Dynamic karyotype evolution and unique sex determination systems in Leptidea wood white butterflies

. 2015 May 19 ; 15 () : 89. [epub] 20150519

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25981157
Odkazy

PubMed 25981157
PubMed Central PMC4436027
DOI 10.1186/s12862-015-0375-4
PII: 10.1186/s12862-015-0375-4
Knihovny.cz E-zdroje

BACKGROUND: Chromosomal rearrangements have the potential to limit the rate and pattern of gene flow within and between species and thus play a direct role in promoting and maintaining speciation. Wood white butterflies of the genus Leptidea are excellent models to study the role of chromosome rearrangements in speciation because they show karyotype variability not only among but also within species. In this work, we investigated genome architecture of three cryptic Leptidea species (L. juvernica, L. sinapis and L. reali) by standard and molecular cytogenetic techniques in order to reveal causes of the karyotype variability. RESULTS: Chromosome numbers ranged from 2n = 85 to 91 in L. juvernica and 2n = 69 to 73 in L. sinapis (both from Czech populations) to 2n = 51 to 55 in L. reali (Spanish population). We observed significant differences in chromosome numbers and localization of cytogenetic markers (rDNA and H3 histone genes) within the offspring of individual females. Using FISH with the (TTAGG) n telomeric probe we also documented the presence of multiple chromosome fusions and/or fissions and other complex rearrangements. Thus, the intraspecific karyotype variability is likely due to irregular chromosome segregation of multivalent meiotic configurations. The analysis of female meiotic chromosomes by GISH and CGH revealed multiple sex chromosomes: W1W2W3Z1Z2Z3Z4 in L. juvernica, W1W2W3Z1Z2Z3 in L. sinapis and W1W2W3W4Z1Z2Z3Z4 in L. reali. CONCLUSIONS: Our results suggest a dynamic karyotype evolution and point to the role of chromosomal rearrangements in the speciation of Leptidea butterflies. Moreover, our study revealed a curious sex determination system with 3-4 W and 3-4 Z chromosomes, which is unique in the Lepidoptera and which could also have played a role in the speciation process of the three Leptidea species.

Zobrazit více v PubMed

van Nieukerken EJ, Kaila L, Kitching IJ, Kristensen NP, Lees DC, Minet J, et al. Order Lepidoptera Linnaeus, 1758. In Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness. Edited by Zhang ZQ. Zootaxa. 2011;3148:212–221.

Brown KS. The biology of Heliconius and related genera. Annu Rev Entomol. 1981;26:427–456. doi: 10.1146/annurev.en.26.010181.002235. DOI

Sheppard PM, Turner JRG, Brown KS, Benson WW, Singer MC. Genetics and the evolution of muellerian mimicry in Heliconius butterflies. Philos Trans R Soc Lond B. 1985;308:433–610. doi: 10.1098/rstb.1985.0066. DOI

Mallet J, Joron M. Evolution of diversity in warning color and mimicry: polymorphism, shifting balance and speciation. Annu Rev Ecol Syst. 1999;30:201–233. doi: 10.1146/annurev.ecolsys.30.1.201. DOI

Jiggins CD, Linares M, Naisbit RE, Salazar C, Yang ZH, Mallet J. Sex-linked hybrid sterility in a butterfly. Evolution. 2001;55:1631–1638. doi: 10.1111/j.0014-3820.2001.tb00682.x. PubMed DOI

Kronforst MR, Kapan DD, Gilbert LE. Parallel genetic architecture of parallel adaptive radiations in mimetic Heliconius butterflies. Genetics. 2006;174:535–539. doi: 10.1534/genetics.106.059527. PubMed DOI PMC

Jiggins CD, Naisbit RE, Coe RL, Mallet J. Reproductive isolation caused by colour pattern mimicry. Nature. 2001;411:302–305. doi: 10.1038/35077075. PubMed DOI

Scriber JM, Hagen RH, Lederhouse RC. Genetics of mimicry in the tiger swallowtail butterflies, Papilio glaucus and P. canadensis (Lepidoptera: Papilionidae) Evolution. 1996;50:222–236. doi: 10.2307/2410795. PubMed DOI

Kunte K, Shea C, Aardema ML, Scriber JM, Juenger TE, Gilbert LE, et al. Sex chromosome mosaicism and hybrid speciation among tiger swallowtail butterflies. PLoS Genet. 2011;7 doi: 10.1371/journal.pgen.1002274. PubMed DOI PMC

Zhang W, Kunte K, Kronforst MR. Genome-wide characterization of adaptation and speciation in tiger swallowtail butterflies using de novo transcriptome assemblies. Genome Biol Evol. 2013;5:1233–1245. doi: 10.1093/gbe/evt090. PubMed DOI PMC

Ando T, Inomata SI, Yamamoto M. Lepidopteran sex pheromones. Top Curr Chem. 2004;239:51–96. doi: 10.1007/b95449. PubMed DOI

Dopman EB, Robbins PS, Seaman A. Components of reproductive isolation between North American pheromone strains of the European corn borer. Evolution. 2010;64:881–902. doi: 10.1111/j.1558-5646.2009.00883.x. PubMed DOI PMC

Olsson SB, Kesevan S, Groot AT, Dekker T, Heckel DG, Hansson BS. Ostrinia revisited: Evidence for sex linkage in European corn borer Ostrinia nubilalis (Hübner) pheromone reception. BMC Evol Biol. 2010;10:285. doi: 10.1186/1471-2148-10-285. PubMed DOI PMC

Leary GP, Allen JE, Bunger PL, Luginbill JB, Linn CE, Jr, Macallister IE, et al. Single mutation to a sex pheromone receptor provides adaptive specificity between closely related moth species. Proc Natl Acad Sci U S A. 2012;109:14081–14086. doi: 10.1073/pnas.1204661109. PubMed DOI PMC

Lukhtanov VA, Kandul NP, Plotkin JB, Dantchenko AV, Haig D, Pierce NE. Reinforcement of pre-zygotic isolation and karyotype evolution in Agrodiaetus butterflies. Nature. 2005;436:385–389. doi: 10.1038/nature03704. PubMed DOI

Noor MA, Grams KL, Bertucci LA, Reiland J. Chromosomal inversions and the reproductive isolation of species. Proc Natl Acad Sci U S A. 2001;98:12084–12088. doi: 10.1073/pnas.221274498. PubMed DOI PMC

Rieseberg LH. Chromosomal rearrangements and speciation. Trends Ecol Evol. 2001;16:351–358. doi: 10.1016/S0169-5347(01)02187-5. PubMed DOI

Faria R, Navarro A. Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends Ecol Evol. 2010;25:660–669. doi: 10.1016/j.tree.2010.07.008. PubMed DOI

Sperling FAH. Sex-linked genes and species-differences in Lepidoptera. Can Entomol. 1994;126:807–818. doi: 10.4039/Ent126807-3. DOI

Prowell DP. Sex Linkage and Speciation in Lepidoptera. In: Howard DJ, Berlocher SH, editors. Endless Forms: Species and Speciation. New York: Oxford University Press; 1998. pp. 309–319.

Yoshido A, Sahara K, Marec F, Matsuda Y. Step-by-step evolution of neo-sex chromosomes in geographical populations of wild silkmoths, Samia cynthia ssp. Heredity. 2011;106:614–624. doi: 10.1038/hdy.2010.94. PubMed DOI PMC

Yoshido A, Šíchová J, Kubíčková S, Marec F, Sahara K. Rapid turnover of the W chromosome in geographical populations of wild silkmoths, Samia cynthia ssp. Chromosome Res. 2013;21:149–164. doi: 10.1007/s10577-013-9344-1. PubMed DOI

Carpenter JE, Bloem S, Marec F. Inherited Sterility in Insects. In: Dyck VA, Hendrichs J, Robinson AS, editors. Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest Management. Dordrecht: Springer; 2005. pp. 115–146.

Pringle EG, Baxter SW, Webster CL, Papanicolaou A, Lee SF, Jiggins CD. Synteny and chromosome evolution in the Lepidoptera: Evidence from mapping in Heliconius melpomene. Genetics. 2007;177:417–426. doi: 10.1534/genetics.107.073122. PubMed DOI PMC

Beldade P, Saenko SV, Pul N, Long AD. A gene-based linkage map for Bicyclus anynana butterflies allows for a comprehensive analysis of synteny with the lepidopteran reference genome. PLoS Genet. 2009;5 doi: 10.1371/journal.pgen.1000366. PubMed DOI PMC

Yasukochi Y, Tanaka-Okuyama M, Shibata F, Yoshido A, Marec F, Wu C, et al. Extensive conserved synteny of genes between the karyotypes of Manduca sexta and Bombyx mori revealed by BAC-FISH mapping. PLoS ONE. 2009;4 doi: 10.1371/journal.pone.0007465. PubMed DOI PMC

d’Alençon E, Sezutsu H, Legeai F, Permal E, Bernard-Samain S, Gimenez S, et al. Extensive synteny conservation of holocentric chromosomes in Lepidoptera despite high rates of local genome rearrangements. Proc Natl Acad Sci U S A. 2010;107:7680–7685. doi: 10.1073/pnas.0910413107. PubMed DOI PMC

Baxter SW, Davey JW, Johnston JS, Shelton AM, Heckel DG, Jiggins CD, et al. Linkage mapping and comparative genomics using next-generation RAD sequencing of a non-model organism. PLoS ONE. 2011;6 doi: 10.1371/journal.pone.0019315. PubMed DOI PMC

Sahara K, Yoshido A, Shibata F, Fujikawa-Kojima N, Okabe T, Tanaka-Okuyama M, et al. FISH identification of Helicoverpa armigera and Mamestra brassicae chromosomes by BAC and fosmid probes. Insect Biochem Mol Biol. 2013;43:644–653. doi: 10.1016/j.ibmb.2013.04.003. PubMed DOI

Van’t Hof AE, Nguyen P, Dalíková M, Edmonds N, Marec F, Saccheri IJ. Linkage map of the peppered moth, Biston betularia (Lepidoptera, Geometridae): a model of industrial melanism. Heredity. 2013;110:283–295. doi: 10.1038/hdy.2012.84. PubMed DOI PMC

Suomalainen E. Chromosome evolution in the Lepidoptera. Chromosomes Today. 1969;2:132–138.

Ahola V, Lehtonen R, Somervuo P, Salmela L, Koskinen P, Rastas P, et al. The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. Nat Commun. 2014;5:4737. doi: 10.1038/ncomms5737. PubMed DOI PMC

Robinson R. Lepidoptera Genetics. Oxford: Pergamon Press; 1971.

De Prins J, Saitoh K. Karyology and Sex Determination. In: Kristensen NP, editor. Lepidoptera, Moths and Butterflies: Morphology, Physiology and Development. Berlin: Walter de Gruyter; 2003. pp. 449–468.

Kandul NP, Lukhtanov VA, Dantchenko DA, Coleman JWS, Sekercioglu C, Haig D, et al. Phylogeny of Agrodiaetus Hübner 1822 (Lepidoptera: Lycaenidae) inferred from mtDNA sequences of COI and COII and nuclear sequences of EF1- α: karyotype diversification and species radiation. Syst Biol. 2004;53:278–298. doi: 10.1080/10635150490423692. PubMed DOI

de Lesse H. Les nombres de chromosomes dans le groupe de Lysandra argester et leur incidence sur la taxonomie. Bull Soc Entomol Fr. 1970;75:64–68.

Lukhtanov VA, Danchenko AD. Principles of the highly ordered arrangement of metaphase I bivalents in spermatocytes of Agrodiaetus (Insecta, Lepidoptera) Chromosome Res. 2002;10:5–20. doi: 10.1023/A:1014249607796. PubMed DOI

Dincă V, Lukhtanov VA, Talavera G, Vila R. Unexpected layers of cryptic diversity in wood white Leptidea butterflies. Nat Commun. 2011;2:324. doi: 10.1038/ncomms1329. PubMed DOI

Lukhtanov VA, Dincă V, Talavera G, Vila R. Unprecedented within-species chromosome number cline in the Wood White butterfly Leptidea sinapis and its significance for karyotype evolution and speciation. BMC Evol Biol. 2011;11:109. doi: 10.1186/1471-2148-11-109. PubMed DOI PMC

Maeki K. On the cytotaxonomical relationship in Leptidea (Lepidoptera-Rhopalocera) Jpn J Genet. 1958;33:283–285. doi: 10.1266/jjg.33.283. DOI

Dincă V, Wiklund C, Lukhtanov VA, Kodandaramaiah U, Norén K, Dapporto L, et al. Reproductive isolation and patterns of genetic differentiation in a cryptic butterfly species complex. J Evol Biol. 2013;26:2095–2106. doi: 10.1111/jeb.12211. PubMed DOI PMC

Marec F, Traut W. Sex chromosome pairing and sex chromatin bodies in W-Z translocation strains of Ephestia kuehniella (Lepidoptera) Genome. 1994;37:426–435. doi: 10.1139/g94-060. PubMed DOI

Fuková I, Nguyen P, Marec F. Codling moth cytogenetics: karyotype, chromosomal location of rDNA and molecular differentiation of sex chromosomes. Genome. 2005;48:1083–1092. doi: 10.1139/g05-063. PubMed DOI

Traut W, Marec F. Sex chromatin in Lepidoptera. Q Rev Biol. 1996;71:239–256. doi: 10.1086/419371. PubMed DOI

Mediouni J, Fuková I, Frydrychová R, Dhouibi MH, Marec F. Karyotype, sex chromatin and sex chromosome differentiation in the carob moth, Ectomyelois ceratoniae (Lepidoptera: Pyralidae) Caryologia. 2004;57:184–194. doi: 10.1080/00087114.2004.10589391. DOI

Traut W, Sahara K, Marec F. Sex chromosomes and sex determination in Lepidoptera. Sex Dev. 2007;1:332–346. doi: 10.1159/000111765. PubMed DOI

Traut W, Weith A, Traut G. Structural mutants of the W chromosome in Ephestia (Insecta, Lepidoptera) Genetica. 1986;70:69–79. doi: 10.1007/BF00123216. DOI

Colombo PC. Cytogeography of three parallel Robertsonian polymorphisms in the water-hyacinth grasshopper, Cornops aquaticum (Orthoptera: Acrididae) Eur J Entomol. 2008;105:59–64. doi: 10.14411/eje.2008.008. DOI

Castiglia R, Annesi F, Capanna E. Geographical pattern of genetic variation in the Robertsonian system of Mus musculus domesticus in central Italy. Biol J Linn Soc Lond. 2005;84:395–405. doi: 10.1111/j.1095-8312.2005.00442.x. DOI

White TA, Bordewich M, Searle JB. A network approach to study karyotypic evolution: the chromosomal races of the common shrew (Sorex araneus) and house mouse (Mus musculus) as model systems. Syst Biol. 2010;59:262–276. doi: 10.1093/sysbio/syq004. PubMed DOI

Nguyen P, Sahara K, Yoshido A, Marec F. Evolutionary dynamics of rDNA clusters on chromosomes of moths and butterflies (Lepidoptera) Genetica. 2010;138:343–354. doi: 10.1007/s10709-009-9424-5. PubMed DOI

Šíchová J, Nguyen P, Dalíková M, Marec F. Chromosomal evolution in tortricid moths: conserved karyotypes with diverged features. PLoS ONE. 2013;8 doi: 10.1371/journal.pone.0064520. PubMed DOI PMC

Cabrero J, López-León MD, Teruel M, Camacho JPM. Chromosome mapping of H3 and H4 histone gene clusters in 35 species of acridid grasshoppers. Chromosome Res. 2009;17:397–404. doi: 10.1007/s10577-009-9030-5. PubMed DOI

Cabral-de-Mello DC, Oliveira SG, de Moura RC, Martins C. Chromosomal organization of the 18S and 5S rRNAs and histone H3 genes in Scarabaeinae coleopterans: insights into the evolutionary dynamics of multigene families and heterochromatin. BMC Genet. 2011;12:88. doi: 10.1186/1471-2156-12-88. PubMed DOI PMC

Yoshido A, Marec F, Sahara K. Resolution of sex chromosome constitution by genomic in situ hybridization and fluorescence in situ hybridization with (TTAGG)n telomeric probe in some species of Lepidoptera. Chromosoma. 2005;114:193–202. doi: 10.1007/s00412-005-0013-9. PubMed DOI

Rens W, Grützner F, O’Brien PCM, Fairclough HF, Graves JAM, Ferguson-Smith MA. Resolution and evolution of the duck-billed platypus karyotype with an X1Y1X2Y2X3Y3X4Y4X5Y5 male sex chromosome constitution. Proc Natl Acad Sci U S A. 2004;101:16257–16261. doi: 10.1073/pnas.0405702101. PubMed DOI PMC

Veyrunes F, Waters PD, Miethke P, Rens W, McMillan D, Alsop AE, et al. Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes. Genome Res. 2008;18:965–973. doi: 10.1101/gr.7101908. PubMed DOI PMC

Cioffi MB, Sánchez A, Marchal JA, Kosyakova N, Liehr T, Trifonov V, et al. Cross-species chromosome painting tracks the independent origin of multiple sex chromosomes in two cofamiliar Erythrinidae fishes. BMC Evol Biol. 2011;11:186. doi: 10.1186/1471-2148-11-186. PubMed DOI PMC

Blanco DR, Vicari MR, Lui RL, Artoni RF, de Almeida MC, Traldi JB, et al. Origin of the X1X1X2X2/X1X2Y sex chromosome system of Harttia punctata (Siluriformes, Loricariidae) inferred from chromosome painting and FISH with ribosomal DNA markers. Genetica. 2014;142:119–126. PubMed

Král J. Evolution of multiple sex chromosomes in the spider genus Malthonica (Araneae: Agelenidae) indicates unique structure of the spider sex chromosome systems. Chromosome Res. 2007;15:863–879. doi: 10.1007/s10577-007-1169-3. PubMed DOI

Král J, Kořínková T, Forman M, Krkavcová L. Insights into the meiotic behavior and evolution of multiple sex chromosome systems in spiders. Cytogenet Genome Res. 2011;133:43–66. doi: 10.1159/000323497. PubMed DOI

Traut W, Marec F. Sex chromosome differentiation in some species of Lepidoptera (Insecta) Chromosome Res. 1997;5:283–291. doi: 10.1023/B:CHRO.0000038758.08263.c3. PubMed DOI

Yoshido A, Bando H, Yasukochi Y, Sahara K. The Bombyx mori karyotype and the assignment of linkage groups. Genetics. 2005;170:675–685. doi: 10.1534/genetics.104.040352. PubMed DOI PMC

Sahara K, Marec F, Eickhoff U, Traut W. Moth sex chromatin probed by comparative genomic hybridization (CGH) Genome. 2003;46:339–342. doi: 10.1139/g03-003. PubMed DOI

Lahn BT, Page DC. Four evolutionary strata on the human X chromosome. Science. 1999;286:964–967. doi: 10.1126/science.286.5441.964. PubMed DOI

Bergero R, Forrest A, Kamau E, Charlesworth D. Evolutionary strata on the X chromosomes of the dioecious plant Silene latifolia: evidence from new sex-linked genes. Genetics. 2007;75:1945–1954. doi: 10.1534/genetics.106.070110. PubMed DOI PMC

Nam K, Ellegren H. The chicken (Gallus gallus) Z chromosome contains at least three nonlinear evolutionary strata. Genetics. 2008;180:1131–1136. doi: 10.1534/genetics.108.090324. PubMed DOI PMC

Mácha J, Teichmanová R, Sater AK, Wells DE, Tlapáková T, Zimmerman LB, et al. Deep ancestry of mammalian X chromosome revealed by comparison with the basal tetrapod Xenopus tropicalis. BMC Genomics. 2012;13:315. doi: 10.1186/1471-2164-13-315. PubMed DOI PMC

Wang J, Na J-K, Yu Q, Gschwend AR, Han J, Zeng F, et al. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc Natl Acad Sci U S A. 2012;109:13710–13715. doi: 10.1073/pnas.1207833109. PubMed DOI PMC

Baker RJ, Bickham JW. Speciation by monobrachial centric fusions. Proc Natl Acad Sci U S A. 1986;83:8245–8248. doi: 10.1073/pnas.83.21.8245. PubMed DOI PMC

Bidau CJ, Giménez MD, Palmer CL, Searle JB. The effects of Robertsonian fusions on chiasma frequency and distribution in the house mouse (Mus musculus domesticus) from a hybrid zone in northern Scotland. Heredity. 2001;87:305–313. doi: 10.1046/j.1365-2540.2001.00877.x. PubMed DOI

Basset P, Yannic G, Brünner H, Hausser J. Restricted gene flow at specific parts of the shrew genome in chromosomal hybrid zones. Evolution. 2006;60:1718–1730. doi: 10.1111/j.0014-3820.2006.tb00515.x. PubMed DOI

Hipp AL, Rothrock PE, Roalson EH. The evolution of chromosome arrangements in Carex (Cyperaceae) Bot Rev. 2009;75:96–109. doi: 10.1007/s12229-008-9022-8. DOI

Melters DP, Paliulis LV, Korf IF, Chan SWL. Holocentric chromosomes: convergent evolution, meiotic adaptations and genomic analysis. Chromosome Res. 2012;20:579–593. doi: 10.1007/s10577-012-9292-1. PubMed DOI

Wrensch DL, Kethley JB, Norton RA. Cytogenetics of Holokinetic Chromosomes and Inverted Meiosis: Keys to the Evolutionary Success of Mites, with Generalization on Eukaryotes. In: Houck MA, editor. Mites: Ecological and Evolutionary Analyses of Life-History Patterns. New York: Chapman & Hall; 1994. pp. 282–343.

Marec F, Tothová A, Sahara K, Traut W. Meiotic pairing of sex chromosome fragments and its relation to atypical transmission of a sex-linked marker in Ephestia kuehniella (Insecta: Lepidoptera) Heredity. 2001;87:659–671. doi: 10.1046/j.1365-2540.2001.00958.x. PubMed DOI

Bureš P, Zedek F. Holokinetic drive: centromere drive in chromosomes without centromeres. Evolution. 2014;68:2412–2420. PubMed

Hipp AL, Rothrock PE, Whitkus R, Weber JA. Chromosomes tell half of the story: the correlation between karyotype rearrangements and genetic diversity in sedges, a group with holocentric chromosomes. Mol Ecol. 2010;19:3124–3138. doi: 10.1111/j.1365-294X.2010.04741.x. PubMed DOI

Sætre GP, Borge T, Lindroos K, Haavie J, Sheldon BC, Primmer C, et al. Sex chromosome evolution and speciation in Ficedula flycatchers. Proc Biol Sci. 2003;270:53–59. doi: 10.1098/rspb.2002.2204. PubMed DOI PMC

Ellegren H. Genomic evidence for large-Z effect. Proc Biol Sci. 2009;276:361–366. doi: 10.1098/rspb.2008.1135. PubMed DOI PMC

Štorchová R, Reif J, Nachman MW. Female heterogamety and speciation: reduced introgression of the Z chromosome between two species of nightingales. Evolution. 2010;64:456–471. doi: 10.1111/j.1558-5646.2009.00841.x. PubMed DOI PMC

Carling MD, Brumfield RT. Haldane’s rule in an avian system: using cline theory and divergence population genetics to test for differential introgression of mitochondrial, autosomal and sex-linked loci across the Passerina bunting hybrid zone. Evolution. 2008;62:2600–2615. doi: 10.1111/j.1558-5646.2008.00477.x. PubMed DOI

Carling MD, Brumfield RT. Speciation in Passerina buntings: introgression patterns of sex- linked loci identify a candidate gene region for reproductive isolation. Mol Ecol. 2009;18:834–847. doi: 10.1111/j.1365-294X.2008.04038.x. PubMed DOI

Naisbit RE, Jiggins CD, Linares M, Salazar C, Mallet J. Hybrid sterility. Haldane’s rule and speciation in Heliconius cydno and H. melpomene. Genetics. 2002;161:1517–1526. PubMed PMC

Nguyen P, Sýkorová M, Šíchová J, Kůta V, Dalíková M, Čapková Frydrychová R, et al. Neo-sex chromosomes and adaptive potential in tortricid pests. Proc Natl Acad Sci U S A. 2013;110:6931–6936. doi: 10.1073/pnas.1220372110. PubMed DOI PMC

Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–425. PubMed

Nei M, Kumar S. Molecular Evolution and Phylogenetics. New York: Oxford University Press; 2000.

Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–791. doi: 10.2307/2408678. PubMed DOI

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–2729. doi: 10.1093/molbev/mst197. PubMed DOI PMC

Sahara K, Marec F, Traut W. TTAGG telomeric repeats in chromosomes of some insects and other arthropods. Chromosome Res. 1999;7:449–460. doi: 10.1023/A:1009297729547. PubMed DOI

Traut W, Sahara K, Otto TD, Marec F. Molecular differentiation of sex chromosomes probed by comparative genomic hybridization. Chromosoma. 1999;108:173–180. doi: 10.1007/s004120050366. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The burst of satellite DNA in Leptidea wood white butterflies and their putative role in karyotype evolution

. 2024 Dec 01 ; 31 (6) : .

Sex-biased gene content is associated with sex chromosome turnover in Danaini butterflies

. 2024 Dec ; 33 (24) : e17256. [epub] 20240105

The Role of Repetitive Sequences in Repatterning of Major Ribosomal DNA Clusters in Lepidoptera

. 2023 Jun 01 ; 15 (6) : .

More hidden diversity in a cryptic species complex: a new subspecies of Leptideasinapis (Lepidoptera, Pieridae) from Northern Iran

. 2023 ; 17 () : 113-128. [epub] 20230504

A step forward in the genome characterization of the sugarcane borer, Diatraea saccharalis: karyotype analysis, sex chromosome system and repetitive DNAs through a cytogenomic approach

. 2022 Dec ; 131 (4) : 253-267. [epub] 20221011

Degenerated, Undifferentiated, Rearranged, Lost: High Variability of Sex Chromosomes in Geometridae (Lepidoptera) Identified by Sex Chromatin

. 2021 Aug 28 ; 10 (9) : . [epub] 20210828

Large-scale comparative analysis of cytogenetic markers across Lepidoptera

. 2021 Jun 09 ; 11 (1) : 12214. [epub] 20210609

The Role of Satellite DNAs in Genome Architecture and Sex Chromosome Evolution in Crambidae Moths

. 2021 ; 12 () : 661417. [epub] 20210330

Evolution of multiple sex-chromosomes associated with dynamic genome reshuffling in Leptidea wood-white butterflies

. 2020 Sep ; 125 (3) : 138-154. [epub] 20200609

Patterns of Sex Chromosome Differentiation in Spiders: Insights from Comparative Genomic Hybridisation

. 2020 Jul 24 ; 11 (8) : . [epub] 20200724

Absence of W Chromosome in Psychidae Moths and Implications for the Theory of Sex Chromosome Evolution in Lepidoptera

. 2019 Dec 05 ; 10 (12) : . [epub] 20191205

Sex Chromosome Turnover in Moths of the Diverse Superfamily Gelechioidea

. 2019 Apr 01 ; 11 (4) : 1307-1319.

Versatility of multivalent orientation, inverted meiosis, and rescued fitness in holocentric chromosomal hybrids

. 2018 Oct 09 ; 115 (41) : E9610-E9619. [epub] 20180928

Insights into the Structure of the Spruce Budworm (Choristoneura fumiferana) Genome, as Revealed by Molecular Cytogenetic Analyses and a High-Density Linkage Map

. 2018 Jul 31 ; 8 (8) : 2539-2549. [epub] 20180731

Sex Chromosomes of the Iconic Moth Abraxas grossulariata (Lepidoptera, Geometridae) and Its Congener A. sylvata

. 2018 May 31 ; 9 (6) : . [epub] 20180531

Neo-sex Chromosomes in the Monarch Butterfly, Danaus plexippus

. 2017 Oct 05 ; 7 (10) : 3281-3294. [epub] 20171005

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace