Sex-biased gene content is associated with sex chromosome turnover in Danaini butterflies
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38180347
PubMed Central
PMC11628659
DOI
10.1111/mec.17256
Knihovny.cz E-zdroje
- Klíčová slova
- butterflies, dosage compensation, fusions, sex chromosomes, sexual antagonism, sex‐biased genes,
- MeSH
- fylogeneze MeSH
- molekulární evoluce MeSH
- motýli * genetika MeSH
- pohlavní chromozomy * genetika MeSH
- syntenie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Sex chromosomes play an outsized role in adaptation and speciation, and thus deserve particular attention in evolutionary genomics. In particular, fusions between sex chromosomes and autosomes can produce neo-sex chromosomes, which offer important insights into the evolutionary dynamics of sex chromosomes. Here, we investigate the evolutionary origin of the previously reported Danaus neo-sex chromosome within the tribe Danaini. We assembled and annotated genomes of Tirumala septentrionis (subtribe Danaina), Ideopsis similis (Amaurina), Idea leuconoe (Euploeina) and Lycorea halia (Itunina) and identified their Z-linked scaffolds. We found that the Danaus neo-sex chromosome resulting from the fusion between a Z chromosome and an autosome corresponding to the Melitaea cinxia chromosome (McChr) 21 arose in a common ancestor of Danaina, Amaurina and Euploina. We also identified two additional fusions as the W chromosome further fused with the synteny block McChr31 in I. similis and independent fusion occurred between ancestral Z chromosome and McChr12 in L. halia. We further tested a possible role of sexually antagonistic selection in sex chromosome turnover by analysing the genomic distribution of sex-biased genes in I. leuconoe and L. halia. The autosomes corresponding to McChr21 and McChr31 involved in the fusions are significantly enriched in female- and male-biased genes, respectively, which could have hypothetically facilitated fixation of the neo-sex chromosomes. This suggests a role of sexual antagonism in sex chromosome turnover in Lepidoptera. The neo-Z chromosomes of both I. leuconoe and L. halia appear fully compensated in somatic tissues, but the extent of dosage compensation for the ancestral Z varies across tissues and species.
Department of Ecology and Evolutionary Biology University of Kansas Lawrence Kansas USA
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Zobrazit více v PubMed
Adolfsson, S. , & Ellegren, H. (2013). Lack of dosage compensation accompanies the arrested stage of sex chromosome evolution in ostriches. Molecular Biology and Evolution, 30(4), 806–810. 10.1093/molbev/mst009 PubMed DOI PMC
Ahola, V. , Lehtonen, R. , Somervuo, P. , Salmela, L. , Koskinen, P. , Rastas, P. , Välimäki, N. , Paulin, L. , Kvist, J. , Wahlberg, N. , Tanskanen, J. , Hornett, E. A. , Ferguson, L. C. , Luo, S. , Cao, Z. , de Jong, M. A. , Duplouy, A. , Smolander, O. P. , Vogel, H. , … Hanski, I. (2014). The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. Nature Communications, 5, 4737. 10.1038/ncomms5737 PubMed DOI PMC
Anderson, N. W. , Hjelmen, C. E. , & Blackmon, H. (2020). The probability of fusions joining sex chromosomes and autosomes. Biology Letters, 16(11), 20200648. 10.1098/rsbl.2020.0648 PubMed DOI PMC
Andrews, S. (2010). FastQC: A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Bachtrog, D. (2013). Y‐chromosome evolution: Emerging insights into processes of Y‐chromosome degeneration. Nature Reviews Genetics, 14, 113–124. 10.1038/nrg3366 PubMed DOI PMC
Bhaumik, V. , & Kunte, K. (2017). Female butterflies modulate investment in reproduction and flight in response to monsoon‐driven migrations. Oikos, 127, 285–296. 10.1111/oik.04593 DOI
Bolger, A. M. , Lohse, M. , & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC
Brown, K. S. , von Schoultz, B. , & Suomalainen, E. (2004). Chromosome evolution in neotropical Danainae and Ithomiinae (Lepidoptera). Hereditas, 141(3), 216–236. PubMed
Brůna, T. , Hoff, K. J. , Lomsadze, A. , Stanke, M. , & Borodovsky, M. (2021). BRAKER2: Automatic eukaryotic genome annotation with GeneMark‐EP+ and AUGUSTUS supported by a protein database. NAR Genomics and Bioinformatics, 3, lqaa108. 10.1093/nargab/lqaa108 PubMed DOI PMC
Buntrock, L. , Marec, F. , Krueger, S. , & Traut, W. (2012). Organ growth without cell division: Somatic polyploidy in a moth, Ephestia kuehniella . Genome, 55(11), 755–763. 10.1139/g2012-060 PubMed DOI
Carabajal Paladino, L. Z. , Provazníková, I. , Berger, M. , Bass, C. , Aratchige, N. S. , López, S. N. , Marec, F. , & Nguyen, P. (2019). Sex chromosome turnover in moths of the diverse superfamily Gelechioidea. Genome Biology and Evolution, 11(4), 1307–1319. 10.1093/gbe/evz075 PubMed DOI PMC
Catalan, A. , Macias‐Munoz, A. , & Briscoe, A. D. (2018). Evolution of sex‐biased gene expression and dosage compensation in the eye and brain of Heliconius butterflies. Molecular Biology and Evolution, 35(9), 2120–2134. 10.1093/molbev/msy111 PubMed DOI
Chan, P. P. , & Lowe, T. M. (2019). tRNAscan‐SE: searching for tRNA genes in genomic sequences. In Kollmar M. (Ed.), Gene prediction. Methods in molecular biology, vol. 1962 (pp. 1–14). Humana. 10.1007/978-1-4939-9173-0_1 PubMed DOI PMC
Charlesworth, D. , & Charlesworth, B. (1980). Sex differences in fitness and selection for centric fusions between sex‐chromosomes and autosomes. Genetics Research, 35(2), 205–214. 10.1017/S0016672300014051 PubMed DOI
Chazot, N. , Willmott, K. R. , Lamas, G. , Freitas, A. V. L. , Piron‐Prunier, F. , Arias, C. F. , Mallet, J. , de‐Silva, D. L. , & Elias, M. (2019). Renewed diversification following Miocene landscape turnover in a Neotropical butterfly radiation. Global Ecology and Biogeography, 28(8), 1118–1132. 10.1111/geb.12919 DOI
Cheng, C. D. , & Kirkpatrick, M. (2016). Sex‐specific selection and sex‐biased gene expression in humans and flies. PLoS Genetics, 12(9), e1006170. 10.1371/journal.pgen.1006170 PubMed DOI PMC
Dagilis, A. J. , Sardell, J. M. , Josephson, M. P. , Su, Y. H. , Kirkpatrick, M. , & Peichel, C. L. (2022). Searching for signatures of sexually antagonistic selection on stickleback sex chromosomes. Philosophical Transactions of the Royal Society, B: Biological Sciences, 377(1856), 20210205. 10.1098/rstb.2021.0205 PubMed DOI PMC
Dapper, A. L. , & Wade, M. J. (2020). Relaxed selection and the rapid evolution of reproductive genes. Trends in Genetics, 36(9), 640–649. 10.1016/j.tig.2020.06.014 PubMed DOI
De Coster, W. , D'Hert, S. , Schultz, D. T. , Cruts, M. , & Van Broeckhoven, C. (2018). NanoPack: Visualizing and processing long‐read sequencing data. Bioinformatics, 34(15), 2666–2669. 10.1093/bioinformatics/bty149 PubMed DOI PMC
Delhomme, N. , Padioleau, I. , Furlong, E. E. , & Steinmetz, L. M. (2012). easyRNASeq: A bioconductor package for processing RNA‐Seq data. Bioinformatics, 28(19), 2532–2533. 10.1093/bioinformatics/bts477 PubMed DOI PMC
Dobin, A. , & Gingeras, T. R. (2015). Mapping RNA‐seq reads with STAR. Current Protocols in Bioinformatics, 51, 11141‐19. 10.1002/0471250953.bi1114s51 PubMed DOI PMC
Ellegren, H. (2011). Sex‐chromosome evolution: Recent progress and the influence of male and female heterogamety. Nature Reviews Genetics, 12(3), 157–166. 10.1038/nrg2948 PubMed DOI
Filatov, D. A. (2018). The two "rules of speciation" in species with young sex chromosomes. Molecular Ecology, 27(19), 3799–3810. 10.1111/mec.14721 PubMed DOI
Flynn, J. M. , Hubley, R. , Goubert, C. , Rosen, J. , Clark, A. G. , Feschotte, C. , & Smit, A. F. (2020). RepeatModeler2 for automated genomic discovery of transposable element families. Proceedings of National Academy of Sciences USA, 117(17), 9451–9457. 10.1073/pnas.1921046117 PubMed DOI PMC
Fraïsse, C. , Picard, M. A. L. , & Vicoso, B. (2017). The deep conservation of the Lepidoptera Z chromosome suggests a non‐canonical origin of the W. Nature Communications, 8(1), 1486. 10.1038/s41467-017-01663-5 PubMed DOI PMC
Furman, B. L. S. , Metzger, D. C. H. , Darolti, I. , Wright, A. E. , Sandkam, B. A. , Almeida, P. , Shu, J. J. , & Mank, J. E. (2020). Sex chromosome evolution: So many exceptions to the rules. Genome Biology and Evolution, 12(6), 750–763. 10.1093/gbe/evaa081 PubMed DOI PMC
Grath, S. , & Parsch, J. (2016). Sex‐biased gene expression. Annual Review of Genetics, 50, 29–44. PubMed
Graves, J. A. M. (2016). Did sex chromosome turnover promote divergence of the major mammal groups?: De novo sex chromosomes and drastic rearrangements may have posed reproductive barriers between monotremes, marsupials and placental mammals. BioEssays, 38(8), 734–743. 10.1002/bies.201600019 PubMed DOI PMC
Graves, J. A. M. , & Peichel, C. L. (2010). Are homologies in vertebrate sex determination due to shared ancestry or to limited options? Genome Biology, 11(4), 205. 10.1186/gb-2010-11-4-205 PubMed DOI PMC
Gu, L. , Reilly, P. F. , Lewis, J. J. , Reed, R. D. , Andolfatto, P. , & Walters, J. R. (2019). Dichotomy of dosage compensation along the neo Z chromosome of the monarch butterfly. Current Biology, 29(23), 4071–4077. 10.1016/j.cub.2019.09.056 PubMed DOI PMC
Gu, L. Q. , & Walters, J. R. (2017). Evolution of sex chromosome dosage compensation in animals: A beautiful theory, undermined by facts and bedeviled by details. Genome Biology and Evolution, 9(9), 2461–2476. 10.1093/gbe/evx154 PubMed DOI PMC
Gu, L. Q. , Walters, J. R. , & Knipple, D. C. (2017). Conserved patterns of sex chromosome dosage compensation in the Lepidoptera (WZ/ZZ): Insights from a moth neo‐Z chromosome. Genome Biology and Evolution, 9(3), 802–816. 10.1093/gbe/evx039 PubMed DOI PMC
Guan, D. , McCarthy, S. A. , Wood, J. , Howe, K. , Wang, Y. , & Durbin, R. (2020). Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics, 36(9), 2896–2898. 10.1093/bioinformatics/btaa025 PubMed DOI PMC
Herbert, P. N. D. , Penton, E. H. , Burns, J. M. , Janzen, D. H. , & Hallwachs, W. (2004). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator . Proceedings of the National Academy of Sciences, 101(41), 14812–14817. 10.1073/pnas.04061661 PubMed DOI PMC
Hill, J. , Rastas, P. , Hornett, E. A. , Neethiraj, R. , Clark, N. , Morehouse, N. , de la Paz Celorio‐Mancera, M. , Cols, J. C. , Dircksen, H. , Meslin, C. , Keehnen, N. , Pruisscher, P. , Sikkink, K. , Vives, M. , Vogel, H. , Wiklund, C. , Woronik, A. , Boggs, C. L. , Nylin, S. , & Wheat, C. W. (2019). Unprecedented reorganization of holocentric chromosomes provides insights into the enigma of lepidopteran chromosome evolution. Science Advances, 5(6), eaau3648. 10.1126/sciadv.aau3648 PubMed DOI PMC
Holley, G. , Beyter, D. , Ingimundardottir, H. , Møller, P. L. , Kristmundsdottir, S. , Eggertsson, H. P. , & Halldorsson, B. V. (2021). Ratatosk: Hybrid error correction of long reads enables accurate variant calling and assembly. Genome Biology, 22(1), 28. 10.1186/s13059-020-02244-4 PubMed DOI PMC
Hu, J. , Fan, J. , Sun, Z. , & Liu, S. (2020). NextPolish: A fast and efficient genome polishing tool for long‐read assembly. Bioinformatics, 36(7), 2253–2255. 10.1093/bioinformatics/btz891 PubMed DOI
Humann, J. L. , Lee, T. , Ficklin, S. , & Main, D. (2019). Structural and functional annotation of eukaryotic genomes with GenSAS. In Kollmar M. (Ed.), Gene Prediction. Methods in Molecular Biology, vol. 1962. Humana. 10.1007/978-1-4939-9173-0_3 PubMed DOI
Huylmans, A. K. , Macon, A. , & Vicoso, B. (2017). Global dosage compensation is ubiquitous in Lepidoptera, but counteracted by the masculinization of the Z chromosome. Molecular Biology and Evolution, 34(10), 2637–2649. 10.1093/molbev/msx190 PubMed DOI PMC
Innocenti, P. , & Morrow, E. H. (2010). The sexually antagonistic genes of Drosophila melanogaster . PLoS Biology, 8(3), e1000335. 10.1371/journal.pbio.1000335 PubMed DOI PMC
Kirkpatrick, M. , & Guerrero, R. F. (2014). Signatures of sex‐antagonistic selection on recombining sex chromosomes. Genetics, 197(2), 531. 10.1534/genetics.113.156026 PubMed DOI PMC
Kitano, J. , & Peichel, C. L. (2012). Turnover of sex chromosomes and speciation in fishes. Environmental Biology of Fishes, 94(3), 549–558. 10.1007/s10641-011-9853-8 PubMed DOI PMC
Kitano, J. , Ross, J. A. , Mori, S. , Kume, M. , Jones, F. C. , Chan, Y. F. , Absher, D. M. , Grimwood, J. , Schmutz, J. , Myers, R. M. , Kingsley, D. M. , & Peichel, C. L. (2009). A role for a neo‐sex chromosome in stickleback speciation. Nature, 461(7267), 1079–1083. 10.1038/nature08441 PubMed DOI PMC
Kiuchi, T. , Koga, H. , Kawamoto, M. , Shoji, K. , Sakai, H. , Arai, Y. , Ishihara, G. , Kawaoka, S. , Sugano, S. , Shimada, T. , Suzuki, Y. , Suzuki, M. G. , & Katsuma, S. (2014). A single female‐specific piRNA is the primary determiner of sex in the silkworm. Nature, 509, 633–636. 10.1038/nature13315 PubMed DOI
Kolmogorov, M. , Yuan, J. , Lin, Y. , & Pevzner, P. A. (2019). Assembly of long, error‐prone reads using repeat graphs. Nature Biotechnology, 37(5), 540–546. 10.1038/s41587-019-0072-8 PubMed DOI
Kopylova, E. , Noé, L. , & Touzet, H. (2012). SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics, 28(24), 3211–3217. 10.1093/bioinformatics/bts611 PubMed DOI
Kurtz, S. , Phillippy, A. , Delcher, A. L. , Smoot, M. , Shumway, M. , Antonescu, C. , & Salzberg, S. L. (2004). Versatile and open software for comparing large genomes. Genome Biology, 5(2), R12. 10.1186/gb-2004-5-2-r12 PubMed DOI PMC
Laetsch, D. R. , & Blaxter, M. L. (2017). BlobTools: Interrogation of genome assemblies. F1000Research, 6, 1287. 10.12688/f1000research.12232.1 DOI
Lagesen, K. , Hallin, P. , Rødland, E. A. , Stærfeldt, H.‐H. , Rognes, T. , & Ussery, D. W. (2007). RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research, 35(9), 3100–3108. 10.1093/nar/gkm160 PubMed DOI PMC
Langmead, B. , & Salzberg, S. L. (2012). Fast gapped‐read alignment with bowtie 2. Nature Methods, 9(4), 357–359. 10.1038/nmeth.1923 PubMed DOI PMC
Lasne, C. , Sgro, C. M. , & Connallon, T. (2017). The relative contributions of the X chromosome and autosomes to local adaptation. Genetics, 205(3), 1285–1304. 10.1534/genetics.116.194670 PubMed DOI PMC
Li, H. , Handsaker, B. , Wysoker, A. , Fennell, T. , Ruan, J. , Homer, N. , Marth, G. , Abecasis, G. , & Durbin, R. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078–2079. 10.1093/bioinformatics/btp352 PubMed DOI PMC
Liao, Y. , Smyth, G. K. , & Shi, W. (2014). featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30(7), 923–930. 10.1093/bioinformatics/btt656 PubMed DOI
Lichilin, N. , El Taher, A. , & Bohne, A. (2021). Sex‐biased gene expression and recent sex chromosome turnover. Philosophical Transactions of the Royal Society, B: Biological Sciences, 376(1833), 20200107. 10.1098/rstb.2020.0107 PubMed DOI PMC
Lomsadze, A. , Burns, P. D. , & Borodovsky, M. (2014). Integration of mapped RNA‐Seq reads into automatic training of eukaryotic gene finding algorithm. Nucleic Acids Research, 42(15), e119. 10.1093/nar/gku557 PubMed DOI PMC
Love, M. I. , Huber, W. , & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2. Genome Biology, 15(12), 550. 10.1186/s13059-014-0550-8 PubMed DOI PMC
Lucek, K. , Giménez, M. D. , Joron, M. , Rafajlović, M. , Searle, J. B. , Walden, N. , Westram, A. M. , & Faria, R. (2023). The impact of chromosomal rearrangements in speciation: From micro‐ to macroevolution. Cold Spring Harbor Perspectives in Biology, 15, a041447. 10.1101/cshperspect.a041447 PubMed DOI PMC
Lund‐Hansen, K. K. , Olito, C. , Morrow, E. H. , & Abbott, J. K. (2021). Sexually antagonistic coevolution between the sex chromosomes of Drosophila melanogaster . Proceedings of the National Academy of Sciences of the United States of America, 118(8), e2003359118. 10.1073/pnas.2003359118 PubMed DOI PMC
Maeki, K. , & Ae, S. A. (1969). Studies of the chromosomes of Formosan Rhopalocera 4. Danaidae and Satyridae. Kontyu, 37(1), 99–109.
Mank, J. E. (2017). The transcriptional architecture of phenotypic dimorphism. Nature Ecology & Evolution, 1(1). 10.1038/s41559-016-0006 PubMed DOI
Mank, J. E. , & Ellegren, H. (2009). Sex‐linkage of sexually antagonistic genes is predicted by female, but not male, effects in birds. Evolution, 63(6), 1464–1472. 10.1111/j.1558-5646.2009.00618.x PubMed DOI
Mank, J. E. , Hosken, D. J. , & Wedell, N. (2014). Conflict on the sex chromosomes: Cause, effect, and complexity. Cold Spring Harbor Perspectives in Biology, 6(12), a017715. 10.1101/cshperspect.a017715 PubMed DOI PMC
Manni, M. , Berkeley, M. R. , Seppey, M. , Simão, F. A. , & Zdobnov, E. M. (2021). BUSCO update: Novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Molecular Biology and Evolution, 38(10), 4647–4654. 10.1093/molbev/msab199 PubMed DOI PMC
Marçais, G. , & Kingsford, C. (2011). A fast, lock‐free approach for efficient parallel counting of occurrences of k‐mers. Bioinformatics, 27(6), 764–770. 10.1093/bioinformatics/btr011 PubMed DOI PMC
Marec, F. (1996). Synaptonemal complexes in insects. International Journal of Insect Morphology and Embryology, 25(3), 205–233. 10.1016/0020-7322(96)00009-8 DOI
Martin, M. (2011). Cutadapt removes adapter sequences from high‐throughput sequencing reads. EMBnet.Journal, 17(1), 10–12.
Martin, S. H. , Singh, K. S. , Gordon, I. J. , Omufwoko, K. S. , Collins, S. , Warren, I. A. , Munby, H. , Brattström, O. , Traut, W. , Martins, D. J. , Smith, D. A. S. , Jiggins, C. D. , Bass, C. , & French‐Constant, R. H. (2020). Whole‐chromosome hitchhiking driven by a male‐killing endosymbiont. PLoS Biology, 18(2), e3000610. 10.1371/journal.pbio.3000610 PubMed DOI PMC
Matsumoto, T. , Yoshida, K. , & Kitano, J. (2016). Gene flow and sex chromosome evolution. Genes & Genetic Systems, 91(6), 357.
McAllister, B. F. , Sheeley, S. L. , Mena, P. A. , Evans, A. L. , & Schlotterer, C. (2008). Clinal distribution of a chromosomal rearrangement: A precursor to chromosomal speciation? Evolution, 62(8), 1852–1865. 10.1111/j.1558-5646.2008.00435.x PubMed DOI
Mediouni, J. , Fukova, I. , Frydrychova, R. , Dhouibi, M. H. , & Marec, F. (2004). Karyotype, sex chromatin and sex chromosome differentiation in the carob moth, Ectomyelois ceratoniae (Lepidoptera: Pyralidae). Caryologia, 57(2), 184–194.
Mongue, A. J. , Hansen, M. E. , & Walters, J. R. (2022). Support for faster and more adaptive Z chromosome evolution in two divergent lepidopteran lineages. Evolution, 76(2), 332–345. 10.1111/evo.14341 PubMed DOI PMC
Mongue, A. J. , Nguyen, P. , Voleníková, A. , & Walters, J. R. (2017). Neo‐sex chromosomes in the monarch butterfly, Danaus plexippus . G3: Genes, Genomes, Genetics, 7(10), 3281–3294. 10.1534/g3.117.300187 PubMed DOI PMC
Mongue, A. J. , & Walters, J. R. (2018). The Z chromosome is enriched for sperm proteins in two divergent species of Lepidoptera. Genome, 61(4), 248–253. 10.1139/gen-2017-0068 PubMed DOI
Mora, P. , Hospodarska, M. , Volenikova, A. , Koutecky, P. , Stundlova, J. , Dalikova, M. , Walters, J. R. , & Nguyen, P. (2023). Sex chromosome evolution in the tribe Danaini. Dryad, Dataset . 10.5061/dryad.hmgqnk9p2 PubMed DOI PMC
Nguyen, P. , & Carabajal Paladino, L. (2016). On the neo‐sex chromosomes of Lepidoptera. In Pontarotti P. (Ed.), Evolutionary biology: Convergent evolution, evolution of complex traits, concepts and methods (pp. 171–185). Springer.
Nguyen, P. , Sýkorová, M. , Šíchová, J. , Kůta, V. , Dalíková, M. , Čapková Frydrychová, R. , Neven, L. G. , Sahara, K. , & Marec, F. (2013). Neo‐sex chromosomes and adaptive potential in tortricid pests. Proceedings of the National Academy of Sciences, 110(17), 6931–6936. 10.1073/pnas.1220372110 PubMed DOI PMC
Novák, P. , Ávila Robledillo, L. , Koblížková, A. , Vrbová, I. , Neumann, P. , & Macas, J. (2017). TAREAN: A computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Research, 45(12), e111. 10.1093/nar/gkx257 PubMed DOI PMC
O'Meally, D. , Ezaz, T. , Georges, A. , Sarre, S. D. , & Graves, J. A. M. (2012). Are some chromosomes particularly good at sex? Insights from amniotes. Chromosome Research, 20(1), 7–19. 10.1007/s10577-011-9266-8 PubMed DOI
Oshlack, A. , Robinson, M. D. , & Young, M. D. (2010). From RNA‐seq reads to differential expression results. Genome Biology, 11(12), 220. 10.1186/gb-2010-11-12-220 PubMed DOI PMC
Palmer, D. H. , Rogers, T. F. , Dean, R. , & Wright, A. E. (2019). How to identify sex chromosomes and their turnover. Molecular Ecology, 28(21), 4709–4724. 10.1111/mec.15245 PubMed DOI PMC
Pan, Q. W. , Kay, T. , Depince, A. , Adolfi, M. , Schartl, M. , Guiguen, Y. , & Herpin, A. (2021). Evolution of master sex determiners: TGF‐beta signalling pathways at regulatory crossroads. Philosophical Transactions of the Royal Society, B: Biological Sciences, 376(1832), 20200091. 10.1098/rstb.2020.0091 PubMed DOI PMC
Parsch, J. , & Ellegren, H. (2013). The evolutionary causes and consequences of sex‐biased gene expression. Nature Reviews Genetics, 14(2), 83–87. 10.1038/nrg3376 PubMed DOI
Payseur, B. A. , Presgraves, D. C. , & Filatov, D. A. (2018). Introduction: Sex chromosomes and speciation. Molecular Ecology, 27(19), 3745–3748. 10.1111/mec.14828 PubMed DOI PMC
Pedersen, B. S. , Collins, R. L. , Talkowski, M. E. , & Quinlan, A. R. (2017). Indexcov: Fast coverage quality control for whole‐genome sequencing. GigaScience, 6(11), 1–6. 10.1093/gigascience/gix090 PubMed DOI PMC
Pennell, M. W. , Kirkpatrick, M. , Otto, S. P. , Vamosi, J. C. , Peichel, C. L. , Valenzuela, N. , & Kitano, J. (2015). Y fuse? Sex chromosome fusions in fishes and reptiles. PLoS Genetics, 11(5), e1005237. 10.1371/journal.pgen.1005237 PubMed DOI PMC
Perrin, N. (2021). Sex‐chromosome evolution in frogs: What role for sex‐antagonistic genes? Philosophical Transactions of the Royal Society, B: Biological Sciences, 376(1832), 20200094. 10.1098/rstb.2020.0094 PubMed DOI PMC
Pohlert, T. (2022). PMCMRplus: Calculate pairwise multiple comparisons of mean rank sums extended.
Pokorna, M. , Altmanova, M. , & Kratochvil, L. (2014). Multiple sex chromosomes in the light of female meiotic drive in amniote vertebrates. Chromosome Research, 22(1), 35–44. 10.1007/s10577-014-9403-2 PubMed DOI
Provaznikova, I. , Dalikova, M. , Volenikova, A. , Roessingh, P. , Sahara, K. , Provaznik, J. , Marec, F. , & Nguyen, P. (2023). Multiple sex chromosomes of Yponomeuta ermine moths suggest a role of sexual antagonism in sex chromosome turnover in Lepidoptera. bioRxiv . 10.1101/2023.06.06.543653 DOI
Quinlan, A. R. , & Hall, I. M. (2010). BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics, 26(6), 841–842. 10.1093/bioinformatics/btq033 PubMed DOI PMC
Ranz, J. M. , González, P. M. , Clifton, B. D. , Nazario‐Yepiz, N. O. , Hernández‐Cervantes, P. L. , Palma‐Martínez, M. J. , Valdivia, D. I. , Jiménez‐Kaufman, A. , Lu, M. M. , Markow, T. A. , & Abreu‐Goodger, C. (2021). A de novo transcriptional atlas in Danaus plexippus reveals variability in dosage compensation across tissues. Communications Biology, 4, 791. 10.1038/s42003-021-02335-3 PubMed DOI PMC
Rice, W. R. (1984). Sex‐chromosomes and the evolution of sexual dimorphism. Evolution, 38(4), 735–742. 10.2307/2408385 PubMed DOI
Rice, W. R. (1987). The accumulation of sexually antagonistic genes as a selective agent promoting the evolution of reduced recombination between primitive sex chromosomes. Evolution, 41(4), 911–914. 10.1111/j.1558-5646.1987.tb05864.x PubMed DOI
Robinson, M. D. , & Oshlack, A. (2010). A scaling normalization method for differential expression analysis of RNA‐seq data. Genome Biology, 11(3), R25. 10.1186/gb-2010-11-3-r25 PubMed DOI PMC
Ross, J. A. , Urton, J. R. , Boland, J. , Shapiro, M. D. , & Peichel, C. L. (2009). Turnover of sex chromosomes in the stickleback fishes (Gasterosteidae). PLoS Genetics, 5(2), e1000391. 10.1371/journal.pgen.1000391 PubMed DOI PMC
Sahara, K. , Marec, F. , & Traut, W. (1999). TTAGG telomeric repeats in chromosomes of some insects and other arthropods. Chromosome Research, 7(6), 449–460. 10.1023/a:1009297729547 PubMed DOI
Schurch, N. J. , Schofield, P. , Gierliński, M. , Cole, C. , Sherstnev, A. , Singh, V. , Wrobel, N. , Gharbi, K. , Simpson, G. G. , Owen‐Hughes, T. , Blaxter, M. , & Barton, G. J. (2016). How many biological replicates are needed in an RNA‐seq experiment and which differential expression tool should you use? RNA, 22(6), 839–851. 10.1261/rna.053959.115 PubMed DOI PMC
Šíchová, J. , Nguyen, P. , Dalíková, M. , & Marec, F. (2013). Chromosomal evolution in tortricid moths: Conserved karyotypes with diverged features. PLoS One, 8(5), e64520. 10.1371/journal.pone.0064520 PubMed DOI PMC
Šíchová, J. , Voleníková, A. , Dincă, V. , Nguyen, P. , Vila, R. , Sahara, K. , & Marec, F. (2015). Dynamic karyotype evolution and unique sex determination systems in Leptidea wood white butterflies. BMC Evolutionary Biology, 15, 89. 10.1186/s12862-015-0375-4 PubMed DOI PMC
Sigeman, H. , Ponnikas, S. , Chauhan, P. , Dierickx, E. , Brooke, M. D. , & Hanssonl, B. (2019). Repeated sex chromosome evolution in vertebrates supported by expanded avian sex chromosomes. Proceedings of the Royal Society B: Biological Sciences, 286(1916), 20192051. 10.1098/rspb.2019.2051 PubMed DOI PMC
Singh, K. S. , De‐Kayne, R. , Omufwoko, K. S. , Martins, D. J. , Bass, C. , French‐Constant, R. , & Martin, S. H. (2022). Genome assembly of Danaus chrysippus and comparison with the monarch Danaus plexippus . G3: Genes, Genomes, Genetics, 12, jkab449. 10.1093/g3journal/jkab449 PubMed DOI PMC
Smit, A. F. A. , Hubley, R. , & Green, P. (2013. ‐2015). RepeatMasker Open‐4.0. http://www.repeatmasker.org
Smith, D. A. S. , Gordon, I. J. , Traut, W. , Herren, J. , Collins, S. , Martins, D. J. , Saitoti, K. , Ireri, P. , & French‐Constant, R. (2016). A neo‐W chromosome in a tropical butterfly links colour pattern, male‐killing, and speciation. Proceedings of the Royal Society B: Biological Sciences, 283(1835), 20160821. 10.1098/rspb.2016.0821 PubMed DOI PMC
Smolander, O.‐P. , Blande, D. , Ahola, V. , Rastas, P. , Tanskanen, J. , Kammonen, J. I. , Oostra, V. , Pellegrini, L. , Ikonen, S. , Dallas, T. , DiLeo, M. F. , Duplouy, A. , Duru, I. C. , Halimaa, P. , Kahilainen, A. , Kuwar, S. S. , Kärenlampi, S. O. , Lafuente, E. , Luo, S. , … Saastamoinen, M. (2022). Improved chromosome‐level genome assembly of the Glanville fritillary butterfly (Melitaea cinxia) integrating Pacific biosciences long reads and a high‐density linkage map. GigaScience, 11, giab097. 10.1093/gigascience/giab097 PubMed DOI PMC
Stanke, M. , & Morgenstern, B. (2005). AUGUSTUS: A web server for gene prediction in eukaryotes that allows user‐defined constraints. Nucleic Acids Research, 33, W465–W467. 10.1093/nar/gki458 PubMed DOI PMC
Steward, R. A. , Okamura, Y. , Boggs, C. L. , Vogel, H. , & Wheat, C. W. (2021). The genome of the margined white butterfly (Pieris macdunnoughii): Sex chromosome insights and the power of polishing with PoolSeq data. Genome Biology and Evolution, 13(4), evab053. 10.1093/gbe/evab053 PubMed DOI PMC
Suetsugu, Y. , Futahashi, R. , Kanamori, H. , Kadono‐Okuda, K. , Sasanuma, S.‐I. , Narukawa, J. , Ajimura, M. , Jouraku, A. , Namiki, N. , Shimomura, M. , Sezutsu, H. , Osanai‐Futahashi, M. , Suzuki, M. G. , Daimon, T. , Shinoda, T. , Taniai, K. , Asaoka, K. , Niwa, R. , Kawaoka, S. , … Mita, K. (2013). Large scale full‐length cDNA sequencing reveals a unique genomic landscape in a lepidopteran model insect, Bombyx mori. G3: Genes, Genomes, Genetics, 3(9), 1481–1492. 10.1534/g3.113.006239 PubMed DOI PMC
Toups, M. A. , & Vicoso, B. (2023). The X chromosome of insects likely predates the origin of class Insecta. Evolution, 77(11), 2504–2511. 10.1093/evolut/qpad169 PubMed DOI
Traut, W. , Schubert, V. , Dalikova, M. , Marec, F. , & Sahara, K. (2019). Activity and inactivity of moth sex chromosomes in somatic and meiotic cells. Chromosoma, 128(4), 533–545. 10.1007/s00412-019-00722-8 PubMed DOI
Veltsos, P. , Rodrigues, N. , Studer, T. , Ma, W. J. , Sermier, R. , Leuenberger, J. , & Perrin, N. (2020). No evidence that Y‐chromosome differentiation affects male fitness in a Swiss population of common frogs. Journal of Evolutionary Biology, 33(4), 401–409. 10.1111/jeb.13573 PubMed DOI
Vicoso, B. , & Charlesworth, B. (2006). Evolution on the X chromosome: Unusual patterns and processes. Nature Reviews Genetics, 7(8), 645–653. 10.1038/nrg1914 PubMed DOI
Vurture, G. W. , Sedlazeck, F. J. , Nattestad, M. , Underwood, C. J. , Fang, H. , Gurtowski, J. , & Schatz, M. C. (2017). GenomeScope: Fast reference‐free genome profiling from short reads. Bioinformatics, 33(14), 2202–2204. 10.1093/bioinformatics/btx153 PubMed DOI PMC
Walters, J. R. , & Hardcastle, T. J. (2011). Getting a full dose? Reconsidering sex chromosome dosage compensation in the silkworm, Bombyx mori . Genome Biology and Evolution, 3, 491–504. 10.1093/gbe/evr036 PubMed DOI PMC
Walters, J. R. , Hardcastle, T. J. , & Jiggins, C. D. (2015). Sex chromosome dosage compensation in Heliconius butterflies: Global yet still incomplete? Genome Biology and Evolution, 7(9), 2545–2559. 10.1093/gbe/evv156 PubMed DOI PMC
Wright, A. E. , Dean, R. , Zimmer, F. , & Mank, J. E. (2016). How to make a sex chromosome. Nature Communications, 7, 12087. 10.1038/ncomms12087 PubMed DOI PMC
Wright, C. J. , Stevens, L. , Mackintosh, A. , Lawniczak, M. , & Blaxter, M. (2023). Chromosome Evolution in Lepidoptera. ssiv . 10.1101/2023.05.12.540473 PubMed DOI PMC
Yoshido, A. , Šíchová, J. , Pospíšilová, K. , Nguyen, P. , Voleníková, A. , Šafář, J. , Provazník, J. , Vila, R. , & Marec, F. (2020). Evolution of multiple sex‐chromosomes associated with dynamic genome reshuffling in Leptidea wood‐white butterflies. Heredity, 125(3), 138–154. 10.1038/s41437-020-0325-9 PubMed DOI PMC
Sex-biased gene content is associated with sex chromosome turnover in Danaini butterflies