Association of Elite Sports Status with Gene Variants of Peroxisome Proliferator Activated Receptors and Their Transcriptional Coactivator
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
UNCE/HUM/032
Univerzita Karlova v Praze
GACR GA19-12150S
Grantová Agentura České Republiky
PubMed
31881714
PubMed Central
PMC6981913
DOI
10.3390/ijms21010162
PII: ijms21010162
Knihovny.cz E-zdroje
- Klíčová slova
- PPAR, adaptation, aerobic training, anaerobic training, endurance training, genetic predisposition, human performance, muscle fibers, power, strength training,
- MeSH
- alely MeSH
- frekvence genu MeSH
- fyzická vytrvalost MeSH
- genetická variace MeSH
- lidé MeSH
- PPAR alfa genetika MeSH
- PPAR gama genetika MeSH
- PPARGC1A genetika MeSH
- sportovci MeSH
- sportovní výkon MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- PPAR alfa MeSH
- PPAR gama MeSH
- PPARGC1A MeSH
BACKGROUND: Although the scientific literature regarding sports genomics has grown during the last decade, some genes, such as peroxisome proliferator activated receptors (PPARs), have not been fully described in terms of their role in achieving extraordinary sports performance. Therefore, the purpose of this systematic review was to determine which elite sports performance constraints are positively influenced by PPARs and their coactivators. METHODS: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were used, with a combination of PPAR and sports keywords. RESULTS: In total, 27 studies that referred to PPARs in elite athletes were included, where the Ala allele in PPARG rs1801282 was associated with strength and power elite athlete status in comparison to subelite athlete status. The C allele in PPARA rs4253778 was associated with soccer, and the G allele PPARA rs4253778 was associated with endurance elite athlete status. Other elite status endurance alleles were the Gly allele in PPARGC1A rs8192678 and the C allele PPARD rs2016520. CONCLUSIONS: PPARs can be used for estimating the potential to achieve elite status in human physical performance in strength and power, team, and aerobic sports disciplines. Carrying specific PPAR alleles can provide a partial benefit to achieving elite sports status, but does not preclude achieving elite status if they are absent.
Faculty of Physical Education and Sport Charles University 162 52 Prague Czech Republic
Faulty of Physical Education Gdansk University of Physical Education and Sport 80 336 Gdansk Poland
Zobrazit více v PubMed
Semenova E.A., Fuku N., Ahmetov I.I. Sports, Exercise, and Nutritional Genomics. Elsevier Academic Press; London, UK: 2019. Genetic profile of elite endurance athletes; pp. 73–104.
Maciejewska-Skrendo A., Sawczuk M., Cięszczyk P., Ahmetov I.I. Sports, Exercise, and Nutritional Genomics. Elsevier Academic Press; London, UK: 2019. Genes and power athlete status; pp. 41–72.
Maciejewska-Skrendo A., Cięszczyk P., Chycki J., Sawczuk M., Smółka W. Genetic Markers Associated with Power Athlete Status. J. Hum. Kinet. 2019;68:17. doi: 10.2478/hukin-2019-0053. PubMed DOI PMC
Petr M., Stastny P., Zajac A., Tufano J.J., Maciejewska-Skrendo A. The Role of Peroxisome Proliferator-Activated Receptors and Their Transcriptional Coactivators Gene Variations in Human Trainability: A Systematic Review. Int. J. Mol. Sci. 2018;19:1472. doi: 10.3390/ijms19051472. PubMed DOI PMC
Valeeva E.V., Ahmetov I.I., Rees T. Psychogenetics and sports. Sports, Exercise, and Nutritional Genomics. Elsevier; Amsterdam, The Netherlands: 2019. pp. 147–165.
Kersten S., Desvergne B., Wahli W. Roles of PPARs in health and disease. Nature. 2000;405:421–424. doi: 10.1038/35013000. PubMed DOI
Pozzi A., Ibanez M.R., Gatica A.E., Yang S., Wei S., Mei S., Falck J.R., Capdevila J.H. Peroxisomal proliferator-activated receptor-α-dependent inhibition of endothelial cell proliferation and tumorigenesis. J. Biol. Chem. 2007;282:17685–17695. doi: 10.1074/jbc.M701429200. PubMed DOI
Dubuquoy L., Dharancy S., Nutten S., Pettersson S., Auwerx J., Desreumaux P. Role of peroxisome proliferator-activated receptor γ and retinoid X receptor heterodimer in hepatogastroenterological diseases. Lancet. 2002;360:1410–1418. doi: 10.1016/S0140-6736(02)11395-X. PubMed DOI
Cabrero A., Laguna J., Vazquez M. Peroxisome proliferator-activated receptors and the control of inflammation. Curr. Drug Targets-Inflamm. Allergy. 2002;1:243–248. doi: 10.2174/1568010023344616. PubMed DOI
Leonardini A., Laviola L., Perrini S., Natalicchio A., Giorgino F. Cross-talk between PPAR and insulin signaling and modulation of insulin sensitivity. PPAR Res. 2009 doi: 10.1155/2009/818945. PubMed DOI PMC
Yessoufou A., Wahli W. Multifaceted roles of peroxisome proliferator-activated receptors (PPARs) at the cellular and whole organism levels. Swiss Med Wkly. 2010;140 doi: 10.4414/smw.2010.13071. PubMed DOI
Kliewer S., Forman B., Blumberg B., Ong E., Borgmeyer U., Mangelsdorf D., Umesono K., Evans R.M. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc. Natl. Acad. Sci. USA. 1994;91:7355–7359. doi: 10.1073/pnas.91.15.7355. PubMed DOI PMC
Manickam R., Wahli W. Roles of peroxisome proliferator-activated receptor β/δ in skeletal muscle physiology. Biochimie. 2017;136:42–48. doi: 10.1016/j.biochi.2016.11.010. PubMed DOI
Cagnin S., Chemello F., Ahmetov I.I. Sports, Exercise, and Nutritional Genomics. Elsevier Academic Press; London, UK: 2019. Genes and response to aerobic training; pp. 169–188.
Gleyzer N., Scarpulla R.C. PGC-1-related coactivator (PRC), a sensor of metabolic stress, orchestrates a redox-sensitive program of inflammatory gene expression. J. Biol. Chem. 2011;286:39715–39725. doi: 10.1074/jbc.M111.291575. PubMed DOI PMC
Handschin C., Spiegelman B.M. Peroxisome proliferator-activated receptor γ coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr. Rev. 2006;27:728–735. doi: 10.1210/er.2006-0037. PubMed DOI
Franks P.W., Christophi C.A., Jablonski K.A., Billings L.K., Delahanty L.M., Horton E.S., Knowler W.C., Florez J.C., Diabetes Prevention Program Research Group Common variation at PPARGC1A/B and change in body composition and metabolic traits following preventive interventions: The Diabetes Prevention Program. Diabetologia. 2014;57:485–490. doi: 10.1007/s00125-013-3133-4. PubMed DOI PMC
Ahmetov I.I., Williams A.G., Popov D.V., Lyubaeva E.V., Hakimullina A.M., Fedotovskaya O.N., Mozhayskaya I.A., Vinogradova O.L., Astratenkova I.V., Montgomery H.E., et al. The combined impact of metabolic gene polymorphisms on elite endurance athlete status and related phenotypes. Hum. Gen. 2009;126:751–761. doi: 10.1007/s00439-009-0728-4. PubMed DOI
Ahmetov I.I., Popov D.V., Mozhaiskaia I.A., Missina S.S., Astratenkova I.V., Vinogradova O.L., Rogozkin V.A. Association of regulatory genes polymorphisms with aerobic and anaerobic performance of athletes. Rossiǐskii fiziologicheskiǐ zhurnal imeni IM Sechenova/Rossiǐskaia akademiia nauk. 2007;93:837–843. PubMed
Franks P.W., Barroso I., Luan J., Ekelund U., Crowley V.E.F., Brage S., Sandhu M.S., Jakes R.W., Middelberg R.P., Harding A.H., et al. PGC-1α Genotype Modifies the Association of Volitional Energy Expenditure with V̇O2max. Med. Sci. Sports. Exerc. 2003;35:1998–2004. doi: 10.1249/01.MSS.0000099109.73351.81. PubMed DOI
Petr M., Št’Astný P., Pecha O., Šteffl M., Šeda O., Kohlíková E. PPARA intron polymorphism associated with power performance in 30-s anaerobic wingate test. PLoS ONE. 2014;9:e107171. doi: 10.1371/journal.pone.0107171. PubMed DOI PMC
Tharabenjasin P., Pabalan N., Jarjanazi H. Association of PPARGC1A Gly428Ser (rs8192678) polymorphism with potential for athletic ability and sports performance: A meta-analysis. PLoS ONE. 2019;14:e0200967. doi: 10.1371/journal.pone.0200967. PubMed DOI PMC
Mathai A.S., Bonen A., Benton C.R., Robinson D.L., Graham T.E. Rapid exercise-induced changes in PGC-1α mRNA and protein in human skeletal muscle. J. Appl. Physiol. 2008;105:1098–1105. doi: 10.1152/japplphysiol.00847.2007. PubMed DOI
Nezhad F.Y., Verbrugge S.A.J., Schönfelder M., Becker L., De Angelis M.H., Wackerhage H. Genes whose gain or loss-of-function increases endurance performance in Mice: A systematic literature review. Front. Physiol. 2019;10:262. doi: 10.3389/fphys.2019.00262. PubMed DOI PMC
Ahmetov I.I., Mozhayskaya I.A., Flavell D.M., Astratenkova I.V., Komkova A.I., Lyubaeva E.V., Tarakin P.P., Shenkman B.S., Vdovina A.B., Netreba A.I., et al. PPARα gene variation and physical performance in Russian athletes. Eur. J. Appl. Physiol. 2006;97:103–108. doi: 10.1007/s00421-006-0154-4. PubMed DOI
Ahmetov I.I., Astratenkova I.V., Rogozkin V.A. Association of a PPARD polymorphism with human physical performance. Mol. Biol. 2007;41:776–780. doi: 10.1134/S002689330705010X. PubMed DOI
Ahmetov I.I., Mozhayskaya I.A., Lyubaeva E.V., Vinogradova O.L., Rogozkin V.A. PPARG Gene polymorphism and locomotor activity in humans. Bull. Exp. Biol. Med. 2008;146:630–632. doi: 10.1007/s10517-009-0364-y. PubMed DOI
Cieszczyk P., Sawczuk M., Maciejewska A., Ficek K., Eider A. Variation in peroxisome proliferator activated receptor α gene in elite combat athletes. Eur. J. Sport. Sci. 2011;11:119–123. doi: 10.1080/17461391.2010.487120. DOI
Cocci P., Pistolesi L., Guercioni M., Belli L., Carli D., Palermo F.A. Genetic Variants and Mixed Sport Disciplines: A Comparison among Soccer, Combat and Motorcycle Athletes. Ann. Appl. Sport. Sci. 2019;7:1–9. doi: 10.29252/aassjournal.7.1.1. PubMed DOI
Drozdovska S.B., Dosenko V.E., Ahmetov I.I., Ilyin V.N. The association of gene polymorphisms with athlete status in Ukrainians. Biol. Sport. 2013;30:163–167. doi: 10.5604/20831862.1059168. PubMed DOI PMC
Eynon N., Ruiz J.R., Meckel Y., Morán M., Lucia A. Mitochondrial biogenesis related endurance genotype score and sports performance in athletes. Mitochondrion. 2011;11:64–69. doi: 10.1016/j.mito.2010.07.004. PubMed DOI
Eynon N., Meckel Y., Sagiv M., Yamin C., Amir R., Sagiv M., Goldhammer E., Duarte J.A., Oliveira J. Do PPARGC1A and PPARα polymorphisms influence sprint or endurance phenotypes? Scand. J. Med. Sci. Sports. 2010;20:e145–e150. doi: 10.1111/j.1600-0838.2009.00930.x. PubMed DOI
Egorova E.S., Borisova A.V., Mustafina L.J., Arkhipova A.A., Gabbasov R.T., Druzhevskaya A.M., Astratenkova I.V., Ahmetov I.I. The polygenic profile of Russian football players. J. Sports. Sci. 2014;32:1286–1293. doi: 10.1080/02640414.2014.898853. PubMed DOI
Ginevičiene V., Pranckevičiene E., Milašius K., Kučinskas V. Gene variants related to the power performance of the Lithuanian athletes. Cen. Eur. J. Biol. 2011;6:48–57. doi: 10.2478/s11535-010-0102-5. DOI
Eynon N., Alves A.J., Yamin C., Meckel Y. PPARA intron 1 A/C polymorphism and elite athlete status. Eur. J. Sport Sci. 2011;11:177–181. doi: 10.1080/17461391.2010.499975. DOI
Gineviciene V., Jakaitiene A., Tubelis L., Kucinskas V. Variation in the ACE, PPARGC1A and PPARA genes in Lithuanian football players. Eur. J. Sport Sci. 2014;14:S289–S295. doi: 10.1080/17461391.2012.691117. PubMed DOI
Gineviciene V., Jakaitiene A., Aksenov M.O., Aksenova A.V., Druzhevskaya A.M., Astratenkova I.V., Egorova E.S., Gabdrakhmanova L.J., Tubelis L., Kucinskas V., et al. Association analysis of ACE, ACTN3 and PPARGC1A gene polymorphisms in two cohorts of European strength and power athletes. Biol. Sport. 2016;33:199–206. doi: 10.5604/20831862.1201051. PubMed DOI PMC
Gonzalez-Freire M., Santiago C., Verde Z., Lao J.I., Olivan J., Gallego F.G., Lucia A. Unique among unique. Is it genetically determined? Br. J. Sports Med. 2009;43:307–309. doi: 10.1136/bjsm.2008.049809. PubMed DOI
Grealy R., Herruer J., Smith C.L.E., Hiller D., Haseler L.J., Griffiths L.R. Evaluation of a 7-gene genetic profile for athletic endurance phenotype in ironman championship triathletes. PLoS ONE. 2015;10:e0145171. doi: 10.1371/journal.pone.0145171. PubMed DOI PMC
Lucia A., Gomez-Gallego F., Barroso I., Rabadan M., Bandres F., San Juan A.F., Chicharro J.L., Ekelund U., Brage S., Earnest C.P., et al. PPARGC1A genotype (Gly482Ser) predicts exceptional endurance capacity in European men. J. Appl. Physiol. (1985) 2005;99:344–348. doi: 10.1152/japplphysiol.00037.2005. PubMed DOI
Maciejewska A., Sawczuk M., Cieszczyk P. Variation in the PPARalpha gene in Polish rowers. J. Sci. Med. Sport. 2011;14:58–64. doi: 10.1016/j.jsams.2010.05.006. PubMed DOI
Maciejewska A., Sawczuk M., Cieszczyk P., Mozhayskaya I.A., Ahmetov I.I. The PPARGC1A gene Gly482Ser in Polish and Russian athletes. J. Sports Sci. 2012;30:101–113. doi: 10.1080/02640414.2011.623709. PubMed DOI
Maciejewska-Karlowska A., Sawczuk M., Cieszczyk P., Zarebska A., Sawczyn S. Association between the Pro12Ala Polymorphism of the Peroxisome Proliferator-Activated Receptor Gamma Gene and Strength Athlete Status. PLoS ONE. 2013;8:e67172. doi: 10.1371/journal.pone.0067172. PubMed DOI PMC
Maciejewska-Karlowska A., Hanson E.D., Sawczuk M., Cieszczyk P., Eynon N. Genomic haplotype within the Peroxisome Proliferator-Activated Receptor Delta (PPARD) gene is associated with elite athletic status. Scand. J. Med. Sci. Sports. 2014;24:e148–e155. doi: 10.1111/sms.12126. PubMed DOI
Muniesa C.A., González-Freire M., Santiago C., Lao J.I., Buxens A., Rubio J.C., Martín M.A., Arenas J., Gomez-Gallego F., Lucia A. World-class performance in lightweight rowing: Is it genetically influenced? A comparison with cyclists, runners and non-athletes. Br. J. Sports Med. 2010;44:898–901. doi: 10.1136/bjsm.2008.051680. PubMed DOI
Peplonska B., Adamczyk J.G., Siewierski M., Safranow K., Maruszak A., Sozanski H., Gajewski A.K., Zekanowski C. Genetic variants associated with physical and mental characteristics of the elite athletes in the Polish population. Scand. J. Med. Sci. Sports. 2017;27:788–800. doi: 10.1111/sms.12687. PubMed DOI
Santiago C., Ruiz J.R., Muniesa C.A., González-Freire M., Gómez-Gallego F., Lucia A. Does the polygenic profile determine the potential for becoming a world-class athlete? Insights from the sports of rowing. Scand. J. Med. Sci. Sports. 2010;20:e188–e194. doi: 10.1111/j.1600-0838.2009.00943.x. PubMed DOI
Tsianos G.I., Evangelou E., Boot A., Carola Zillikens M., Van Meurs J.B.J., Uitterlinden A.G., Ioannidis J.P. Associations of polymorphisms of eight muscle—Or metabolism-related genes with performance in Mount Olympus marathon runners. J. Appl. Physiol. 2010;108:567–574. doi: 10.1152/japplphysiol.00780.2009. PubMed DOI
Tural E., Kara N., Agaoglu S.A., Elbistan M., Tasmektepligil M.Y., Imamoglu O. PPAR-α and PPARGC1A gene variants have strong effects on aerobic performance of Turkish elite endurance athletes. Mol. Biol. Rep. 2014;41:5799–5804. doi: 10.1007/s11033-014-3453-6. PubMed DOI
Yvert T., Miyamoto-Mikami E., Murakami H., Miyachi M., Kawahara T., Fuku N. Lack of replication of associations between multiple genetic polymorphisms and endurance athlete status in Japanese population. Physiol. Rep. 2016;4:e13003. doi: 10.14814/phy2.13003. PubMed DOI PMC
Eynon N., Birk R., Meckel Y., Lucia A., Nemet D., Eliakim A. Physiological variables and mitochondrial-related genotypes of an athlete who excels in both short and long-distance running. Mitochondrion. 2011;11:774–777. doi: 10.1016/j.mito.2011.05.009. PubMed DOI
Lucia A., Oliván J., Gómez-Gallego F., Santiago C., Montil M., Foster C. Citius and longius (faster and longer) with no α-actinin-3 in skeletal muscles? Br. J. Sports Med. 2007;41:616–617. doi: 10.1136/bjsm.2006.034199. PubMed DOI PMC
Aksenov M.O., Ilyin A.B. Training process design in weightlifting sports customized to genetic predispositions. Teoriya i Praktika Fizicheskoy Kultury. 2017;6:75–77.
Stefan N., Thamer C., Staiger H., Machicao F., Machann J., Schick F., Venter C., Niess A., Laakso M., Fritsche A., et al. Genetic variations in PPARD and PPARGC1A determine mitochondrial function and change in aerobic physical fitness and insulin sensitivity during lifestyle intervention. J. Clin. Endocrin. Metabol. 2007;92:1827–1833. doi: 10.1210/jc.2006-1785. PubMed DOI
Steinbacher P., Feichtinger R.G., Kedenko L., Kedenko I., Reinhardt S., Schönauer A.L., Leitner I., Sänger A.M., Stoiber W., Kofler B., et al. The single nucleotide polymorphism Gly482Ser in the PGC-1α gene impairs exercise-induced slow-twitch muscle fibre transformation in humans. PLoS ONE. 2015;10:e0123881. doi: 10.1371/journal.pone.0123881. PubMed DOI PMC
Ring-Dimitriou S., Kedenko L., Kedenko I., Feichtinger R.G., Steinbacher P., Stoiber W., Forster H., Felder T.K., Muller E., Kolfer B. Does genetic variation in PPARGC1A affect exercise-induced changes in ventilatory thresholds and metabolic syndrome? J. Exerc. Physiol. Online. 2014;17:1–18.
Hautala A.J., Leon A.S., Skinner J.S., Rao D.C., Bouchard C., Rankinen T. Peroxisome proliferator-activated receptor-delta polymorphisms are associated with physical performance and plasma lipids: The HERITAGE Family Study. Am. J. Physiol. Heart Circ. Physiol. 2007;292:H2498–H2505. doi: 10.1152/ajpheart.01092.2006. PubMed DOI
Zhang S.-L., Lu W.-S., Yan L., Wu M.-C., Xu M.-T., Chen L.-H., Cheng H. Association between peroxisome proliferator-activated receptor-gamma coactivator-1alpha gene polymorphisms and type 2 diabetes in southern Chinese population: Role of altered interaction with myocyte enhancer factor 2C. Chin. Med. J. 2007;120:1878–1885. doi: 10.1097/00029330-200711010-00005. PubMed DOI
Moher D., Schulz K.F., Simera I., Altman D.G. Guidance for developers of health research reporting guidelines. PLoS Med. 2010;7:e1000217. doi: 10.1371/journal.pmed.1000217. PubMed DOI PMC
Von Elm E., Altman D.G., Egger M., Pocock S.J., Gøtzsche P.C., Vandenbroucke J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Prev. Med. 2007;45:247–251. doi: 10.1016/j.ypmed.2007.08.012. PubMed DOI
Swann C., Moran A., Piggott D. Defining elite athletes: Issues in the study of expert performance in sports psychology. Psych. Sport Exerc. 2015;16:3–14. doi: 10.1016/j.psychsport.2014.07.004. DOI