Dynamic karyotype evolution and unique sex determination systems in Leptidea wood white butterflies
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25981157
PubMed Central
PMC4436027
DOI
10.1186/s12862-015-0375-4
PII: 10.1186/s12862-015-0375-4
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce * MeSH
- histony genetika MeSH
- hmyzí proteiny genetika MeSH
- karyotyp MeSH
- motýli klasifikace genetika MeSH
- pohlavní chromozomy MeSH
- procesy určující pohlaví * MeSH
- ribozomální DNA genetika MeSH
- tok genů MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- histony MeSH
- hmyzí proteiny MeSH
- ribozomální DNA MeSH
BACKGROUND: Chromosomal rearrangements have the potential to limit the rate and pattern of gene flow within and between species and thus play a direct role in promoting and maintaining speciation. Wood white butterflies of the genus Leptidea are excellent models to study the role of chromosome rearrangements in speciation because they show karyotype variability not only among but also within species. In this work, we investigated genome architecture of three cryptic Leptidea species (L. juvernica, L. sinapis and L. reali) by standard and molecular cytogenetic techniques in order to reveal causes of the karyotype variability. RESULTS: Chromosome numbers ranged from 2n = 85 to 91 in L. juvernica and 2n = 69 to 73 in L. sinapis (both from Czech populations) to 2n = 51 to 55 in L. reali (Spanish population). We observed significant differences in chromosome numbers and localization of cytogenetic markers (rDNA and H3 histone genes) within the offspring of individual females. Using FISH with the (TTAGG) n telomeric probe we also documented the presence of multiple chromosome fusions and/or fissions and other complex rearrangements. Thus, the intraspecific karyotype variability is likely due to irregular chromosome segregation of multivalent meiotic configurations. The analysis of female meiotic chromosomes by GISH and CGH revealed multiple sex chromosomes: W1W2W3Z1Z2Z3Z4 in L. juvernica, W1W2W3Z1Z2Z3 in L. sinapis and W1W2W3W4Z1Z2Z3Z4 in L. reali. CONCLUSIONS: Our results suggest a dynamic karyotype evolution and point to the role of chromosomal rearrangements in the speciation of Leptidea butterflies. Moreover, our study revealed a curious sex determination system with 3-4 W and 3-4 Z chromosomes, which is unique in the Lepidoptera and which could also have played a role in the speciation process of the three Leptidea species.
Biodiversity Institute of Ontario University of Guelph N1G 2W1 Guelph ON Canada
Faculty of Science University of South Bohemia 370 05 České Budějovice Czech Republic
Institut de Biologia Evolutiva 08003 Barcelona Spain
Institute of Entomology Biology Centre CAS 370 05 České Budějovice Czech Republic
Laboratory of Applied Entomology Faculty of Agriculture Iwate University Morioka 020 8550 Japan
Zobrazit více v PubMed
van Nieukerken EJ, Kaila L, Kitching IJ, Kristensen NP, Lees DC, Minet J, et al. Order Lepidoptera Linnaeus, 1758. In Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness. Edited by Zhang ZQ. Zootaxa. 2011;3148:212–221.
Brown KS. The biology of Heliconius and related genera. Annu Rev Entomol. 1981;26:427–456. doi: 10.1146/annurev.en.26.010181.002235. DOI
Sheppard PM, Turner JRG, Brown KS, Benson WW, Singer MC. Genetics and the evolution of muellerian mimicry in Heliconius butterflies. Philos Trans R Soc Lond B. 1985;308:433–610. doi: 10.1098/rstb.1985.0066. DOI
Mallet J, Joron M. Evolution of diversity in warning color and mimicry: polymorphism, shifting balance and speciation. Annu Rev Ecol Syst. 1999;30:201–233. doi: 10.1146/annurev.ecolsys.30.1.201. DOI
Jiggins CD, Linares M, Naisbit RE, Salazar C, Yang ZH, Mallet J. Sex-linked hybrid sterility in a butterfly. Evolution. 2001;55:1631–1638. doi: 10.1111/j.0014-3820.2001.tb00682.x. PubMed DOI
Kronforst MR, Kapan DD, Gilbert LE. Parallel genetic architecture of parallel adaptive radiations in mimetic Heliconius butterflies. Genetics. 2006;174:535–539. doi: 10.1534/genetics.106.059527. PubMed DOI PMC
Jiggins CD, Naisbit RE, Coe RL, Mallet J. Reproductive isolation caused by colour pattern mimicry. Nature. 2001;411:302–305. doi: 10.1038/35077075. PubMed DOI
Scriber JM, Hagen RH, Lederhouse RC. Genetics of mimicry in the tiger swallowtail butterflies, Papilio glaucus and P. canadensis (Lepidoptera: Papilionidae) Evolution. 1996;50:222–236. doi: 10.2307/2410795. PubMed DOI
Kunte K, Shea C, Aardema ML, Scriber JM, Juenger TE, Gilbert LE, et al. Sex chromosome mosaicism and hybrid speciation among tiger swallowtail butterflies. PLoS Genet. 2011;7 doi: 10.1371/journal.pgen.1002274. PubMed DOI PMC
Zhang W, Kunte K, Kronforst MR. Genome-wide characterization of adaptation and speciation in tiger swallowtail butterflies using de novo transcriptome assemblies. Genome Biol Evol. 2013;5:1233–1245. doi: 10.1093/gbe/evt090. PubMed DOI PMC
Ando T, Inomata SI, Yamamoto M. Lepidopteran sex pheromones. Top Curr Chem. 2004;239:51–96. doi: 10.1007/b95449. PubMed DOI
Dopman EB, Robbins PS, Seaman A. Components of reproductive isolation between North American pheromone strains of the European corn borer. Evolution. 2010;64:881–902. doi: 10.1111/j.1558-5646.2009.00883.x. PubMed DOI PMC
Olsson SB, Kesevan S, Groot AT, Dekker T, Heckel DG, Hansson BS. Ostrinia revisited: Evidence for sex linkage in European corn borer Ostrinia nubilalis (Hübner) pheromone reception. BMC Evol Biol. 2010;10:285. doi: 10.1186/1471-2148-10-285. PubMed DOI PMC
Leary GP, Allen JE, Bunger PL, Luginbill JB, Linn CE, Jr, Macallister IE, et al. Single mutation to a sex pheromone receptor provides adaptive specificity between closely related moth species. Proc Natl Acad Sci U S A. 2012;109:14081–14086. doi: 10.1073/pnas.1204661109. PubMed DOI PMC
Lukhtanov VA, Kandul NP, Plotkin JB, Dantchenko AV, Haig D, Pierce NE. Reinforcement of pre-zygotic isolation and karyotype evolution in Agrodiaetus butterflies. Nature. 2005;436:385–389. doi: 10.1038/nature03704. PubMed DOI
Noor MA, Grams KL, Bertucci LA, Reiland J. Chromosomal inversions and the reproductive isolation of species. Proc Natl Acad Sci U S A. 2001;98:12084–12088. doi: 10.1073/pnas.221274498. PubMed DOI PMC
Rieseberg LH. Chromosomal rearrangements and speciation. Trends Ecol Evol. 2001;16:351–358. doi: 10.1016/S0169-5347(01)02187-5. PubMed DOI
Faria R, Navarro A. Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends Ecol Evol. 2010;25:660–669. doi: 10.1016/j.tree.2010.07.008. PubMed DOI
Sperling FAH. Sex-linked genes and species-differences in Lepidoptera. Can Entomol. 1994;126:807–818. doi: 10.4039/Ent126807-3. DOI
Prowell DP. Sex Linkage and Speciation in Lepidoptera. In: Howard DJ, Berlocher SH, editors. Endless Forms: Species and Speciation. New York: Oxford University Press; 1998. pp. 309–319.
Yoshido A, Sahara K, Marec F, Matsuda Y. Step-by-step evolution of neo-sex chromosomes in geographical populations of wild silkmoths, Samia cynthia ssp. Heredity. 2011;106:614–624. doi: 10.1038/hdy.2010.94. PubMed DOI PMC
Yoshido A, Šíchová J, Kubíčková S, Marec F, Sahara K. Rapid turnover of the W chromosome in geographical populations of wild silkmoths, Samia cynthia ssp. Chromosome Res. 2013;21:149–164. doi: 10.1007/s10577-013-9344-1. PubMed DOI
Carpenter JE, Bloem S, Marec F. Inherited Sterility in Insects. In: Dyck VA, Hendrichs J, Robinson AS, editors. Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest Management. Dordrecht: Springer; 2005. pp. 115–146.
Pringle EG, Baxter SW, Webster CL, Papanicolaou A, Lee SF, Jiggins CD. Synteny and chromosome evolution in the Lepidoptera: Evidence from mapping in Heliconius melpomene. Genetics. 2007;177:417–426. doi: 10.1534/genetics.107.073122. PubMed DOI PMC
Beldade P, Saenko SV, Pul N, Long AD. A gene-based linkage map for Bicyclus anynana butterflies allows for a comprehensive analysis of synteny with the lepidopteran reference genome. PLoS Genet. 2009;5 doi: 10.1371/journal.pgen.1000366. PubMed DOI PMC
Yasukochi Y, Tanaka-Okuyama M, Shibata F, Yoshido A, Marec F, Wu C, et al. Extensive conserved synteny of genes between the karyotypes of Manduca sexta and Bombyx mori revealed by BAC-FISH mapping. PLoS ONE. 2009;4 doi: 10.1371/journal.pone.0007465. PubMed DOI PMC
d’Alençon E, Sezutsu H, Legeai F, Permal E, Bernard-Samain S, Gimenez S, et al. Extensive synteny conservation of holocentric chromosomes in Lepidoptera despite high rates of local genome rearrangements. Proc Natl Acad Sci U S A. 2010;107:7680–7685. doi: 10.1073/pnas.0910413107. PubMed DOI PMC
Baxter SW, Davey JW, Johnston JS, Shelton AM, Heckel DG, Jiggins CD, et al. Linkage mapping and comparative genomics using next-generation RAD sequencing of a non-model organism. PLoS ONE. 2011;6 doi: 10.1371/journal.pone.0019315. PubMed DOI PMC
Sahara K, Yoshido A, Shibata F, Fujikawa-Kojima N, Okabe T, Tanaka-Okuyama M, et al. FISH identification of Helicoverpa armigera and Mamestra brassicae chromosomes by BAC and fosmid probes. Insect Biochem Mol Biol. 2013;43:644–653. doi: 10.1016/j.ibmb.2013.04.003. PubMed DOI
Van’t Hof AE, Nguyen P, Dalíková M, Edmonds N, Marec F, Saccheri IJ. Linkage map of the peppered moth, Biston betularia (Lepidoptera, Geometridae): a model of industrial melanism. Heredity. 2013;110:283–295. doi: 10.1038/hdy.2012.84. PubMed DOI PMC
Suomalainen E. Chromosome evolution in the Lepidoptera. Chromosomes Today. 1969;2:132–138.
Ahola V, Lehtonen R, Somervuo P, Salmela L, Koskinen P, Rastas P, et al. The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. Nat Commun. 2014;5:4737. doi: 10.1038/ncomms5737. PubMed DOI PMC
Robinson R. Lepidoptera Genetics. Oxford: Pergamon Press; 1971.
De Prins J, Saitoh K. Karyology and Sex Determination. In: Kristensen NP, editor. Lepidoptera, Moths and Butterflies: Morphology, Physiology and Development. Berlin: Walter de Gruyter; 2003. pp. 449–468.
Kandul NP, Lukhtanov VA, Dantchenko DA, Coleman JWS, Sekercioglu C, Haig D, et al. Phylogeny of Agrodiaetus Hübner 1822 (Lepidoptera: Lycaenidae) inferred from mtDNA sequences of COI and COII and nuclear sequences of EF1- α: karyotype diversification and species radiation. Syst Biol. 2004;53:278–298. doi: 10.1080/10635150490423692. PubMed DOI
de Lesse H. Les nombres de chromosomes dans le groupe de Lysandra argester et leur incidence sur la taxonomie. Bull Soc Entomol Fr. 1970;75:64–68.
Lukhtanov VA, Danchenko AD. Principles of the highly ordered arrangement of metaphase I bivalents in spermatocytes of Agrodiaetus (Insecta, Lepidoptera) Chromosome Res. 2002;10:5–20. doi: 10.1023/A:1014249607796. PubMed DOI
Dincă V, Lukhtanov VA, Talavera G, Vila R. Unexpected layers of cryptic diversity in wood white Leptidea butterflies. Nat Commun. 2011;2:324. doi: 10.1038/ncomms1329. PubMed DOI
Lukhtanov VA, Dincă V, Talavera G, Vila R. Unprecedented within-species chromosome number cline in the Wood White butterfly Leptidea sinapis and its significance for karyotype evolution and speciation. BMC Evol Biol. 2011;11:109. doi: 10.1186/1471-2148-11-109. PubMed DOI PMC
Maeki K. On the cytotaxonomical relationship in Leptidea (Lepidoptera-Rhopalocera) Jpn J Genet. 1958;33:283–285. doi: 10.1266/jjg.33.283. DOI
Dincă V, Wiklund C, Lukhtanov VA, Kodandaramaiah U, Norén K, Dapporto L, et al. Reproductive isolation and patterns of genetic differentiation in a cryptic butterfly species complex. J Evol Biol. 2013;26:2095–2106. doi: 10.1111/jeb.12211. PubMed DOI PMC
Marec F, Traut W. Sex chromosome pairing and sex chromatin bodies in W-Z translocation strains of Ephestia kuehniella (Lepidoptera) Genome. 1994;37:426–435. doi: 10.1139/g94-060. PubMed DOI
Fuková I, Nguyen P, Marec F. Codling moth cytogenetics: karyotype, chromosomal location of rDNA and molecular differentiation of sex chromosomes. Genome. 2005;48:1083–1092. doi: 10.1139/g05-063. PubMed DOI
Traut W, Marec F. Sex chromatin in Lepidoptera. Q Rev Biol. 1996;71:239–256. doi: 10.1086/419371. PubMed DOI
Mediouni J, Fuková I, Frydrychová R, Dhouibi MH, Marec F. Karyotype, sex chromatin and sex chromosome differentiation in the carob moth, Ectomyelois ceratoniae (Lepidoptera: Pyralidae) Caryologia. 2004;57:184–194. doi: 10.1080/00087114.2004.10589391. DOI
Traut W, Sahara K, Marec F. Sex chromosomes and sex determination in Lepidoptera. Sex Dev. 2007;1:332–346. doi: 10.1159/000111765. PubMed DOI
Traut W, Weith A, Traut G. Structural mutants of the W chromosome in Ephestia (Insecta, Lepidoptera) Genetica. 1986;70:69–79. doi: 10.1007/BF00123216. DOI
Colombo PC. Cytogeography of three parallel Robertsonian polymorphisms in the water-hyacinth grasshopper, Cornops aquaticum (Orthoptera: Acrididae) Eur J Entomol. 2008;105:59–64. doi: 10.14411/eje.2008.008. DOI
Castiglia R, Annesi F, Capanna E. Geographical pattern of genetic variation in the Robertsonian system of Mus musculus domesticus in central Italy. Biol J Linn Soc Lond. 2005;84:395–405. doi: 10.1111/j.1095-8312.2005.00442.x. DOI
White TA, Bordewich M, Searle JB. A network approach to study karyotypic evolution: the chromosomal races of the common shrew (Sorex araneus) and house mouse (Mus musculus) as model systems. Syst Biol. 2010;59:262–276. doi: 10.1093/sysbio/syq004. PubMed DOI
Nguyen P, Sahara K, Yoshido A, Marec F. Evolutionary dynamics of rDNA clusters on chromosomes of moths and butterflies (Lepidoptera) Genetica. 2010;138:343–354. doi: 10.1007/s10709-009-9424-5. PubMed DOI
Šíchová J, Nguyen P, Dalíková M, Marec F. Chromosomal evolution in tortricid moths: conserved karyotypes with diverged features. PLoS ONE. 2013;8 doi: 10.1371/journal.pone.0064520. PubMed DOI PMC
Cabrero J, López-León MD, Teruel M, Camacho JPM. Chromosome mapping of H3 and H4 histone gene clusters in 35 species of acridid grasshoppers. Chromosome Res. 2009;17:397–404. doi: 10.1007/s10577-009-9030-5. PubMed DOI
Cabral-de-Mello DC, Oliveira SG, de Moura RC, Martins C. Chromosomal organization of the 18S and 5S rRNAs and histone H3 genes in Scarabaeinae coleopterans: insights into the evolutionary dynamics of multigene families and heterochromatin. BMC Genet. 2011;12:88. doi: 10.1186/1471-2156-12-88. PubMed DOI PMC
Yoshido A, Marec F, Sahara K. Resolution of sex chromosome constitution by genomic in situ hybridization and fluorescence in situ hybridization with (TTAGG)n telomeric probe in some species of Lepidoptera. Chromosoma. 2005;114:193–202. doi: 10.1007/s00412-005-0013-9. PubMed DOI
Rens W, Grützner F, O’Brien PCM, Fairclough HF, Graves JAM, Ferguson-Smith MA. Resolution and evolution of the duck-billed platypus karyotype with an X1Y1X2Y2X3Y3X4Y4X5Y5 male sex chromosome constitution. Proc Natl Acad Sci U S A. 2004;101:16257–16261. doi: 10.1073/pnas.0405702101. PubMed DOI PMC
Veyrunes F, Waters PD, Miethke P, Rens W, McMillan D, Alsop AE, et al. Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes. Genome Res. 2008;18:965–973. doi: 10.1101/gr.7101908. PubMed DOI PMC
Cioffi MB, Sánchez A, Marchal JA, Kosyakova N, Liehr T, Trifonov V, et al. Cross-species chromosome painting tracks the independent origin of multiple sex chromosomes in two cofamiliar Erythrinidae fishes. BMC Evol Biol. 2011;11:186. doi: 10.1186/1471-2148-11-186. PubMed DOI PMC
Blanco DR, Vicari MR, Lui RL, Artoni RF, de Almeida MC, Traldi JB, et al. Origin of the X1X1X2X2/X1X2Y sex chromosome system of Harttia punctata (Siluriformes, Loricariidae) inferred from chromosome painting and FISH with ribosomal DNA markers. Genetica. 2014;142:119–126. PubMed
Král J. Evolution of multiple sex chromosomes in the spider genus Malthonica (Araneae: Agelenidae) indicates unique structure of the spider sex chromosome systems. Chromosome Res. 2007;15:863–879. doi: 10.1007/s10577-007-1169-3. PubMed DOI
Král J, Kořínková T, Forman M, Krkavcová L. Insights into the meiotic behavior and evolution of multiple sex chromosome systems in spiders. Cytogenet Genome Res. 2011;133:43–66. doi: 10.1159/000323497. PubMed DOI
Traut W, Marec F. Sex chromosome differentiation in some species of Lepidoptera (Insecta) Chromosome Res. 1997;5:283–291. doi: 10.1023/B:CHRO.0000038758.08263.c3. PubMed DOI
Yoshido A, Bando H, Yasukochi Y, Sahara K. The Bombyx mori karyotype and the assignment of linkage groups. Genetics. 2005;170:675–685. doi: 10.1534/genetics.104.040352. PubMed DOI PMC
Sahara K, Marec F, Eickhoff U, Traut W. Moth sex chromatin probed by comparative genomic hybridization (CGH) Genome. 2003;46:339–342. doi: 10.1139/g03-003. PubMed DOI
Lahn BT, Page DC. Four evolutionary strata on the human X chromosome. Science. 1999;286:964–967. doi: 10.1126/science.286.5441.964. PubMed DOI
Bergero R, Forrest A, Kamau E, Charlesworth D. Evolutionary strata on the X chromosomes of the dioecious plant Silene latifolia: evidence from new sex-linked genes. Genetics. 2007;75:1945–1954. doi: 10.1534/genetics.106.070110. PubMed DOI PMC
Nam K, Ellegren H. The chicken (Gallus gallus) Z chromosome contains at least three nonlinear evolutionary strata. Genetics. 2008;180:1131–1136. doi: 10.1534/genetics.108.090324. PubMed DOI PMC
Mácha J, Teichmanová R, Sater AK, Wells DE, Tlapáková T, Zimmerman LB, et al. Deep ancestry of mammalian X chromosome revealed by comparison with the basal tetrapod Xenopus tropicalis. BMC Genomics. 2012;13:315. doi: 10.1186/1471-2164-13-315. PubMed DOI PMC
Wang J, Na J-K, Yu Q, Gschwend AR, Han J, Zeng F, et al. Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc Natl Acad Sci U S A. 2012;109:13710–13715. doi: 10.1073/pnas.1207833109. PubMed DOI PMC
Baker RJ, Bickham JW. Speciation by monobrachial centric fusions. Proc Natl Acad Sci U S A. 1986;83:8245–8248. doi: 10.1073/pnas.83.21.8245. PubMed DOI PMC
Bidau CJ, Giménez MD, Palmer CL, Searle JB. The effects of Robertsonian fusions on chiasma frequency and distribution in the house mouse (Mus musculus domesticus) from a hybrid zone in northern Scotland. Heredity. 2001;87:305–313. doi: 10.1046/j.1365-2540.2001.00877.x. PubMed DOI
Basset P, Yannic G, Brünner H, Hausser J. Restricted gene flow at specific parts of the shrew genome in chromosomal hybrid zones. Evolution. 2006;60:1718–1730. doi: 10.1111/j.0014-3820.2006.tb00515.x. PubMed DOI
Hipp AL, Rothrock PE, Roalson EH. The evolution of chromosome arrangements in Carex (Cyperaceae) Bot Rev. 2009;75:96–109. doi: 10.1007/s12229-008-9022-8. DOI
Melters DP, Paliulis LV, Korf IF, Chan SWL. Holocentric chromosomes: convergent evolution, meiotic adaptations and genomic analysis. Chromosome Res. 2012;20:579–593. doi: 10.1007/s10577-012-9292-1. PubMed DOI
Wrensch DL, Kethley JB, Norton RA. Cytogenetics of Holokinetic Chromosomes and Inverted Meiosis: Keys to the Evolutionary Success of Mites, with Generalization on Eukaryotes. In: Houck MA, editor. Mites: Ecological and Evolutionary Analyses of Life-History Patterns. New York: Chapman & Hall; 1994. pp. 282–343.
Marec F, Tothová A, Sahara K, Traut W. Meiotic pairing of sex chromosome fragments and its relation to atypical transmission of a sex-linked marker in Ephestia kuehniella (Insecta: Lepidoptera) Heredity. 2001;87:659–671. doi: 10.1046/j.1365-2540.2001.00958.x. PubMed DOI
Bureš P, Zedek F. Holokinetic drive: centromere drive in chromosomes without centromeres. Evolution. 2014;68:2412–2420. PubMed
Hipp AL, Rothrock PE, Whitkus R, Weber JA. Chromosomes tell half of the story: the correlation between karyotype rearrangements and genetic diversity in sedges, a group with holocentric chromosomes. Mol Ecol. 2010;19:3124–3138. doi: 10.1111/j.1365-294X.2010.04741.x. PubMed DOI
Sætre GP, Borge T, Lindroos K, Haavie J, Sheldon BC, Primmer C, et al. Sex chromosome evolution and speciation in Ficedula flycatchers. Proc Biol Sci. 2003;270:53–59. doi: 10.1098/rspb.2002.2204. PubMed DOI PMC
Ellegren H. Genomic evidence for large-Z effect. Proc Biol Sci. 2009;276:361–366. doi: 10.1098/rspb.2008.1135. PubMed DOI PMC
Štorchová R, Reif J, Nachman MW. Female heterogamety and speciation: reduced introgression of the Z chromosome between two species of nightingales. Evolution. 2010;64:456–471. doi: 10.1111/j.1558-5646.2009.00841.x. PubMed DOI PMC
Carling MD, Brumfield RT. Haldane’s rule in an avian system: using cline theory and divergence population genetics to test for differential introgression of mitochondrial, autosomal and sex-linked loci across the Passerina bunting hybrid zone. Evolution. 2008;62:2600–2615. doi: 10.1111/j.1558-5646.2008.00477.x. PubMed DOI
Carling MD, Brumfield RT. Speciation in Passerina buntings: introgression patterns of sex- linked loci identify a candidate gene region for reproductive isolation. Mol Ecol. 2009;18:834–847. doi: 10.1111/j.1365-294X.2008.04038.x. PubMed DOI
Naisbit RE, Jiggins CD, Linares M, Salazar C, Mallet J. Hybrid sterility. Haldane’s rule and speciation in Heliconius cydno and H. melpomene. Genetics. 2002;161:1517–1526. PubMed PMC
Nguyen P, Sýkorová M, Šíchová J, Kůta V, Dalíková M, Čapková Frydrychová R, et al. Neo-sex chromosomes and adaptive potential in tortricid pests. Proc Natl Acad Sci U S A. 2013;110:6931–6936. doi: 10.1073/pnas.1220372110. PubMed DOI PMC
Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–425. PubMed
Nei M, Kumar S. Molecular Evolution and Phylogenetics. New York: Oxford University Press; 2000.
Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–791. doi: 10.2307/2408678. PubMed DOI
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–2729. doi: 10.1093/molbev/mst197. PubMed DOI PMC
Sahara K, Marec F, Traut W. TTAGG telomeric repeats in chromosomes of some insects and other arthropods. Chromosome Res. 1999;7:449–460. doi: 10.1023/A:1009297729547. PubMed DOI
Traut W, Sahara K, Otto TD, Marec F. Molecular differentiation of sex chromosomes probed by comparative genomic hybridization. Chromosoma. 1999;108:173–180. doi: 10.1007/s004120050366. PubMed DOI
Sex-biased gene content is associated with sex chromosome turnover in Danaini butterflies
The Role of Repetitive Sequences in Repatterning of Major Ribosomal DNA Clusters in Lepidoptera
Large-scale comparative analysis of cytogenetic markers across Lepidoptera
The Role of Satellite DNAs in Genome Architecture and Sex Chromosome Evolution in Crambidae Moths
Sex Chromosome Turnover in Moths of the Diverse Superfamily Gelechioidea
Neo-sex Chromosomes in the Monarch Butterfly, Danaus plexippus