The Role of Peroxisome Proliferator-Activated Receptors and Their Transcriptional Coactivators Gene Variations in Human Trainability: A Systematic Review
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy, systematický přehled
PubMed
29762540
PubMed Central
PMC5983571
DOI
10.3390/ijms19051472
PII: ijms19051472
Knihovny.cz E-zdroje
- Klíčová slova
- VO2max, VO2peak, aerobic training, anaerobic threshold, cholesterol levels, genetic predisposition, glucose tolerance, human performance, insulin response, mitochondria activity, muscle fibers,
- MeSH
- dospělí MeSH
- jednonukleotidový polymorfismus * MeSH
- kondiční příprava * MeSH
- kosterní svaly metabolismus fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- PPARGC1A genetika MeSH
- proteiny vázající RNA MeSH
- receptory aktivované proliferátory peroxizomů genetika MeSH
- senioři MeSH
- spotřeba kyslíku MeSH
- transportní proteiny genetika MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- systematický přehled MeSH
- Názvy látek
- PPARGC1A protein, human MeSH Prohlížeč
- PPARGC1A MeSH
- PPARGC1B protein, human MeSH Prohlížeč
- proteiny vázající RNA MeSH
- receptory aktivované proliferátory peroxizomů MeSH
- transportní proteiny MeSH
BACKGROUND: The peroxisome proliferator-activated receptors (PPARA, PPARG, PPARD) and their transcriptional coactivators' (PPARGC1A, PPARGC1B) gene polymorphisms have been associated with muscle morphology, oxygen uptake, power output and endurance performance. The purpose of this review is to determine whether the PPARs and/or their coactivators' polymorphisms can predict the training response to specific training stimuli. METHODS: In accordance with the Preferred Reporting Items for Systematic Reviews and Meta Analyses, a literature review has been run for a combination of PPARs and physical activity key words. RESULTS: All ten of the included studies were performed using aerobic training in general, sedentary or elderly populations from 21 to 75 years of age. The non-responders for aerobic training (VO₂peak increase, slow muscle fiber increase and low-density lipoprotein decrease) are the carriers of PPARGC1A rs8192678 Ser/Ser. The negative responders for aerobic training (decrease in VO₂peak) are carriers of the PPARD rs2267668 G allele. The negative responders for aerobic training (decreased glucose tolerance and insulin response) are subjects with the PPARG rs1801282 Pro/Pro genotype. The best responders to aerobic training are PPARGC1A rs8192678 Gly/Gly, PPARD rs1053049 TT, PPARD rs2267668 AA and PPARG rs1801282 Ala carriers. CONCLUSIONS: The human response for aerobic training is significantly influenced by PPARs' gene polymorphism and their coactivators, where aerobic training can negatively influence glucose metabolism and VO₂peak in some genetically-predisposed individuals.
Faculty of Physical Education and Sport Charles University 162 52 Prague Czech Republic
Faulty of Physical Education Gdansk University of Physical Education and Sport 80 336 Gdansk Poland
Zobrazit více v PubMed
Bouchard C., Rankinen T. Individual differences in response to regular physical activity. Med. Sci. Sports Exerc. 2001;33:S446–S451; discussion S52–S53. doi: 10.1097/00005768-200106001-00013. PubMed DOI
Bouchard C., Blair S.N., Church T.S., Earnest C.P., Hagberg J.M., Hakkinen K., Jenkins N.T., Karavirta L., Kraus W.E., Leon A.S., et al. Adverse metabolic response to regular exercise: Is it a rare or common occurrence? PLoS ONE. 2012;7:e37887. doi: 10.1371/journal.pone.0037887. PubMed DOI PMC
Dubuquoy L., Dharancy S., Nutten S., Pettersson S., Auwerx J., Desreumaux P. Role of peroxisome proliferator-activated receptor γ and retinoid X receptor heterodimer in hepatogastroenterological diseases. Lancet. 2002;360:1410–1418. doi: 10.1016/S0140-6736(02)11395-X. PubMed DOI
Cabrero A., Laguna J., Vazquez M. Peroxisome proliferator-activated receptors and the control of inflammation. Curr. Drug Targets-Inflamm. Allergy. 2002;1:243–248. doi: 10.2174/1568010023344616. PubMed DOI
Franks P.W., Christophi C.A., Jablonski K.A., Billings L.K., Delahanty L.M., Horton E.S., Knowler W.C., Florez J.C., Diabetes Prevention Program Research Group Common variation at PPARGC1A/B and change in body composition and metabolic traits following preventive interventions: The Diabetes Prevention Program. Diabetologia. 2014;57:485–490. doi: 10.1007/s00125-013-3133-4. PubMed DOI PMC
Ahmetov I.I., Williams A.G., Popov D.V., Lyubaeva E.V., Hakimullina A.M., Fedotovskaya O.N., Mozhayskaya I.A., Vinogradova O.L., Astratenkova I.V., Montgomery H.E., et al. The combined impact of metabolic gene polymorphisms on elite endurance athlete status and related phenotypes. Hum. Genet. 2009;126:751–761. doi: 10.1007/s00439-009-0728-4. PubMed DOI
Ahmetov I.I., Popov D.V., Mozhaiskaia I.A., Missina S.S., Astratenkova I.V., Vinogradova O.L., Rogozkin V.A. Association of regulatory genes polymorphisms with aerobic and anaerobic performance of athletes. Rossiskii Fiziologicheski Zhurnal Imeni IM Sechenova/Rossiskaia Akademiia Nauk. 2007;93:837–843. PubMed
Franks P.W., Barroso I., Luan J., Ekelund U., Crowley V.E.F., Brage S., Sandhu M.S., Jakes R., Middelberg R.P.S., Harding A.-H., et al. PGC-1α Genotype Modifies the Association of Volitional Energy Expenditure with VO2 max. Med. Sci. Sports Exerc. 2003;35:1998–2004. doi: 10.1249/01.MSS.0000099109.73351.81. PubMed DOI
Petr M., Št’Astný P., Pecha O., Šteffl M., Šeda O., Kohlíková E. PPARA intron polymorphism associated with power performance in 30-s anaerobic wingate test. PLoS ONE. 2014;9:e107171. doi: 10.1371/journal.pone.0107171. PubMed DOI PMC
Ghosh S., Vivar J.C., Sarzynski M.A., Sung Y.J., Timmons J.A., Bouchard C., Rankinen T. Integrative pathway analysis of a genome-wide association study of VO2 max response to exercise training. J. Appl. Physiol. 2013;115:1343–1359. doi: 10.1152/japplphysiol.01487.2012. PubMed DOI PMC
Yang R.Y., Wang Y.B., Shen X.Z., Cai G. Association of elite athlete performance and gene polymorphisms. Chin. J. Tissue Eng. Res. 2014;18:1121–1128.
Lopez-Leon S., Tuvblad C., Forero D.A. Sports genetics: The PPARA gene and athletes’ high ability in endurance sports. A systematic review and meta-analysis. Biol. Sport. 2016;33:3–6. PubMed PMC
Ahmetov I.I., Fedotovskaya O.N. Current Progress in Sports Genomics. Academic Press Inc.; New York, NY, USA: 2015. pp. 247–314. (Advances in Clinical Chemistry). PubMed
Leońska-Duniec A., Ahmetov I.I., Zmijewski P. Genetic variants influencing effectiveness of exercise training programmes in obesity—An overview of human studies. Biol. Sport. 2016;33:207–214. doi: 10.5604/20831862.1201052. PubMed DOI PMC
Aksenov M.O., Ilyin A.B. Training process design in weightlifting sports customized to genetic predispositions. Teoriya Praktika Fizicheskoy Kultury. 2017;2017:75–77.
He Z., Hu Y., Feng L., Bao D., Wang L., Li Y., Wang J., Liu G., Xi Y., Wen L., et al. Is there an association between PPARGC1A genotypes and endurance capacity in Chinese men? Scand. J. Med. Sci. Sports. 2008;18:195–204. doi: 10.1111/j.1600-0838.2007.00648.x. PubMed DOI
Stefan N., Thamer C., Staiger H., Machicao F., Machann J., Schick F., Venter C., Niess A., Laakso M., Fritsche A., et al. Genetic variations in PPARD and PPARGC1A determine mitochondrial function and change in aerobic physical fitness and insulin sensitivity during lifestyle intervention. J. Clin. Endocrinol. Metab. 2007;92:1827–1833. doi: 10.1210/jc.2006-1785. PubMed DOI
Steinbacher P., Feichtinger R.G., Kedenko L., Kedenko I., Reinhardt S., Schönauer A.L., Leitner I., Sänger A.M., Stoiber W., Kofler B., et al. The single nucleotide polymorphism Gly482Ser in the PGC-1α gene impairs exercise-induced slow-twitch muscle fibre transformation in humans. PLoS ONE. 2015;10:e0123881. doi: 10.1371/journal.pone.0123881. PubMed DOI PMC
Tobina T., Mori Y., Doi Y., Nakayama F., Kiyonaga A., Tanaka H. Peroxisome proliferator-activated receptor gamma co-activator 1 gene Gly482Ser polymorphism is associated with the response of low-density lipoprotein cholesterol concentrations to exercise training in elderly Japanese. J. Physiol. Sci. 2017;67:595–602. doi: 10.1007/s12576-016-0491-y. PubMed DOI PMC
Ring-Dimitriou S., Kedenko L., Kedenko I., Feichtinger R.G., Steinbacher P., Stoiber W., Förster H., Felder T.K., Müller E., Kofler B., et al. Does genetic variation in PPARGC1A affect exercise-induced changes in ventilatory thresholds and metabolic syndrome? J. Exerc. Physiol. Online. 2014;17:1–18.
Hautala A.J., Leon A.S., Skinner J.S., Rao D.C., Bouchard C., Rankinen T. Peroxisome proliferator-activated receptor-delta polymorphisms are associated with physical performance and plasma lipids: The HERITAGE Family Study. Am. J. Physiol. Heart Circ. Physiol. 2007;292:H2498–H2505. doi: 10.1152/ajpheart.01092.2006. PubMed DOI
Weiss E.P., Kulaputana O., Ghiu I.A., Brandauer J., Wohn C.R., Phares D.A., Shuldiner A.R., Hagberg J.M. Endurance training-induced changes in the insulin response to oral glucose are associated with the peroxisome proliferator-activated receptor-γ2 Pro12Ala genotype in men but not in women. Metabolism. 2005;54:97–102. doi: 10.1016/j.metabol.2004.08.006. PubMed DOI
Zarebska A., Jastrzebski Z., Cieszczyk P., Leonska-Duniec A., Kotarska K., Kaczmarczyk M., Sawczuk M., Maciejewska-Karlowska A. The Pro12Ala polymorphism of the peroxisome proliferator-activated receptor gamma gene modifies the association of physical activity and body mass changes in Polish women. PPAR Res. 2014;2014:373782. doi: 10.1155/2014/373782. PubMed DOI PMC
Pérusse L., Ruchat S.M., Rankinen T., Weisnagel S.J., Rice T., Rao D.C., Bergman R.N., Bouchard C., Pérusse L. Improvements in glucose homeostasis in response to regular exercise are influenced by the PPARG Pro12Ala variant: Results from the HERITAGE family study. Diabetologia. 2010;53:679–689. PubMed PMC
Kahara T., Takamura T., Hayakawa T., Nagai Y., Yamaguchi H., Katsuki T., Katsuki K., Katsuki M., Kobayashi K. PPARγ gene polymorphism is associated with exercise-mediated changes of insulin resistance in healthy men. Metabolism. 2003;52:209–212. doi: 10.1053/meta.2003.50038. PubMed DOI
Xu Y., Hu Y., Ren Z., Yi L. Delta-aminolevulinate synthase 2 polymorphism is associated with maximal oxygen uptake after living-high exercise-high training-low in a male chinese population. Int. J. Clin. Exp. Med. 2015;8:21617. PubMed PMC
Clarkson P.M., Devaney J.M., Gordish-Dressman H., Thompson P.D., Hubal M.J., Urso M., Price T.B., Angelopoulos T.J., Gordon P.M., Moyna N.M., et al. ACTN3 genotype is associated with increases in muscle strength in response to resistance training in women. J. Appl. Physiol. 2005;99:154–163. doi: 10.1152/japplphysiol.01139.2004. PubMed DOI
Maciejewska A., Sawczuk M., Cieszczyk P., Mozhayskaya I.A., Ahmetov I. The PPARGC1A gene Gly482Ser in Polish and Russian athletes. J. Sports Sci. 2012;30:101–113. doi: 10.1080/02640414.2011.623709. PubMed DOI
Zhang S.-L., Lu W.-S., Yan L., Wu M.-C., Xu M.-T., Chen L.-H., Cheng H. Association between peroxisome proliferator-activated receptor-gamma coactivator-1alpha gene polymorphisms and type 2 diabetes in southern Chinese population: Role of altered interaction with myocyte enhancer factor 2C. Chin. Med. J. 2007;120:1878–1885. PubMed
Michael L.F., Wu Z., Cheatham R.B., Puigserver P., Adelmant G., Lehman J.J., Kelly D.P., Spiegelman B.M. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc. Natl. Acad. Sci. USA. 2001;98:3820–3825. doi: 10.1073/pnas.061035098. PubMed DOI PMC
Lin J., Wu H., Tarr P.T., Zhang C.-Y., Wu Z., Boss O., Michael L.F., Puigserver P., Isotani E., Olson E.N., et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature. 2002;418:797–801. doi: 10.1038/nature00904. PubMed DOI
Skogsberg J., Kannisto K., Roshani L., Gagne E., Hamsten A., Larsson C., Ehrenborg E. Characterization of the human peroxisome proliferator activated receptor delta gene and its expression. Int. J. Mol. Med. 2000;6:73–154. doi: 10.3892/ijmm.6.1.73. PubMed DOI
Skogsberg J., Kannisto K., Cassel T.N., Hamsten A., Eriksson P., Ehrenborg E. Evidence that peroxisome proliferator–activated receptor delta influences cholesterol metabolism in men. Arterioscler. Thromb. Vas. Biol. 2003;23:637–643. doi: 10.1161/01.ATV.0000064383.88696.24. PubMed DOI
Karpe F., Ehrenborg E.E. PPARδ in humans: Genetic and pharmacological evidence for a significant metabolic function. Curr. Opin. Lipidol. 2009;20:333–336. doi: 10.1097/MOL.0b013e32832dd4b1. PubMed DOI
Riccardi G., Rivellese A. Dietary treatment of the metabolic syndrome—The optimal diet. Br. J. Nutr. 2000;83:S143–S148. doi: 10.1017/S0007114500001082. PubMed DOI
Nathan D.M., Davidson M.B., DeFronzo R.A., Heine R.J., Henry R.R., Pratley R., Zinman B., American Diabetes Association Impaired fasting glucose and impaired glucose tolerance: Implications for care. Diabetes Care. 2007;30:753–759. doi: 10.2337/dc07-9920. PubMed DOI
Kelley D.E., Goodpaster B.H. Effects of physical activity on insulin action and glucose tolerance in obesity. Med. Sci. Sports Exerc. 1999;31(Suppl. 11):S619–S623. doi: 10.1097/00005768-199911001-00021. PubMed DOI
Adamo K., Sigal R., Williams K., Kenny G., Prud’homme D., Tesson F. Influence of Pro12Ala peroxisome proliferator-activated receptor γ2 polymorphism on glucose response to exercise training in type 2 diabetes. Diabetologia. 2005;48:1503–1509. doi: 10.1007/s00125-005-1827-y. PubMed DOI
Deeb S.S., Fajas L., Nemoto M., Pihlajamäki J., Mykkänen L., Kuusisto J., Laakso M., Fujimoto W., Auwerx J. A Pro12Ala substitution in PPARγ2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat. Genet. 1998;20:284–286. doi: 10.1038/3099. PubMed DOI
Razquin C., Martinez J.A., Martinez-Gonzalez M.A., Corella D., Santos J.M., Marti A. The Mediterranean diet protects against waist circumference enlargement in 12Ala carriers for the PPARγ gene: 2 years’ follow-up of 774 subjects at high cardiovascular risk. Br. J. Nutr. 2009;102:672–679. doi: 10.1017/S0007114509289008. PubMed DOI
Yen C.-J., Beamer B.A., Negri C., Silver K., Brown K.A., Yarnall D.P., Burns D.K., Roth J., Shuldiner A.R. Molecular scanning of the human peroxisome proliferator activated receptor γ (hPPARγ) gene in diabetic Caucasians: Identification of a Pro12Ala PPARγ2 missense mutation. Biochem. Biophys. Res. Commun. 1997;241:270–274. doi: 10.1006/bbrc.1997.7798. PubMed DOI
Masugi J., Tamori Y., Mori H., Koike T., Kasuga M. Inhibitory effect of a proline-to-alanine substitution at codon 12 of peroxisome proliferator-activated receptor-γ2 on thiazolidinedione-induced adipogenesis. Biochem. Biophys. Res. Commun. 2000;268:178–182. doi: 10.1006/bbrc.2000.2096. PubMed DOI
Schneider J., Kreuzer J., Hamann A., Nawroth P.P., Dugi K.A. The proline 12 alanine substitution in the peroxisome proliferator–Activated receptor-γ2 gene is associated with lower lipoprotein lipase activity in vivo. Diabetes. 2002;51:867–870. doi: 10.2337/diabetes.51.3.867. PubMed DOI
Ek J., Andersen G., Urhammer S., Hansen L., Carstensen B., Borch-Johnsen K., Drivsholm T., Berglund L., Hansen T., Lithell H., et al. Studies of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-γ2 (PPAR-γ2) gene in relation to insulin sensitivity among glucose tolerant Caucasians. Diabetologia. 2001;44:1170–1176. doi: 10.1007/s001250100629. PubMed DOI
Honka M.-J., Vänttinen M., Iozzo P., Virtanen K.A., Lautamäki R., Hällsten K., Borraa R.J.H., Takalaa T., Viljanena A.P.M., Kemppainen J., et al. The Pro12Ala polymorphism of the PPARγ2 gene is associated with hepatic glucose uptake during hyperinsulinemia in subjects with type 2 diabetes mellitus. Metabolism. 2009;58:541–546. doi: 10.1016/j.metabol.2008.11.015. PubMed DOI
Lu L., Wu Y., Qi Q., Liu C., Gan W., Zhu J., Li H., Lin X. Associations of type 2 diabetes with common variants in PPARD and the modifying effect of vitamin D among middle-aged and elderly Chinese. PLoS ONE. 2012;7:e34895. doi: 10.1371/journal.pone.0034895. PubMed DOI PMC
Thamer C., Machann J., Stefan N., Schäfer S.A., Machicao F., Staiger H., Laakso M., Böttcher M., Claussen C., Schick F., et al. Variations in PPARD determine the change in body composition during lifestyle intervention: A whole-body magnetic resonance study. J. Clin. Endocrinol. Metab. 2008;93:1497–1500. doi: 10.1210/jc.2007-1209. PubMed DOI
Masschelein E., Puype J., Broos S., Van Thienen R., Deldicque L., Lambrechts D., Hespel P., Thomis M. A genetic predisposition score associates with reduced aerobic capacity in response to acute normobaric hypoxia in lowlanders. High Alt. Med. Biol. 2015;16:34–42. doi: 10.1089/ham.2014.1083. PubMed DOI
Moher D., Schulz K.F., Simera I., Altman D.G. Guidance for developers of health research reporting guidelines. PLoS Med. 2010;7:e1000217. doi: 10.1371/journal.pmed.1000217. PubMed DOI PMC