J. 2007;120:1878–1885. doi: 10.1097/00029330-200711010-00005. PubMed DOI

Moher D., Schulz K.F., Simera I., Altman D.G. Guidance for developers of health research reporting guidelines. PLoS Med. 2010;7:e1000217. doi: 10.1371/journal.pmed.1000217. PubMed DOI PMC

Von Elm E., Altman D.G., Egger M., Pocock S.J., Gøtzsche P.C., Vandenbroucke J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Prev. Med. 2007;45:247–251. doi: 10.1016/j.ypmed.2007.08.012. PubMed DOI

Swann C., Moran A., Piggott D. Defining elite athletes: Issues in the study of expert performance in sports psychology. Psych. Sport Exerc. 2015;16:3–14. doi: 10.1016/j.psychsport.2014.07.004. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Speed and power-related gene polymorphisms associated with playing position in elite soccer players

. 2022 Mar ; 39 (2) : 355-366. [epub] 20210421

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...