The Role of Peroxisome Proliferator-Activated Receptors and Their Transcriptional Coactivators Gene Variations in Human Trainability: A Systematic Review

. 2018 May 15 ; 19 (5) : . [epub] 20180515

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy, systematický přehled

Perzistentní odkaz   https://www.medvik.cz/link/pmid29762540

BACKGROUND: The peroxisome proliferator-activated receptors (PPARA, PPARG, PPARD) and their transcriptional coactivators' (PPARGC1A, PPARGC1B) gene polymorphisms have been associated with muscle morphology, oxygen uptake, power output and endurance performance. The purpose of this review is to determine whether the PPARs and/or their coactivators' polymorphisms can predict the training response to specific training stimuli. METHODS: In accordance with the Preferred Reporting Items for Systematic Reviews and Meta Analyses, a literature review has been run for a combination of PPARs and physical activity key words. RESULTS: All ten of the included studies were performed using aerobic training in general, sedentary or elderly populations from 21 to 75 years of age. The non-responders for aerobic training (VO₂peak increase, slow muscle fiber increase and low-density lipoprotein decrease) are the carriers of PPARGC1A rs8192678 Ser/Ser. The negative responders for aerobic training (decrease in VO₂peak) are carriers of the PPARD rs2267668 G allele. The negative responders for aerobic training (decreased glucose tolerance and insulin response) are subjects with the PPARG rs1801282 Pro/Pro genotype. The best responders to aerobic training are PPARGC1A rs8192678 Gly/Gly, PPARD rs1053049 TT, PPARD rs2267668 AA and PPARG rs1801282 Ala carriers. CONCLUSIONS: The human response for aerobic training is significantly influenced by PPARs' gene polymorphism and their coactivators, where aerobic training can negatively influence glucose metabolism and VO₂peak in some genetically-predisposed individuals.

Zobrazit více v PubMed

Bouchard C., Rankinen T. Individual differences in response to regular physical activity. Med. Sci. Sports Exerc. 2001;33:S446–S451; discussion S52–S53. doi: 10.1097/00005768-200106001-00013. PubMed DOI

Bouchard C., Blair S.N., Church T.S., Earnest C.P., Hagberg J.M., Hakkinen K., Jenkins N.T., Karavirta L., Kraus W.E., Leon A.S., et al. Adverse metabolic response to regular exercise: Is it a rare or common occurrence? PLoS ONE. 2012;7:e37887. doi: 10.1371/journal.pone.0037887. PubMed DOI PMC

Dubuquoy L., Dharancy S., Nutten S., Pettersson S., Auwerx J., Desreumaux P. Role of peroxisome proliferator-activated receptor γ and retinoid X receptor heterodimer in hepatogastroenterological diseases. Lancet. 2002;360:1410–1418. doi: 10.1016/S0140-6736(02)11395-X. PubMed DOI

Cabrero A., Laguna J., Vazquez M. Peroxisome proliferator-activated receptors and the control of inflammation. Curr. Drug Targets-Inflamm. Allergy. 2002;1:243–248. doi: 10.2174/1568010023344616. PubMed DOI

Franks P.W., Christophi C.A., Jablonski K.A., Billings L.K., Delahanty L.M., Horton E.S., Knowler W.C., Florez J.C., Diabetes Prevention Program Research Group Common variation at PPARGC1A/B and change in body composition and metabolic traits following preventive interventions: The Diabetes Prevention Program. Diabetologia. 2014;57:485–490. doi: 10.1007/s00125-013-3133-4. PubMed DOI PMC

Ahmetov I.I., Williams A.G., Popov D.V., Lyubaeva E.V., Hakimullina A.M., Fedotovskaya O.N., Mozhayskaya I.A., Vinogradova O.L., Astratenkova I.V., Montgomery H.E., et al. The combined impact of metabolic gene polymorphisms on elite endurance athlete status and related phenotypes. Hum. Genet. 2009;126:751–761. doi: 10.1007/s00439-009-0728-4. PubMed DOI

Ahmetov I.I., Popov D.V., Mozhaiskaia I.A., Missina S.S., Astratenkova I.V., Vinogradova O.L., Rogozkin V.A. Association of regulatory genes polymorphisms with aerobic and anaerobic performance of athletes. Rossiskii Fiziologicheski Zhurnal Imeni IM Sechenova/Rossiskaia Akademiia Nauk. 2007;93:837–843. PubMed

Franks P.W., Barroso I., Luan J., Ekelund U., Crowley V.E.F., Brage S., Sandhu M.S., Jakes R., Middelberg R.P.S., Harding A.-H., et al. PGC-1α Genotype Modifies the Association of Volitional Energy Expenditure with VO2 max. Med. Sci. Sports Exerc. 2003;35:1998–2004. doi: 10.1249/01.MSS.0000099109.73351.81. PubMed DOI

Petr M., Št’Astný P., Pecha O., Šteffl M., Šeda O., Kohlíková E. PPARA intron polymorphism associated with power performance in 30-s anaerobic wingate test. PLoS ONE. 2014;9:e107171. doi: 10.1371/journal.pone.0107171. PubMed DOI PMC

Ghosh S., Vivar J.C., Sarzynski M.A., Sung Y.J., Timmons J.A., Bouchard C., Rankinen T. Integrative pathway analysis of a genome-wide association study of VO2 max response to exercise training. J. Appl. Physiol. 2013;115:1343–1359. doi: 10.1152/japplphysiol.01487.2012. PubMed DOI PMC

Yang R.Y., Wang Y.B., Shen X.Z., Cai G. Association of elite athlete performance and gene polymorphisms. Chin. J. Tissue Eng. Res. 2014;18:1121–1128.

Lopez-Leon S., Tuvblad C., Forero D.A. Sports genetics: The PPARA gene and athletes’ high ability in endurance sports. A systematic review and meta-analysis. Biol. Sport. 2016;33:3–6. PubMed PMC

Ahmetov I.I., Fedotovskaya O.N. Current Progress in Sports Genomics. Academic Press Inc.; New York, NY, USA: 2015. pp. 247–314. (Advances in Clinical Chemistry). PubMed

Leońska-Duniec A., Ahmetov I.I., Zmijewski P. Genetic variants influencing effectiveness of exercise training programmes in obesity—An overview of human studies. Biol. Sport. 2016;33:207–214. doi: 10.5604/20831862.1201052. PubMed DOI PMC

Aksenov M.O., Ilyin A.B. Training process design in weightlifting sports customized to genetic predispositions. Teoriya Praktika Fizicheskoy Kultury. 2017;2017:75–77.

He Z., Hu Y., Feng L., Bao D., Wang L., Li Y., Wang J., Liu G., Xi Y., Wen L., et al. Is there an association between PPARGC1A genotypes and endurance capacity in Chinese men? Scand. J. Med. Sci. Sports. 2008;18:195–204. doi: 10.1111/j.1600-0838.2007.00648.x. PubMed DOI

Stefan N., Thamer C., Staiger H., Machicao F., Machann J., Schick F., Venter C., Niess A., Laakso M., Fritsche A., et al. Genetic variations in PPARD and PPARGC1A determine mitochondrial function and change in aerobic physical fitness and insulin sensitivity during lifestyle intervention. J. Clin. Endocrinol. Metab. 2007;92:1827–1833. doi: 10.1210/jc.2006-1785. PubMed DOI

Steinbacher P., Feichtinger R.G., Kedenko L., Kedenko I., Reinhardt S., Schönauer A.L., Leitner I., Sänger A.M., Stoiber W., Kofler B., et al. The single nucleotide polymorphism Gly482Ser in the PGC-1α gene impairs exercise-induced slow-twitch muscle fibre transformation in humans. PLoS ONE. 2015;10:e0123881. doi: 10.1371/journal.pone.0123881. PubMed DOI PMC

Tobina T., Mori Y., Doi Y., Nakayama F., Kiyonaga A., Tanaka H. Peroxisome proliferator-activated receptor gamma co-activator 1 gene Gly482Ser polymorphism is associated with the response of low-density lipoprotein cholesterol concentrations to exercise training in elderly Japanese. J. Physiol. Sci. 2017;67:595–602. doi: 10.1007/s12576-016-0491-y. PubMed DOI PMC

Ring-Dimitriou S., Kedenko L., Kedenko I., Feichtinger R.G., Steinbacher P., Stoiber W., Förster H., Felder T.K., Müller E., Kofler B., et al. Does genetic variation in PPARGC1A affect exercise-induced changes in ventilatory thresholds and metabolic syndrome? J. Exerc. Physiol. Online. 2014;17:1–18.

Hautala A.J., Leon A.S., Skinner J.S., Rao D.C., Bouchard C., Rankinen T. Peroxisome proliferator-activated receptor-delta polymorphisms are associated with physical performance and plasma lipids: The HERITAGE Family Study. Am. J. Physiol. Heart Circ. Physiol. 2007;292:H2498–H2505. doi: 10.1152/ajpheart.01092.2006. PubMed DOI

Weiss E.P., Kulaputana O., Ghiu I.A., Brandauer J., Wohn C.R., Phares D.A., Shuldiner A.R., Hagberg J.M. Endurance training-induced changes in the insulin response to oral glucose are associated with the peroxisome proliferator-activated receptor-γ2 Pro12Ala genotype in men but not in women. Metabolism. 2005;54:97–102. doi: 10.1016/j.metabol.2004.08.006. PubMed DOI

Zarebska A., Jastrzebski Z., Cieszczyk P., Leonska-Duniec A., Kotarska K., Kaczmarczyk M., Sawczuk M., Maciejewska-Karlowska A. The Pro12Ala polymorphism of the peroxisome proliferator-activated receptor gamma gene modifies the association of physical activity and body mass changes in Polish women. PPAR Res. 2014;2014:373782. doi: 10.1155/2014/373782. PubMed DOI PMC

Pérusse L., Ruchat S.M., Rankinen T., Weisnagel S.J., Rice T., Rao D.C., Bergman R.N., Bouchard C., Pérusse L. Improvements in glucose homeostasis in response to regular exercise are influenced by the PPARG Pro12Ala variant: Results from the HERITAGE family study. Diabetologia. 2010;53:679–689. PubMed PMC

Kahara T., Takamura T., Hayakawa T., Nagai Y., Yamaguchi H., Katsuki T., Katsuki K., Katsuki M., Kobayashi K. PPARγ gene polymorphism is associated with exercise-mediated changes of insulin resistance in healthy men. Metabolism. 2003;52:209–212. doi: 10.1053/meta.2003.50038. PubMed DOI

Xu Y., Hu Y., Ren Z., Yi L. Delta-aminolevulinate synthase 2 polymorphism is associated with maximal oxygen uptake after living-high exercise-high training-low in a male chinese population. Int. J. Clin. Exp. Med. 2015;8:21617. PubMed PMC

Clarkson P.M., Devaney J.M., Gordish-Dressman H., Thompson P.D., Hubal M.J., Urso M., Price T.B., Angelopoulos T.J., Gordon P.M., Moyna N.M., et al. ACTN3 genotype is associated with increases in muscle strength in response to resistance training in women. J. Appl. Physiol. 2005;99:154–163. doi: 10.1152/japplphysiol.01139.2004. PubMed DOI

Maciejewska A., Sawczuk M., Cieszczyk P., Mozhayskaya I.A., Ahmetov I. The PPARGC1A gene Gly482Ser in Polish and Russian athletes. J. Sports Sci. 2012;30:101–113. doi: 10.1080/02640414.2011.623709. PubMed DOI

Zhang S.-L., Lu W.-S., Yan L., Wu M.-C., Xu M.-T., Chen L.-H., Cheng H. Association between peroxisome proliferator-activated receptor-gamma coactivator-1alpha gene polymorphisms and type 2 diabetes in southern Chinese population: Role of altered interaction with myocyte enhancer factor 2C. Chin. Med. J. 2007;120:1878–1885. PubMed

Michael L.F., Wu Z., Cheatham R.B., Puigserver P., Adelmant G., Lehman J.J., Kelly D.P., Spiegelman B.M. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc. Natl. Acad. Sci. USA. 2001;98:3820–3825. doi: 10.1073/pnas.061035098. PubMed DOI PMC

Lin J., Wu H., Tarr P.T., Zhang C.-Y., Wu Z., Boss O., Michael L.F., Puigserver P., Isotani E., Olson E.N., et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature. 2002;418:797–801. doi: 10.1038/nature00904. PubMed DOI

Skogsberg J., Kannisto K., Roshani L., Gagne E., Hamsten A., Larsson C., Ehrenborg E. Characterization of the human peroxisome proliferator activated receptor delta gene and its expression. Int. J. Mol. Med. 2000;6:73–154. doi: 10.3892/ijmm.6.1.73. PubMed DOI

Skogsberg J., Kannisto K., Cassel T.N., Hamsten A., Eriksson P., Ehrenborg E. Evidence that peroxisome proliferator–activated receptor delta influences cholesterol metabolism in men. Arterioscler. Thromb. Vas. Biol. 2003;23:637–643. doi: 10.1161/01.ATV.0000064383.88696.24. PubMed DOI

Karpe F., Ehrenborg E.E. PPARδ in humans: Genetic and pharmacological evidence for a significant metabolic function. Curr. Opin. Lipidol. 2009;20:333–336. doi: 10.1097/MOL.0b013e32832dd4b1. PubMed DOI

Riccardi G., Rivellese A. Dietary treatment of the metabolic syndrome—The optimal diet. Br. J. Nutr. 2000;83:S143–S148. doi: 10.1017/S0007114500001082. PubMed DOI

Nathan D.M., Davidson M.B., DeFronzo R.A., Heine R.J., Henry R.R., Pratley R., Zinman B., American Diabetes Association Impaired fasting glucose and impaired glucose tolerance: Implications for care. Diabetes Care. 2007;30:753–759. doi: 10.2337/dc07-9920. PubMed DOI

Kelley D.E., Goodpaster B.H. Effects of physical activity on insulin action and glucose tolerance in obesity. Med. Sci. Sports Exerc. 1999;31(Suppl. 11):S619–S623. doi: 10.1097/00005768-199911001-00021. PubMed DOI

Adamo K., Sigal R., Williams K., Kenny G., Prud’homme D., Tesson F. Influence of Pro12Ala peroxisome proliferator-activated receptor γ2 polymorphism on glucose response to exercise training in type 2 diabetes. Diabetologia. 2005;48:1503–1509. doi: 10.1007/s00125-005-1827-y. PubMed DOI

Deeb S.S., Fajas L., Nemoto M., Pihlajamäki J., Mykkänen L., Kuusisto J., Laakso M., Fujimoto W., Auwerx J. A Pro12Ala substitution in PPARγ2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat. Genet. 1998;20:284–286. doi: 10.1038/3099. PubMed DOI

Razquin C., Martinez J.A., Martinez-Gonzalez M.A., Corella D., Santos J.M., Marti A. The Mediterranean diet protects against waist circumference enlargement in 12Ala carriers for the PPARγ gene: 2 years’ follow-up of 774 subjects at high cardiovascular risk. Br. J. Nutr. 2009;102:672–679. doi: 10.1017/S0007114509289008. PubMed DOI

Yen C.-J., Beamer B.A., Negri C., Silver K., Brown K.A., Yarnall D.P., Burns D.K., Roth J., Shuldiner A.R. Molecular scanning of the human peroxisome proliferator activated receptor γ (hPPARγ) gene in diabetic Caucasians: Identification of a Pro12Ala PPARγ2 missense mutation. Biochem. Biophys. Res. Commun. 1997;241:270–274. doi: 10.1006/bbrc.1997.7798. PubMed DOI

Masugi J., Tamori Y., Mori H., Koike T., Kasuga M. Inhibitory effect of a proline-to-alanine substitution at codon 12 of peroxisome proliferator-activated receptor-γ2 on thiazolidinedione-induced adipogenesis. Biochem. Biophys. Res. Commun. 2000;268:178–182. doi: 10.1006/bbrc.2000.2096. PubMed DOI

Schneider J., Kreuzer J., Hamann A., Nawroth P.P., Dugi K.A. The proline 12 alanine substitution in the peroxisome proliferator–Activated receptor-γ2 gene is associated with lower lipoprotein lipase activity in vivo. Diabetes. 2002;51:867–870. doi: 10.2337/diabetes.51.3.867. PubMed DOI

Ek J., Andersen G., Urhammer S., Hansen L., Carstensen B., Borch-Johnsen K., Drivsholm T., Berglund L., Hansen T., Lithell H., et al. Studies of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-γ2 (PPAR-γ2) gene in relation to insulin sensitivity among glucose tolerant Caucasians. Diabetologia. 2001;44:1170–1176. doi: 10.1007/s001250100629. PubMed DOI

Honka M.-J., Vänttinen M., Iozzo P., Virtanen K.A., Lautamäki R., Hällsten K., Borraa R.J.H., Takalaa T., Viljanena A.P.M., Kemppainen J., et al. The Pro12Ala polymorphism of the PPARγ2 gene is associated with hepatic glucose uptake during hyperinsulinemia in subjects with type 2 diabetes mellitus. Metabolism. 2009;58:541–546. doi: 10.1016/j.metabol.2008.11.015. PubMed DOI

Lu L., Wu Y., Qi Q., Liu C., Gan W., Zhu J., Li H., Lin X. Associations of type 2 diabetes with common variants in PPARD and the modifying effect of vitamin D among middle-aged and elderly Chinese. PLoS ONE. 2012;7:e34895. doi: 10.1371/journal.pone.0034895. PubMed DOI PMC

Thamer C., Machann J., Stefan N., Schäfer S.A., Machicao F., Staiger H., Laakso M., Böttcher M., Claussen C., Schick F., et al. Variations in PPARD determine the change in body composition during lifestyle intervention: A whole-body magnetic resonance study. J. Clin. Endocrinol. Metab. 2008;93:1497–1500. doi: 10.1210/jc.2007-1209. PubMed DOI

Masschelein E., Puype J., Broos S., Van Thienen R., Deldicque L., Lambrechts D., Hespel P., Thomis M. A genetic predisposition score associates with reduced aerobic capacity in response to acute normobaric hypoxia in lowlanders. High Alt. Med. Biol. 2015;16:34–42. doi: 10.1089/ham.2014.1083. PubMed DOI

Moher D., Schulz K.F., Simera I., Altman D.G. Guidance for developers of health research reporting guidelines. PLoS Med. 2010;7:e1000217. doi: 10.1371/journal.pmed.1000217. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace