The relationships between ACTN3 rs1815739 and PPARA-α rs4253778 gene polymorphisms and athletic performance characteristics in professional soccer players
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
37749582
PubMed Central
PMC10518950
DOI
10.1186/s13102-023-00733-0
PII: 10.1186/s13102-023-00733-0
Knihovny.cz E-zdroje
- Klíčová slova
- ACTN3 rs1815739, Athletic performance, PPARA-α rs4253778, Polymorphisms, Soccer,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Current research on athletic performance focuses on genetic variants that contribute significantly to individuals' performance. ACTN3 rs1815739 and PPARA-α rs4253778 gene polymorphisms are variants frequently associated with athletic performance among different populations. However, there is limited research examining the pre-and post-test results of some variants of athletic performance in soccer players. Therefore, the presented research is to examine the relationships between the ACTN3 rs1815739 and PPARA-α rs4253778 gene polymorphisms and athletic performance improvement rates in adaptations to six weeks of training in elite soccer players using some athletic performance tests. METHODOLOGY: Twenty-two soccer players between the ages of 18 and 35 voluntarily participated in the study. All participants were actively engaged in a rigorous six-day-a-week training program during the pre-season preparation period. Preceding and following the training program, a battery of diverse athletic performance tests was administered to the participants. Moreover, Genomic DNA was extracted from oral epithelial cells using the Invitrogen DNA isolation kit (Invitrogen, USA), following the manufacturer's protocol. Genotyping was conducted using real-time PCR. To assess the pre- and post-test performance differences of soccer players, the Wilcoxon Signed Rank test was employed. RESULTS: Upon analyzing the results of the soccer players based on the ACTN3 genotype variable, it was observed that there were no statistically significant differences in the SJ (Squat Jump), 30m sprint, CMJ (Counter Movement Jump), and DJ (Drop Jump) performance tests (p > 0.05). However, a statistically significant difference was identified in the YOYO IRT 2 (Yo-Yo Intermittent Recovery Test Level 2) and 1RM (One Repetition Maximum) test outcomes (YOYO IRT 2: CC, CT, and TT, p = 0.028, 0.028, 0.008, 0.000, respectively; 1RM: CC, CT, and TT, p = 0.010, 0.34, 0.001, respectively). Regarding the PPARA-α genotype variable, the statistical analysis revealed no significant differences in the SJ, 30m sprint, CMJ, and DJ performance tests (p > 0.05). Nevertheless, a statistically significant difference was observed in the YOYO IRT 2 and 1RM test results (YOYO IRT 2: CC, CG p = 0.001, 0.020; 1RM: CC, p = 0.000) CONCLUSIONS: The current study demonstrated significant enhancements in only YOYO INT 2 and 1RM test outcomes across nearly all gene variants following the six-day-a-week training program. Other performance tests, such as the 30m sprint, SJ, CMJ, and DJ tests did not exhibit statistically significant differences. These findings contribute novel insights into the molecular processes involving PPARA-α rs4253778 and ACTN3 rs1815739 that underpin enhancements in endurance (YOYO INT 2) and maximal strength (1RM) aspects of athletic performance. However, to comprehensively elucidate the mechanisms responsible for the association between these polymorphisms and athletic performance, further investigations are warranted. It is thought that the use of field and genetic analyses together to support each other will be an important detail for athletes to reach high performance.
Department of Medical Biology and Genetics Marmara University İstanbul 34722 Türkiye
Faculty of Physical Culture and Health University in Tetovo Tetova 1200 Republic of North Macedonia
Institute of Health Sciences Marmara University İstanbul 34722 Türkiye
Kazim Karabekir Faculty of Education Ataturk University Erzurum 25240 Türkiye
Sports Science Faculty Bingol University Bingöl 12000 Türkiye
Sports Science Faculty Lokman Hekim University Ankara 06510 Türkiye
Zobrazit více v PubMed
Bulgay C, Kasakolu A, Kazan HH, Mijaica R, Zorba E, Akman O, et al. Exome-Wide Association Study of Competitive Performance in Elite Athletes. Genes. 2023;14:660. doi: 10.3390/genes14030660. PubMed DOI PMC
Bouchard C, An P, Rice T, Skinner JS, Wilmore JH, Gagnon J, et al. Familial aggregation of Vo2 max response to exercise training: results from the HERITAGE Family Study. J Appl Physiol. 1999;87:1003–8. doi: 10.1152/jappl.1999.87.3.1003. PubMed DOI
Montgomery HE, Marshall R, Hemingway H, Myerson S, Clarkson P, Dollery C, et al. Human gene for physical performance. Nature. 1998;393:221–2. doi: 10.1038/30374. PubMed DOI
Papadimitriou ID, Lucia A, Pitsiladis YP, Pushkarev VP, Dyatlov DA, Orekhov EF, et al. ACTN3 R577X and ACE I/D gene variants influence performance in elite sprinters: a multi-cohort study. BMC Genomics. 2016;17:285. doi: 10.1186/s12864-016-2462-3. PubMed DOI PMC
Bouchard C, Rankinen T. Individual differences in response to regular physical activity. Med Sci Sports Exerc. 2001;33 6 Suppl:S446-51; discussion S452-3. PubMed
Bouchard C, Blair SN, Church TS, Earnest CP, Hagberg JM, Häkkinen K, et al. Adverse metabolic response to regular exercise: is it a rare or common occurrence? PLoS ONE. 2012;7:e37887. doi: 10.1371/journal.pone.0037887. PubMed DOI PMC
Guth LM, Roth SM. Genetic influence on athletic performance. Curr Opin Pediatr. 2013;25:653–8. doi: 10.1097/MOP.0b013e3283659087. PubMed DOI PMC
Mann TN, Lamberts RP, Lambert MI. High responders and low responders: factors associated with individual variation in response to standardized training. Sports Med (Auckland NZ) 2014;44:1113–24. doi: 10.1007/s40279-014-0197-3. PubMed DOI
Wackerhage H, Miah A, Harris RC, Montgomery HE, Williams AG. Genetic research and testing in sport and exercise science: A review of the issues. J Sports Sci. 2009;27:1109–16. doi: 10.1080/02640410903114364. PubMed DOI
Ahmetov II, Druzhevskaya AM, Lyubaeva EV, Popov DV, Vinogradova OL, Williams AG. The dependence of preferred competitive racing distance on muscle fibre type composition and ACTN3 genotype in speed skaters. Exp Physiol. 2011;96:1302–10. doi: 10.1113/expphysiol.2011.060293. PubMed DOI
Eynon N, Ruiz JR, Femia P, Pushkarev VP, Cieszczyk P, Maciejewska-Karlowska A, et al. The ACTN3 R577X polymorphism across three groups of elite male European athletes. PLoS ONE. 2012;7:e43132. doi: 10.1371/journal.pone.0043132. PubMed DOI PMC
Yang N, MacArthur DG, Gulbin JP, Hahn AG, Beggs AH, Easteal S, et al. ACTN3 genotype is associated with human elite athletic performance. Am J Hum Genet. 2003;73:627–31. doi: 10.1086/377590. PubMed DOI PMC
Ma F, Yang Y, Li X, Zhou F, Gao C, Li M, et al. The association of sport performance with ACE and ACTN3 genetic polymorphisms: a systematic review and meta-analysis. PLoS ONE. 2013;8:e54685. doi: 10.1371/journal.pone.0054685. PubMed DOI PMC
Cerit M. Hypothetical Approach to the Location of Genotypes (ACE & ACTN3) Associated with Energy Systems for the Athletic Performance. Spor Bilimleri Araştırmaları Dergisi. 2018;:97–105.
Holdys J, Stanisławski D, Kryściak J, Gronek P. Polymorphism of the Α-Actn3 Gene In Individuals Practising Different Sports Disciplines. Biology of Sport. 2011;28:101–6. doi: 10.5604/942738. DOI
Squire JM. Architecture and function in the muscle sarcomere. Curr Opin Struct Biol. 1997;7:247–57. doi: 10.1016/S0959-440X(97)80033-4. PubMed DOI
MacArthur DG, North KN. ACTN3. Exerc Sport Sci Rev. 2007;35:30–4. doi: 10.1097/JES.0b013e31802d8874. PubMed DOI
North KN, Yang N, Wattanasirichaigoon D, Mills M, Easteal S, Beggs AH. A common nonsense mutation results in α-actinin-3 deficiency in the general population. Nat Genet. 1999;21:353–4. doi: 10.1038/7675. PubMed DOI
Eynon N, Ruiz J, Yvert T, Santiago C, Gómez-Gallego F, Lucia A, et al. The C Allele in NOS3 -786 T/C Polymorphism is Associated with Elite Soccer Player’s Status. Int J Sports Med. 2012;33:521–4. doi: 10.1055/s-0032-1306337. PubMed DOI
Lucia A, Gómez-Gallego F, Santiago C, Bandrés F, Earnest C, Rabadán M, et al. ACTN3 Genotype in Professional Endurance Cyclists. Int J Sports Med. 2006;27:880–4. doi: 10.1055/s-2006-923862. PubMed DOI
Lopez-Leon S, Tuvblad C, Forero DA. Sports genetics: the PPARA gene and athletes’ high ability in endurance sports. A systematic review and meta-analysis. Biology of sport. 2016;33:3–6. PubMed PMC
Russell AP, Feilchenfeldt J, Schreiber S, Praz M, Crettenand A, Gobelet C, et al. Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes. 2003;52:2874–81. doi: 10.2337/diabetes.52.12.2874. PubMed DOI
Petr M, Stastny P, Zajac A, Tufano JJ, Maciejewska-Skrendo A. The Role of Peroxisome Proliferator-Activated Receptors and Their Transcriptional Coactivators Gene Variations in Human Trainability: A Systematic Review. Int J Mol Sci. 2018;19. PubMed PMC
Ahmetov II, Williams AG, Popov DV, Lyubaeva EV, Hakimullina AM, Fedotovskaya ON, et al. The combined impact of metabolic gene polymorphisms on elite endurance athlete status and related phenotypes. Hum Genet. 2009;126:751–61. doi: 10.1007/s00439-009-0728-4. PubMed DOI
Akhmetov II, Popov DV, Mozhaĭskaia IA, Missina SS, Astratenkova IV, Vinogradova OL, et al. Association of regulatory genes polymorphisms with aerobic and anaerobic performance of athletes. Rossiiskii Fiziol zhurnal imeni IM Sechenova. 2007;93:837–43. PubMed
Tural E, Kara N, Agaoglu SA, Elbistan M, Tasmektepligil MY, Imamoglu O. PPAR-α and PPARGC1A gene variants have strong effects on aerobic performance of Turkish elite endurance athletes. Mol Biol Rep. 2014;41:5799–804. doi: 10.1007/s11033-014-3453-6. PubMed DOI
Eynon N, Hanson ED, Lucia A, Houweling PJ, Garton F, North KN, et al. Genes for Elite Power and Sprint Performance: ACTN3 Leads the Way. Sports Med. 2013;43:803–17. doi: 10.1007/s40279-013-0059-4. PubMed DOI
Semenova EA, Hall ECR, Ahmetov II. Genes and Athletic Performance: The 2023 Update. Genes. 2023;14:1235. doi: 10.3390/genes14061235. PubMed DOI PMC
Varillas-Delgado D, Del Coso J, Gutiérrez-Hellín J, Aguilar-Navarro M, Muñoz A, Maestro A, et al. Genetics and sports performance: the present and future in the identification of talent for sports based on DNA testing. Eur J Appl Physiol. 2022;122:1811–30. doi: 10.1007/s00421-022-04945-z. PubMed DOI PMC
Petrigna L, Karsten B, Marcolin G, Paoli A, D’Antona G, Palma A, Bianco A. (2019). A review of countermovement and squat jump testing methods in the context of public health examination in adolescence: reliability and feasibility of current testing procedures. Frontiers in Physiology, 10, 1384.31. Bangsbo J, Mohr M, Krustrup P. Physical and metabolic demands of training and match-play in the elite soccer player. Journal of sports sciences. 2006;24:665–74. PubMed PMC
Bangsbo J, Mohr M, Krustrup P. Physical and metabolic demands of training and match-play in the elite soccer player. Journal of sports sciences. 2006;24:665–74. PubMed
Rampinini E, Impellizzeri FM, Castagna C, Abt G, Chamari K, Sassi A, et al. Factors influencing physiological responses to small-sided soccer games. J Sports Sci. 2007;25:659–66. doi: 10.1080/02640410600811858. PubMed DOI
Young WB, Newton RU, Doyle TLA, Chapman D, Cormack S, Stewart G, et al. Physiological and anthropometric characteristics of starters and non-starters and playing positions in elite Australian Rules Soccer: a case study. J Sci Med sport. 2005;8:333–45. doi: 10.1016/S1440-2440(05)80044-1. PubMed DOI
Krustrup P, Mohr M, Amstrup T, Rysgaard T, Johansen J, Steensberg A, et al. The Yo-Yo Intermittent Recovery Test: Physiological Response, Reliability, and Validity. Med Sci Sports Exerc. 2003;35:697–705. doi: 10.1249/01.MSS.0000058441.94520.32. PubMed DOI
Mohr M, Krustrup P, Bangsbo J. Match performance of high-standard soccer players with special reference to development of fatigue. J Sports Sci. 2003;21:519–28. doi: 10.1080/0264041031000071182. PubMed DOI
Bangsbo J. The physiology of soccer–with special reference to intense intermittent exercise. Acta Physiol Scand Suppl. 1994;619:1–155. PubMed
Léger LA, Lambert J. A maximal multistage 20-m shuttle run test to predict VO2 max. Eur J Appl Physiol Occup Physiol. 1982;49:1–12. doi: 10.1007/BF00428958. PubMed DOI
Atkins SJ. Performance of the Yo-Yo Intermittent Recovery Test by elite professional and semiprofessional rugby league players. J strength conditioning Res. 2006;20:222–5. PubMed
Mayhew S, Wenger H. Time-motion analysis of professional soccer. J Hum Mov Stud. 1985;11:49–52.
Vivian HH, Ann G. Advanced fitness assessment and exercise prescription. Human Kinetics; 2006.
Aslan BT, Eken BF, Kaman T, Sercan C, Ulucan K. Collagen type I alpha 1 (COL1A1) rs1800012 polymorphism in cyclists. Pamukkale J Sport Sci. 2020;11:1–4.
Coelho DB, Pimenta E, Rosse IC, Veneroso C, Becker LK, Carvalho MR, et al. The alpha-actinin-3 r577x polymorphism and physical performance in soccer players. J Sports Med Phys Fit. 2016;56:241–8. PubMed
McAuley ABT, Hughes DC, Tsaprouni LG, Varley I, Suraci B, Roos TR, et al. Genetic association research in soccer: A systematic review. Eur J sport Sci. 2021;21:714–52. doi: 10.1080/17461391.2020.1776401. PubMed DOI
Pickering C, Suraci B, Semenova EA, Boulygina EA, Kostryukova ES, Kulemin NA, et al. A Genome-Wide Association Study of Sprint Performance in Elite Youth Soccer Players. J strength conditioning Res. 2019;33:2344–51. doi: 10.1519/JSC.0000000000003259. PubMed DOI
Hughes DC, Day SH, Ahmetov II, Williams AG. Genetics of muscle strength and power: polygenic profile similarity limits skeletal muscle performance. J Sports Sci. 2011;29:1425–34. doi: 10.1080/02640414.2011.597773. PubMed DOI
Maciejewska-Skrendo A, Sawczuk M, Cięszczyk P, Ahmetov II. Genes and power athlete status. Sports, Exercise, and Nutritional Genomics. Elsevier; 2019. 41–72.
Ahmetov II, Mozhayskaya IA, Lyubaeva EV, Vinogradova OL, Rogozkin VA. PPARG Gene Polymorphism and Locomotor Activity in Humans. Bull Exp Biol Med. 2008;146:630–2. doi: 10.1007/s10517-009-0364-y. PubMed DOI
Ben-Zaken S, Eliakim A, Nemet D, Meckel Y. Genetic Variability Among Power Athletes: The Stronger vs. the Faster. J Strength Conditioning Res. 2019;33:1505–11. doi: 10.1519/JSC.0000000000001356. PubMed DOI
Homma H, Kobatake N, Sekimoto Y, Saito M, Mochizuki Y, Okamoto T, et al. Ciliary Neurotrophic Factor Receptor rs41274853 Polymorphism Is Associated With Weightlifting Performance in Japanese Weightlifters. J Strength Conditioning Res. 2020;34:3037–41. doi: 10.1519/JSC.0000000000003750. PubMed DOI
Massidda M, Corrias L, Ibba G, Scorcu M, Vona G, Calò CM. Genetic markers and explosive leg-muscle strength in elite Italian soccer players. J Sports Med Phys Fit. 2012;52:328–34. PubMed
Dinç N, Yücel SB, Taneli F, Sayın MV. The effect of the MTHFR C677T mutation on athletic performance and the homocysteine level of soccer players and sedentary individuals. J Hum kinetics. 2016;51:61–9. doi: 10.1515/hukin-2015-0171. PubMed DOI PMC
Lulińska-Kuklik E, Rahim M, Domańska-Senderowska D, Ficek K, Michałowska-Sawczyn M, Moska W, et al. Interactions between COL5A1 Gene and Risk of the Anterior Cruciate Ligament Rupture. J Hum kinetics. 2018;62:65–71. doi: 10.1515/hukin-2017-0177. PubMed DOI PMC
Eynon N, Banting LK, Ruiz JR, Cieszczyk P, Dyatlov DA, Maciejewska-Karlowska A, et al. ACTN3 R577X polymorphism and team-sport performance: A study involving three European cohorts. J Sci Med Sport. 2014;17:102–6. doi: 10.1016/j.jsams.2013.02.005. PubMed DOI
Massidda M, Scorcu M, Calò CM. New Genetic Model for Predicting Phenotype Traits in Sports. Int J Sports Physiol Perform. 2014;9:554–60. doi: 10.1123/ijspp.2012-0339. PubMed DOI
Pimenta EM, Coelho DB, Veneroso CE, Barros Coelho EJ, Cruz IR, Morandi RF, et al. Effect of ACTN3 Gene on Strength and Endurance in Soccer Players. J Strength Conditioning Res. 2013;27:3286–92. doi: 10.1519/JSC.0b013e3182915e66. PubMed DOI
Santiago C, Gonzalez-Freire M, Serratosa L, Morate FJ, Meyer T, Gomez-Gallego F, et al. ACTN3 genotype in professional soccer players. Br J Sports Med. 2007;42:71–3. doi: 10.1136/bjsm.2007.039172. PubMed DOI
Coelho D, Pimenta E, Rosse I, de Castro B, Becker L, de Oliveira E, et al. Evidence for a Role of ACTN3 R577X Polymorphism in Soccer Player’s Career Progression. Int J Sports Med. 2018;39:1088–93. doi: 10.1055/a-0753-4973. PubMed DOI
Egorova ES, Borisova AV, Mustafina LJ, Arkhipova AA, Gabbasov RT, Druzhevskaya AM, et al. The polygenic profile of Russian soccer players. J Sports Sci. 2014;32:1286–93. doi: 10.1080/02640414.2014.898853. PubMed DOI
Gineviciene V, Jakaitiene A, Tubelis L, Kucinskas V. Variation in the ACE, PPARGC1A and PPARA genes in Lithuanian soccer players. Eur J Sport Sci. 2014;14:289–95. doi: 10.1080/17461391.2012.691117. PubMed DOI
Proia P, Bianco A, Schiera G, Saladino P, Contrò V, Caramazza G, et al. PPARα gene variants as predicted performance-enhancing polymorphisms in professional Italian soccer players. Open access journal of sports medicine. 2014;5:273–8. PubMed PMC
Amir O, Amir R, Yamin C, Attias E, Eynon N, Sagiv M, et al. The ACE deletion allele is associated with Israeli elite endurance athletes. Exp Physiol. 2007;92:881–6. doi: 10.1113/expphysiol.2007.038711. PubMed DOI
Vincent B, De Bock K, Ramaekers M, Van den Eede E, Van Leemputte M, Hespel P, et al. ACTN3 (R577X) genotype is associated with fiber type distribution. Physiol Genom. 2007;32:58–63. doi: 10.1152/physiolgenomics.00173.2007. PubMed DOI
Yang N, Garton F, North K. alpha-actinin-3 and performance. Med Sport Sci. 2009;54:88–101. doi: 10.1159/000235698. PubMed DOI
Coelho DB, Pimenta EM, Rosse IC, Veneroso C, Pussieldi GDA, Becker LK, et al. Alpha-Actinin-3 R577X Polymorphism Influences Muscle Damage and Hormonal Responses After a Soccer Game. J Strength Conditioning Res. 2019;33:2655–64. doi: 10.1519/JSC.0000000000002575. PubMed DOI
Kikuchi N, Miyamoto-Mikami E, Murakami H, Nakamura T, Min S-K, Mizuno M, et al. ACTN3 R577X genotype and athletic performance in a large cohort of Japanese athletes. Eur J sport Sci. 2016;16:694–701. doi: 10.1080/17461391.2015.1071879. PubMed DOI
Roth SM, Walsh S, Liu D, Metter EJ, Ferrucci L, Hurley BF. The ACTN3 R577X nonsense allele is under-represented in elite-level strength athletes. Eur J Hum genetics: EJHG. 2008;16:391–4. doi: 10.1038/sj.ejhg.5201964. PubMed DOI PMC
Druzhevskaya AM, Ahmetov II, Astratenkova IV, Rogozkin VA. Association of the ACTN3 R577X polymorphism with power athlete status in Russians. Eur J Appl Physiol. 2008;103:631–4. doi: 10.1007/s00421-008-0763-1. PubMed DOI
Jones N, Kiely J, Suraci B, Collins DJ, de Lorenzo D, Pickering C, et al. A genetic-based algorithm for personalized resistance training. Biology of sport. 2016;33:117–26. doi: 10.5604/20831862.1198210. PubMed DOI PMC
Papadimitriou ID, Papadopoulos C, Kouvatsi A, Triantaphyllidis C. The ACE I/D polymorphism in elite Greek track and field athletes. J Sports Med Phys Fit. 2009;49:459–63. PubMed
MacArthur DG, North KN. A gene for speed? The evolution and function of alpha-actinin-3. BioEssays: news and reviews in molecular cellular and developmental biology. 2004;26:786–95. doi: 10.1002/bies.20061. PubMed DOI
Alfred T, Ben-Shlomo Y, Cooper R, Hardy R, Cooper C, Deary IJ, et al. ACTN3 genotype, athletic status, and life course physical capability: meta‐analysis of the published literature and findings from nine studies. Hum Mutat. 2011;32:1008–18. doi: 10.1002/humu.21526. PubMed DOI PMC
Ulucan K, Sercan C, Biyikli T. Distribution of Angiotensin-1 Converting Enzyme Insertion/Deletion and α-Actinin-3 Codon 577 Polymorphisms in Turkish Male Soccer Players. Genet epigenetics. 2015;7:1–4. PubMed PMC
Chan S, Seto JT, Houweling PJ, Yang N, North KN, Head SI. Properties of extensor digitorum longus muscle and skinned fibers from adult and aged male and female Actn3 knockout mice. Muscle Nerve. 2011;43:37–48. doi: 10.1002/mus.21778. PubMed DOI
Li X, Ooi FK, Zilfalil BA, Yusoff S. The influence of angiotensin-converting enzyme gene ID polymorphism on human physical fitness performance in European and other populations. Sport Sci Health. 2017;13:495–506. doi: 10.1007/s11332-016-0340-7. DOI
Gentil P, Pereira RW, Leite TKM, Bottaro M. ACTN3 R577X Polymorphism and Neuromuscular Response to Resistance Training. J sports Sci Med. 2011;10:393–9. PubMed PMC
Scott RA, Irving R, Irwin L, Morrison E, Charlton V, Austin K, et al. ACTN3 and ACE genotypes in elite Jamaican and US sprinters. Med Sci Sports Exerc. 2010;42:107–12. doi: 10.1249/MSS.0b013e3181ae2bc0. PubMed DOI
Delmonico MJ, Kostek MC, Doldo NA, Hand BD, Walsh S, Conway JM et al. Alpha-actinin-3 (ACTN3) R577X polymorphism influences knee extensor peak power response to strength training in older men and women. The journals of gerontology Series A, Biological sciences and medical sciences. 2007;62:206–12. PubMed
Pereira A, Costa AM, Izquierdo M, Silva AJ, Bastos E, Marques MC, ACE I/D ACTN3 R/X polymorphisms as potential factors in modulating exercise-related phenotypes in older women in response to a muscle power training stimuli. Age (Dordrecht Netherlands) 2013;35:1949–59. doi: 10.1007/s11357-012-9461-3. PubMed DOI PMC
Erskine RM, Williams AG, Jones DA, Stewart CE, Degens H. The individual and combined influence of ACE and ACTN3 genotypes on muscle phenotypes before and after strength training. Scand J Med Sci Sports. 2014;24:642–8. doi: 10.1111/sms.12055. PubMed DOI
Clarkson PM, Devaney JM, Gordish-Dressman H, Thompson PD, Hubal MJ, Urso M, et al. ACTN3 genotype is associated with increases in muscle strength in response to resistance training in women. J Appl Physiol. 2005;99:154–63. doi: 10.1152/japplphysiol.01139.2004. PubMed DOI
Garatachea N, Verde Z, Santos-Lozano A, Yvert T, Rodriguez-Romo G, Sarasa FJ, et al. ACTN3 R577X polymorphism and explosive leg-muscle power in elite basketball players. Int J Sports Physiol Perform. 2014;9:226–32. doi: 10.1123/ijspp.2012-0331. PubMed DOI
Fields JB, Payne DC, Gallo S, Busteed DR, Jones MT. Vitamin D Status Differs by Sex, Sport-Season, and Skin Pigmentation among Elite Collegiate Basketball Players. Sports (Basel, Switzerland). 2019;7. PubMed PMC
Döring FE, Onur S, Geisen U, Boulay MR, Pérusse L, Rankinen T, et al. ACTN3 R577X and other polymorphisms are not associated with elite endurance athlete status in the Genathlete study. J Sports Sci. 2010;28:1355–9. doi: 10.1080/02640414.2010.507675. PubMed DOI
Ruiz JR, Fernández del Valle M, Verde Z, Díez-Vega I, Santiago C, Yvert T, et al. ACTN3 R577X polymorphism does not influence explosive leg muscle power in elite volleyball players. Scand J Med Sci Sports. 2011;21:e34–41. doi: 10.1111/j.1600-0838.2010.01134.x. PubMed DOI
Salgueirosa FM, Rodrigues P, Seniski G, Wharton L, Osiecki R. ACTN3 R577X and ACE I/D genotype frequencies of professional soccer players in Brazil. J Exerc Physiol Online. 2017;20:129–38.
Massidda M, Scorcu M, Calò CM. New genetic model for predicting phenotype traits in sports. Int J Sports Physiol Perform. 2014;9:554–60. doi: 10.1123/ijspp.2012-0339. PubMed DOI
Santiago C, González-Freire M, Serratosa L, Morate FJ, Meyer T, Gómez-Gallego F, et al. ACTN3 genotype in professional soccer players. Br J Sports Med. 2008;42:71–3. doi: 10.1136/bjsm.2007.039172. PubMed DOI
Dionísio TJ, Thiengo CR, Brozoski DT, Dionísio EJ, Talamoni GA, Silva RB et al. The influence of genetic polymorphisms on performance and cardiac and hemodynamic parameters among Brazilian soccer players. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme. 2017;42:596–604. PubMed
Di Salvo V, Gregson W, Atkinson G, Tordoff P, Drust B. Analysis of high intensity activity in Premier League soccer. Int J Sports Med. 2009;30:205–12. doi: 10.1055/s-0028-1105950. PubMed DOI
Rampinini E, Impellizzeri FM, Castagna C, Coutts AJ, Wisløff U. Technical performance during soccer matches of the Italian Serie A league: Effect of fatigue and competitive level. J Sci Med Sport. 2009;12:227–33. doi: 10.1016/j.jsams.2007.10.002. PubMed DOI
Pickering C, Kiely J. ACTN3: More than Just a Gene for Speed. Front Physiol. 2017;8. PubMed PMC
Petr M, Thiel D, Kateřina K, Brož P, Malý T, Zahálka F, et al. Speed and power-related gene polymorphisms associated with playing position in elite soccer players. Biology of Sport. 2022;39:355–66. doi: 10.5114/biolsport.2022.105333. PubMed DOI PMC
Eken BF, Yılmaz ÖÖ, Polat T, Tacal Aslan B, Ulucan K. Türk Futbolcularda Alfa- Aktinin-3 (ACTN3) ve Anjiyotensin Dönüştürücü Enzim (ACE) Polimorfizmleri Atletik Performans için Bir Biyobelirteç Olabilir mi? Eurasian Res Sport Sci. 2021;6:147–59. doi: 10.29228/ERISS.13. DOI
Di Salvo V, Baron R, Tschan H, Calderon Montero FJ, Bachl N, Pigozzi F. Performance characteristics according to playing position in elite soccer. Int J Sports Med. 2007;28:222–7. doi: 10.1055/s-2006-924294. PubMed DOI
Krustrup P, Bangsbo J. Physiological demands of top-class soccer refereeing in relation to physical capacity: effect of intense intermittent exercise training. J Sports Sci. 2001;19:881–91. doi: 10.1080/026404101753113831. PubMed DOI
Ekblom B. Applied physiology of soccer. Sports medicine (Auckland, NZ). 1986;3:50–60. PubMed
Mutlucan H, Bıyıklı T, Eken BF, Sercan C, Kapıcı S, Ulucan K. Türk profesyonel futbolcularda alfa-aktinin-3n r577 x polimorfizminin incelenmesi. Marmara Üniversitesi Spor Bilimleri Dergisi. 2017;2:1–7.
Végh D, Reichwalderová K, Slaninová M, Vavák M. The Effect of Selected Polymorphisms of the ACTN3, ACE, HIF1A and PPARA Genes on the Immediate Supercompensation Training Effect of Elite Slovak Endurance Runners and Soccer Players. Genes. 2022;13:1525. doi: 10.3390/genes13091525. PubMed DOI PMC
Alvarez-Romero J, Voisin S, Eynon N, Hiam D. Mapping Robust Genetic Variants Associated with Exercise Responses. Int J Sports Med. 2021;42:3–18. doi: 10.1055/a-1198-5496. PubMed DOI
Ahmetov II, Gavrilov DN, Astratenkova IV, Druzhevskaya AM, Malinin AV, Romanova EE, et al. The association of ACE, ACTN3 and PPARA gene variants with strength phenotypes in middle school-age children. J Physiological Sci. 2013;63:79–85. doi: 10.1007/s12576-012-0233-8. PubMed DOI PMC
Murtagh CF, Brownlee TE, Rienzi E, Roquero S, Moreno S, Huertas G, et al. The genetic profile of elite youth soccer players and its association with power and speed depends on maturity status. PLoS ONE. 2020;15:e0234458. doi: 10.1371/journal.pone.0234458. PubMed DOI PMC
Ahmetov II, Fedotovskaya ON. Sports genomics: Current state of knowledge and future directions. Cell Mol Exerc Physiol. 2012;1.
Meckel Y, Eliakim A, Nemet D, Levin N, Ben-Zaken S. PPARD CC and ACTN3 RR genotype prevalence among elite soccer players. Sci Med Soccer. 2020;4:156–61.