Sex-biased gene content is associated with sex chromosome turnover in Danaini butterflies

. 2024 Dec ; 33 (24) : e17256. [epub] 20240105

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38180347

Sex chromosomes play an outsized role in adaptation and speciation, and thus deserve particular attention in evolutionary genomics. In particular, fusions between sex chromosomes and autosomes can produce neo-sex chromosomes, which offer important insights into the evolutionary dynamics of sex chromosomes. Here, we investigate the evolutionary origin of the previously reported Danaus neo-sex chromosome within the tribe Danaini. We assembled and annotated genomes of Tirumala septentrionis (subtribe Danaina), Ideopsis similis (Amaurina), Idea leuconoe (Euploeina) and Lycorea halia (Itunina) and identified their Z-linked scaffolds. We found that the Danaus neo-sex chromosome resulting from the fusion between a Z chromosome and an autosome corresponding to the Melitaea cinxia chromosome (McChr) 21 arose in a common ancestor of Danaina, Amaurina and Euploina. We also identified two additional fusions as the W chromosome further fused with the synteny block McChr31 in I. similis and independent fusion occurred between ancestral Z chromosome and McChr12 in L. halia. We further tested a possible role of sexually antagonistic selection in sex chromosome turnover by analysing the genomic distribution of sex-biased genes in I. leuconoe and L. halia. The autosomes corresponding to McChr21 and McChr31 involved in the fusions are significantly enriched in female- and male-biased genes, respectively, which could have hypothetically facilitated fixation of the neo-sex chromosomes. This suggests a role of sexual antagonism in sex chromosome turnover in Lepidoptera. The neo-Z chromosomes of both I. leuconoe and L. halia appear fully compensated in somatic tissues, but the extent of dosage compensation for the ancestral Z varies across tissues and species.

Zobrazit více v PubMed

Adolfsson, S. , & Ellegren, H. (2013). Lack of dosage compensation accompanies the arrested stage of sex chromosome evolution in ostriches. Molecular Biology and Evolution, 30(4), 806–810. 10.1093/molbev/mst009 PubMed DOI PMC

Ahola, V. , Lehtonen, R. , Somervuo, P. , Salmela, L. , Koskinen, P. , Rastas, P. , Välimäki, N. , Paulin, L. , Kvist, J. , Wahlberg, N. , Tanskanen, J. , Hornett, E. A. , Ferguson, L. C. , Luo, S. , Cao, Z. , de Jong, M. A. , Duplouy, A. , Smolander, O. P. , Vogel, H. , … Hanski, I. (2014). The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. Nature Communications, 5, 4737. 10.1038/ncomms5737 PubMed DOI PMC

Anderson, N. W. , Hjelmen, C. E. , & Blackmon, H. (2020). The probability of fusions joining sex chromosomes and autosomes. Biology Letters, 16(11), 20200648. 10.1098/rsbl.2020.0648 PubMed DOI PMC

Andrews, S. (2010). FastQC: A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Bachtrog, D. (2013). Y‐chromosome evolution: Emerging insights into processes of Y‐chromosome degeneration. Nature Reviews Genetics, 14, 113–124. 10.1038/nrg3366 PubMed DOI PMC

Bhaumik, V. , & Kunte, K. (2017). Female butterflies modulate investment in reproduction and flight in response to monsoon‐driven migrations. Oikos, 127, 285–296. 10.1111/oik.04593 DOI

Bolger, A. M. , Lohse, M. , & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC

Brown, K. S. , von Schoultz, B. , & Suomalainen, E. (2004). Chromosome evolution in neotropical Danainae and Ithomiinae (Lepidoptera). Hereditas, 141(3), 216–236. PubMed

Brůna, T. , Hoff, K. J. , Lomsadze, A. , Stanke, M. , & Borodovsky, M. (2021). BRAKER2: Automatic eukaryotic genome annotation with GeneMark‐EP+ and AUGUSTUS supported by a protein database. NAR Genomics and Bioinformatics, 3, lqaa108. 10.1093/nargab/lqaa108 PubMed DOI PMC

Buntrock, L. , Marec, F. , Krueger, S. , & Traut, W. (2012). Organ growth without cell division: Somatic polyploidy in a moth, Ephestia kuehniella . Genome, 55(11), 755–763. 10.1139/g2012-060 PubMed DOI

Carabajal Paladino, L. Z. , Provazníková, I. , Berger, M. , Bass, C. , Aratchige, N. S. , López, S. N. , Marec, F. , & Nguyen, P. (2019). Sex chromosome turnover in moths of the diverse superfamily Gelechioidea. Genome Biology and Evolution, 11(4), 1307–1319. 10.1093/gbe/evz075 PubMed DOI PMC

Catalan, A. , Macias‐Munoz, A. , & Briscoe, A. D. (2018). Evolution of sex‐biased gene expression and dosage compensation in the eye and brain of Heliconius butterflies. Molecular Biology and Evolution, 35(9), 2120–2134. 10.1093/molbev/msy111 PubMed DOI

Chan, P. P. , & Lowe, T. M. (2019). tRNAscan‐SE: searching for tRNA genes in genomic sequences. In Kollmar M. (Ed.), Gene prediction. Methods in molecular biology, vol. 1962 (pp. 1–14). Humana. 10.1007/978-1-4939-9173-0_1 PubMed DOI PMC

Charlesworth, D. , & Charlesworth, B. (1980). Sex differences in fitness and selection for centric fusions between sex‐chromosomes and autosomes. Genetics Research, 35(2), 205–214. 10.1017/S0016672300014051 PubMed DOI

Chazot, N. , Willmott, K. R. , Lamas, G. , Freitas, A. V. L. , Piron‐Prunier, F. , Arias, C. F. , Mallet, J. , de‐Silva, D. L. , & Elias, M. (2019). Renewed diversification following Miocene landscape turnover in a Neotropical butterfly radiation. Global Ecology and Biogeography, 28(8), 1118–1132. 10.1111/geb.12919 DOI

Cheng, C. D. , & Kirkpatrick, M. (2016). Sex‐specific selection and sex‐biased gene expression in humans and flies. PLoS Genetics, 12(9), e1006170. 10.1371/journal.pgen.1006170 PubMed DOI PMC

Dagilis, A. J. , Sardell, J. M. , Josephson, M. P. , Su, Y. H. , Kirkpatrick, M. , & Peichel, C. L. (2022). Searching for signatures of sexually antagonistic selection on stickleback sex chromosomes. Philosophical Transactions of the Royal Society, B: Biological Sciences, 377(1856), 20210205. 10.1098/rstb.2021.0205 PubMed DOI PMC

Dapper, A. L. , & Wade, M. J. (2020). Relaxed selection and the rapid evolution of reproductive genes. Trends in Genetics, 36(9), 640–649. 10.1016/j.tig.2020.06.014 PubMed DOI

De Coster, W. , D'Hert, S. , Schultz, D. T. , Cruts, M. , & Van Broeckhoven, C. (2018). NanoPack: Visualizing and processing long‐read sequencing data. Bioinformatics, 34(15), 2666–2669. 10.1093/bioinformatics/bty149 PubMed DOI PMC

Delhomme, N. , Padioleau, I. , Furlong, E. E. , & Steinmetz, L. M. (2012). easyRNASeq: A bioconductor package for processing RNA‐Seq data. Bioinformatics, 28(19), 2532–2533. 10.1093/bioinformatics/bts477 PubMed DOI PMC

Dobin, A. , & Gingeras, T. R. (2015). Mapping RNA‐seq reads with STAR. Current Protocols in Bioinformatics, 51, 11141‐19. 10.1002/0471250953.bi1114s51 PubMed DOI PMC

Ellegren, H. (2011). Sex‐chromosome evolution: Recent progress and the influence of male and female heterogamety. Nature Reviews Genetics, 12(3), 157–166. 10.1038/nrg2948 PubMed DOI

Filatov, D. A. (2018). The two "rules of speciation" in species with young sex chromosomes. Molecular Ecology, 27(19), 3799–3810. 10.1111/mec.14721 PubMed DOI

Flynn, J. M. , Hubley, R. , Goubert, C. , Rosen, J. , Clark, A. G. , Feschotte, C. , & Smit, A. F. (2020). RepeatModeler2 for automated genomic discovery of transposable element families. Proceedings of National Academy of Sciences USA, 117(17), 9451–9457. 10.1073/pnas.1921046117 PubMed DOI PMC

Fraïsse, C. , Picard, M. A. L. , & Vicoso, B. (2017). The deep conservation of the Lepidoptera Z chromosome suggests a non‐canonical origin of the W. Nature Communications, 8(1), 1486. 10.1038/s41467-017-01663-5 PubMed DOI PMC

Furman, B. L. S. , Metzger, D. C. H. , Darolti, I. , Wright, A. E. , Sandkam, B. A. , Almeida, P. , Shu, J. J. , & Mank, J. E. (2020). Sex chromosome evolution: So many exceptions to the rules. Genome Biology and Evolution, 12(6), 750–763. 10.1093/gbe/evaa081 PubMed DOI PMC

Grath, S. , & Parsch, J. (2016). Sex‐biased gene expression. Annual Review of Genetics, 50, 29–44. PubMed

Graves, J. A. M. (2016). Did sex chromosome turnover promote divergence of the major mammal groups?: De novo sex chromosomes and drastic rearrangements may have posed reproductive barriers between monotremes, marsupials and placental mammals. BioEssays, 38(8), 734–743. 10.1002/bies.201600019 PubMed DOI PMC

Graves, J. A. M. , & Peichel, C. L. (2010). Are homologies in vertebrate sex determination due to shared ancestry or to limited options? Genome Biology, 11(4), 205. 10.1186/gb-2010-11-4-205 PubMed DOI PMC

Gu, L. , Reilly, P. F. , Lewis, J. J. , Reed, R. D. , Andolfatto, P. , & Walters, J. R. (2019). Dichotomy of dosage compensation along the neo Z chromosome of the monarch butterfly. Current Biology, 29(23), 4071–4077. 10.1016/j.cub.2019.09.056 PubMed DOI PMC

Gu, L. Q. , & Walters, J. R. (2017). Evolution of sex chromosome dosage compensation in animals: A beautiful theory, undermined by facts and bedeviled by details. Genome Biology and Evolution, 9(9), 2461–2476. 10.1093/gbe/evx154 PubMed DOI PMC

Gu, L. Q. , Walters, J. R. , & Knipple, D. C. (2017). Conserved patterns of sex chromosome dosage compensation in the Lepidoptera (WZ/ZZ): Insights from a moth neo‐Z chromosome. Genome Biology and Evolution, 9(3), 802–816. 10.1093/gbe/evx039 PubMed DOI PMC

Guan, D. , McCarthy, S. A. , Wood, J. , Howe, K. , Wang, Y. , & Durbin, R. (2020). Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics, 36(9), 2896–2898. 10.1093/bioinformatics/btaa025 PubMed DOI PMC

Herbert, P. N. D. , Penton, E. H. , Burns, J. M. , Janzen, D. H. , & Hallwachs, W. (2004). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator . Proceedings of the National Academy of Sciences, 101(41), 14812–14817. 10.1073/pnas.04061661 PubMed DOI PMC

Hill, J. , Rastas, P. , Hornett, E. A. , Neethiraj, R. , Clark, N. , Morehouse, N. , de la Paz Celorio‐Mancera, M. , Cols, J. C. , Dircksen, H. , Meslin, C. , Keehnen, N. , Pruisscher, P. , Sikkink, K. , Vives, M. , Vogel, H. , Wiklund, C. , Woronik, A. , Boggs, C. L. , Nylin, S. , & Wheat, C. W. (2019). Unprecedented reorganization of holocentric chromosomes provides insights into the enigma of lepidopteran chromosome evolution. Science Advances, 5(6), eaau3648. 10.1126/sciadv.aau3648 PubMed DOI PMC

Holley, G. , Beyter, D. , Ingimundardottir, H. , Møller, P. L. , Kristmundsdottir, S. , Eggertsson, H. P. , & Halldorsson, B. V. (2021). Ratatosk: Hybrid error correction of long reads enables accurate variant calling and assembly. Genome Biology, 22(1), 28. 10.1186/s13059-020-02244-4 PubMed DOI PMC

Hu, J. , Fan, J. , Sun, Z. , & Liu, S. (2020). NextPolish: A fast and efficient genome polishing tool for long‐read assembly. Bioinformatics, 36(7), 2253–2255. 10.1093/bioinformatics/btz891 PubMed DOI

Humann, J. L. , Lee, T. , Ficklin, S. , & Main, D. (2019). Structural and functional annotation of eukaryotic genomes with GenSAS. In Kollmar M. (Ed.), Gene Prediction. Methods in Molecular Biology, vol. 1962. Humana. 10.1007/978-1-4939-9173-0_3 PubMed DOI

Huylmans, A. K. , Macon, A. , & Vicoso, B. (2017). Global dosage compensation is ubiquitous in Lepidoptera, but counteracted by the masculinization of the Z chromosome. Molecular Biology and Evolution, 34(10), 2637–2649. 10.1093/molbev/msx190 PubMed DOI PMC

Innocenti, P. , & Morrow, E. H. (2010). The sexually antagonistic genes of Drosophila melanogaster . PLoS Biology, 8(3), e1000335. 10.1371/journal.pbio.1000335 PubMed DOI PMC

Kirkpatrick, M. , & Guerrero, R. F. (2014). Signatures of sex‐antagonistic selection on recombining sex chromosomes. Genetics, 197(2), 531. 10.1534/genetics.113.156026 PubMed DOI PMC

Kitano, J. , & Peichel, C. L. (2012). Turnover of sex chromosomes and speciation in fishes. Environmental Biology of Fishes, 94(3), 549–558. 10.1007/s10641-011-9853-8 PubMed DOI PMC

Kitano, J. , Ross, J. A. , Mori, S. , Kume, M. , Jones, F. C. , Chan, Y. F. , Absher, D. M. , Grimwood, J. , Schmutz, J. , Myers, R. M. , Kingsley, D. M. , & Peichel, C. L. (2009). A role for a neo‐sex chromosome in stickleback speciation. Nature, 461(7267), 1079–1083. 10.1038/nature08441 PubMed DOI PMC

Kiuchi, T. , Koga, H. , Kawamoto, M. , Shoji, K. , Sakai, H. , Arai, Y. , Ishihara, G. , Kawaoka, S. , Sugano, S. , Shimada, T. , Suzuki, Y. , Suzuki, M. G. , & Katsuma, S. (2014). A single female‐specific piRNA is the primary determiner of sex in the silkworm. Nature, 509, 633–636. 10.1038/nature13315 PubMed DOI

Kolmogorov, M. , Yuan, J. , Lin, Y. , & Pevzner, P. A. (2019). Assembly of long, error‐prone reads using repeat graphs. Nature Biotechnology, 37(5), 540–546. 10.1038/s41587-019-0072-8 PubMed DOI

Kopylova, E. , Noé, L. , & Touzet, H. (2012). SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics, 28(24), 3211–3217. 10.1093/bioinformatics/bts611 PubMed DOI

Kurtz, S. , Phillippy, A. , Delcher, A. L. , Smoot, M. , Shumway, M. , Antonescu, C. , & Salzberg, S. L. (2004). Versatile and open software for comparing large genomes. Genome Biology, 5(2), R12. 10.1186/gb-2004-5-2-r12 PubMed DOI PMC

Laetsch, D. R. , & Blaxter, M. L. (2017). BlobTools: Interrogation of genome assemblies. F1000Research, 6, 1287. 10.12688/f1000research.12232.1 DOI

Lagesen, K. , Hallin, P. , Rødland, E. A. , Stærfeldt, H.‐H. , Rognes, T. , & Ussery, D. W. (2007). RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research, 35(9), 3100–3108. 10.1093/nar/gkm160 PubMed DOI PMC

Langmead, B. , & Salzberg, S. L. (2012). Fast gapped‐read alignment with bowtie 2. Nature Methods, 9(4), 357–359. 10.1038/nmeth.1923 PubMed DOI PMC

Lasne, C. , Sgro, C. M. , & Connallon, T. (2017). The relative contributions of the X chromosome and autosomes to local adaptation. Genetics, 205(3), 1285–1304. 10.1534/genetics.116.194670 PubMed DOI PMC

Li, H. , Handsaker, B. , Wysoker, A. , Fennell, T. , Ruan, J. , Homer, N. , Marth, G. , Abecasis, G. , & Durbin, R. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078–2079. 10.1093/bioinformatics/btp352 PubMed DOI PMC

Liao, Y. , Smyth, G. K. , & Shi, W. (2014). featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30(7), 923–930. 10.1093/bioinformatics/btt656 PubMed DOI

Lichilin, N. , El Taher, A. , & Bohne, A. (2021). Sex‐biased gene expression and recent sex chromosome turnover. Philosophical Transactions of the Royal Society, B: Biological Sciences, 376(1833), 20200107. 10.1098/rstb.2020.0107 PubMed DOI PMC

Lomsadze, A. , Burns, P. D. , & Borodovsky, M. (2014). Integration of mapped RNA‐Seq reads into automatic training of eukaryotic gene finding algorithm. Nucleic Acids Research, 42(15), e119. 10.1093/nar/gku557 PubMed DOI PMC

Love, M. I. , Huber, W. , & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2. Genome Biology, 15(12), 550. 10.1186/s13059-014-0550-8 PubMed DOI PMC

Lucek, K. , Giménez, M. D. , Joron, M. , Rafajlović, M. , Searle, J. B. , Walden, N. , Westram, A. M. , & Faria, R. (2023). The impact of chromosomal rearrangements in speciation: From micro‐ to macroevolution. Cold Spring Harbor Perspectives in Biology, 15, a041447. 10.1101/cshperspect.a041447 PubMed DOI PMC

Lund‐Hansen, K. K. , Olito, C. , Morrow, E. H. , & Abbott, J. K. (2021). Sexually antagonistic coevolution between the sex chromosomes of Drosophila melanogaster . Proceedings of the National Academy of Sciences of the United States of America, 118(8), e2003359118. 10.1073/pnas.2003359118 PubMed DOI PMC

Maeki, K. , & Ae, S. A. (1969). Studies of the chromosomes of Formosan Rhopalocera 4. Danaidae and Satyridae. Kontyu, 37(1), 99–109.

Mank, J. E. (2017). The transcriptional architecture of phenotypic dimorphism. Nature Ecology & Evolution, 1(1). 10.1038/s41559-016-0006 PubMed DOI

Mank, J. E. , & Ellegren, H. (2009). Sex‐linkage of sexually antagonistic genes is predicted by female, but not male, effects in birds. Evolution, 63(6), 1464–1472. 10.1111/j.1558-5646.2009.00618.x PubMed DOI

Mank, J. E. , Hosken, D. J. , & Wedell, N. (2014). Conflict on the sex chromosomes: Cause, effect, and complexity. Cold Spring Harbor Perspectives in Biology, 6(12), a017715. 10.1101/cshperspect.a017715 PubMed DOI PMC

Manni, M. , Berkeley, M. R. , Seppey, M. , Simão, F. A. , & Zdobnov, E. M. (2021). BUSCO update: Novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Molecular Biology and Evolution, 38(10), 4647–4654. 10.1093/molbev/msab199 PubMed DOI PMC

Marçais, G. , & Kingsford, C. (2011). A fast, lock‐free approach for efficient parallel counting of occurrences of k‐mers. Bioinformatics, 27(6), 764–770. 10.1093/bioinformatics/btr011 PubMed DOI PMC

Marec, F. (1996). Synaptonemal complexes in insects. International Journal of Insect Morphology and Embryology, 25(3), 205–233. 10.1016/0020-7322(96)00009-8 DOI

Martin, M. (2011). Cutadapt removes adapter sequences from high‐throughput sequencing reads. EMBnet.Journal, 17(1), 10–12.

Martin, S. H. , Singh, K. S. , Gordon, I. J. , Omufwoko, K. S. , Collins, S. , Warren, I. A. , Munby, H. , Brattström, O. , Traut, W. , Martins, D. J. , Smith, D. A. S. , Jiggins, C. D. , Bass, C. , & French‐Constant, R. H. (2020). Whole‐chromosome hitchhiking driven by a male‐killing endosymbiont. PLoS Biology, 18(2), e3000610. 10.1371/journal.pbio.3000610 PubMed DOI PMC

Matsumoto, T. , Yoshida, K. , & Kitano, J. (2016). Gene flow and sex chromosome evolution. Genes & Genetic Systems, 91(6), 357.

McAllister, B. F. , Sheeley, S. L. , Mena, P. A. , Evans, A. L. , & Schlotterer, C. (2008). Clinal distribution of a chromosomal rearrangement: A precursor to chromosomal speciation? Evolution, 62(8), 1852–1865. 10.1111/j.1558-5646.2008.00435.x PubMed DOI

Mediouni, J. , Fukova, I. , Frydrychova, R. , Dhouibi, M. H. , & Marec, F. (2004). Karyotype, sex chromatin and sex chromosome differentiation in the carob moth, Ectomyelois ceratoniae (Lepidoptera: Pyralidae). Caryologia, 57(2), 184–194.

Mongue, A. J. , Hansen, M. E. , & Walters, J. R. (2022). Support for faster and more adaptive Z chromosome evolution in two divergent lepidopteran lineages. Evolution, 76(2), 332–345. 10.1111/evo.14341 PubMed DOI PMC

Mongue, A. J. , Nguyen, P. , Voleníková, A. , & Walters, J. R. (2017). Neo‐sex chromosomes in the monarch butterfly, Danaus plexippus . G3: Genes, Genomes, Genetics, 7(10), 3281–3294. 10.1534/g3.117.300187 PubMed DOI PMC

Mongue, A. J. , & Walters, J. R. (2018). The Z chromosome is enriched for sperm proteins in two divergent species of Lepidoptera. Genome, 61(4), 248–253. 10.1139/gen-2017-0068 PubMed DOI

Mora, P. , Hospodarska, M. , Volenikova, A. , Koutecky, P. , Stundlova, J. , Dalikova, M. , Walters, J. R. , & Nguyen, P. (2023). Sex chromosome evolution in the tribe Danaini. Dryad, Dataset . 10.5061/dryad.hmgqnk9p2 PubMed DOI PMC

Nguyen, P. , & Carabajal Paladino, L. (2016). On the neo‐sex chromosomes of Lepidoptera. In Pontarotti P. (Ed.), Evolutionary biology: Convergent evolution, evolution of complex traits, concepts and methods (pp. 171–185). Springer.

Nguyen, P. , Sýkorová, M. , Šíchová, J. , Kůta, V. , Dalíková, M. , Čapková Frydrychová, R. , Neven, L. G. , Sahara, K. , & Marec, F. (2013). Neo‐sex chromosomes and adaptive potential in tortricid pests. Proceedings of the National Academy of Sciences, 110(17), 6931–6936. 10.1073/pnas.1220372110 PubMed DOI PMC

Novák, P. , Ávila Robledillo, L. , Koblížková, A. , Vrbová, I. , Neumann, P. , & Macas, J. (2017). TAREAN: A computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Research, 45(12), e111. 10.1093/nar/gkx257 PubMed DOI PMC

O'Meally, D. , Ezaz, T. , Georges, A. , Sarre, S. D. , & Graves, J. A. M. (2012). Are some chromosomes particularly good at sex? Insights from amniotes. Chromosome Research, 20(1), 7–19. 10.1007/s10577-011-9266-8 PubMed DOI

Oshlack, A. , Robinson, M. D. , & Young, M. D. (2010). From RNA‐seq reads to differential expression results. Genome Biology, 11(12), 220. 10.1186/gb-2010-11-12-220 PubMed DOI PMC

Palmer, D. H. , Rogers, T. F. , Dean, R. , & Wright, A. E. (2019). How to identify sex chromosomes and their turnover. Molecular Ecology, 28(21), 4709–4724. 10.1111/mec.15245 PubMed DOI PMC

Pan, Q. W. , Kay, T. , Depince, A. , Adolfi, M. , Schartl, M. , Guiguen, Y. , & Herpin, A. (2021). Evolution of master sex determiners: TGF‐beta signalling pathways at regulatory crossroads. Philosophical Transactions of the Royal Society, B: Biological Sciences, 376(1832), 20200091. 10.1098/rstb.2020.0091 PubMed DOI PMC

Parsch, J. , & Ellegren, H. (2013). The evolutionary causes and consequences of sex‐biased gene expression. Nature Reviews Genetics, 14(2), 83–87. 10.1038/nrg3376 PubMed DOI

Payseur, B. A. , Presgraves, D. C. , & Filatov, D. A. (2018). Introduction: Sex chromosomes and speciation. Molecular Ecology, 27(19), 3745–3748. 10.1111/mec.14828 PubMed DOI PMC

Pedersen, B. S. , Collins, R. L. , Talkowski, M. E. , & Quinlan, A. R. (2017). Indexcov: Fast coverage quality control for whole‐genome sequencing. GigaScience, 6(11), 1–6. 10.1093/gigascience/gix090 PubMed DOI PMC

Pennell, M. W. , Kirkpatrick, M. , Otto, S. P. , Vamosi, J. C. , Peichel, C. L. , Valenzuela, N. , & Kitano, J. (2015). Y fuse? Sex chromosome fusions in fishes and reptiles. PLoS Genetics, 11(5), e1005237. 10.1371/journal.pgen.1005237 PubMed DOI PMC

Perrin, N. (2021). Sex‐chromosome evolution in frogs: What role for sex‐antagonistic genes? Philosophical Transactions of the Royal Society, B: Biological Sciences, 376(1832), 20200094. 10.1098/rstb.2020.0094 PubMed DOI PMC

Pohlert, T. (2022). PMCMRplus: Calculate pairwise multiple comparisons of mean rank sums extended.

Pokorna, M. , Altmanova, M. , & Kratochvil, L. (2014). Multiple sex chromosomes in the light of female meiotic drive in amniote vertebrates. Chromosome Research, 22(1), 35–44. 10.1007/s10577-014-9403-2 PubMed DOI

Provaznikova, I. , Dalikova, M. , Volenikova, A. , Roessingh, P. , Sahara, K. , Provaznik, J. , Marec, F. , & Nguyen, P. (2023). Multiple sex chromosomes of Yponomeuta ermine moths suggest a role of sexual antagonism in sex chromosome turnover in Lepidoptera. bioRxiv . 10.1101/2023.06.06.543653 DOI

Quinlan, A. R. , & Hall, I. M. (2010). BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics, 26(6), 841–842. 10.1093/bioinformatics/btq033 PubMed DOI PMC

Ranz, J. M. , González, P. M. , Clifton, B. D. , Nazario‐Yepiz, N. O. , Hernández‐Cervantes, P. L. , Palma‐Martínez, M. J. , Valdivia, D. I. , Jiménez‐Kaufman, A. , Lu, M. M. , Markow, T. A. , & Abreu‐Goodger, C. (2021). A de novo transcriptional atlas in Danaus plexippus reveals variability in dosage compensation across tissues. Communications Biology, 4, 791. 10.1038/s42003-021-02335-3 PubMed DOI PMC

Rice, W. R. (1984). Sex‐chromosomes and the evolution of sexual dimorphism. Evolution, 38(4), 735–742. 10.2307/2408385 PubMed DOI

Rice, W. R. (1987). The accumulation of sexually antagonistic genes as a selective agent promoting the evolution of reduced recombination between primitive sex chromosomes. Evolution, 41(4), 911–914. 10.1111/j.1558-5646.1987.tb05864.x PubMed DOI

Robinson, M. D. , & Oshlack, A. (2010). A scaling normalization method for differential expression analysis of RNA‐seq data. Genome Biology, 11(3), R25. 10.1186/gb-2010-11-3-r25 PubMed DOI PMC

Ross, J. A. , Urton, J. R. , Boland, J. , Shapiro, M. D. , & Peichel, C. L. (2009). Turnover of sex chromosomes in the stickleback fishes (Gasterosteidae). PLoS Genetics, 5(2), e1000391. 10.1371/journal.pgen.1000391 PubMed DOI PMC

Sahara, K. , Marec, F. , & Traut, W. (1999). TTAGG telomeric repeats in chromosomes of some insects and other arthropods. Chromosome Research, 7(6), 449–460. 10.1023/a:1009297729547 PubMed DOI

Schurch, N. J. , Schofield, P. , Gierliński, M. , Cole, C. , Sherstnev, A. , Singh, V. , Wrobel, N. , Gharbi, K. , Simpson, G. G. , Owen‐Hughes, T. , Blaxter, M. , & Barton, G. J. (2016). How many biological replicates are needed in an RNA‐seq experiment and which differential expression tool should you use? RNA, 22(6), 839–851. 10.1261/rna.053959.115 PubMed DOI PMC

Šíchová, J. , Nguyen, P. , Dalíková, M. , & Marec, F. (2013). Chromosomal evolution in tortricid moths: Conserved karyotypes with diverged features. PLoS One, 8(5), e64520. 10.1371/journal.pone.0064520 PubMed DOI PMC

Šíchová, J. , Voleníková, A. , Dincă, V. , Nguyen, P. , Vila, R. , Sahara, K. , & Marec, F. (2015). Dynamic karyotype evolution and unique sex determination systems in Leptidea wood white butterflies. BMC Evolutionary Biology, 15, 89. 10.1186/s12862-015-0375-4 PubMed DOI PMC

Sigeman, H. , Ponnikas, S. , Chauhan, P. , Dierickx, E. , Brooke, M. D. , & Hanssonl, B. (2019). Repeated sex chromosome evolution in vertebrates supported by expanded avian sex chromosomes. Proceedings of the Royal Society B: Biological Sciences, 286(1916), 20192051. 10.1098/rspb.2019.2051 PubMed DOI PMC

Singh, K. S. , De‐Kayne, R. , Omufwoko, K. S. , Martins, D. J. , Bass, C. , French‐Constant, R. , & Martin, S. H. (2022). Genome assembly of Danaus chrysippus and comparison with the monarch Danaus plexippus . G3: Genes, Genomes, Genetics, 12, jkab449. 10.1093/g3journal/jkab449 PubMed DOI PMC

Smit, A. F. A. , Hubley, R. , & Green, P. (2013. ‐2015). RepeatMasker Open‐4.0. http://www.repeatmasker.org

Smith, D. A. S. , Gordon, I. J. , Traut, W. , Herren, J. , Collins, S. , Martins, D. J. , Saitoti, K. , Ireri, P. , & French‐Constant, R. (2016). A neo‐W chromosome in a tropical butterfly links colour pattern, male‐killing, and speciation. Proceedings of the Royal Society B: Biological Sciences, 283(1835), 20160821. 10.1098/rspb.2016.0821 PubMed DOI PMC

Smolander, O.‐P. , Blande, D. , Ahola, V. , Rastas, P. , Tanskanen, J. , Kammonen, J. I. , Oostra, V. , Pellegrini, L. , Ikonen, S. , Dallas, T. , DiLeo, M. F. , Duplouy, A. , Duru, I. C. , Halimaa, P. , Kahilainen, A. , Kuwar, S. S. , Kärenlampi, S. O. , Lafuente, E. , Luo, S. , … Saastamoinen, M. (2022). Improved chromosome‐level genome assembly of the Glanville fritillary butterfly (Melitaea cinxia) integrating Pacific biosciences long reads and a high‐density linkage map. GigaScience, 11, giab097. 10.1093/gigascience/giab097 PubMed DOI PMC

Stanke, M. , & Morgenstern, B. (2005). AUGUSTUS: A web server for gene prediction in eukaryotes that allows user‐defined constraints. Nucleic Acids Research, 33, W465–W467. 10.1093/nar/gki458 PubMed DOI PMC

Steward, R. A. , Okamura, Y. , Boggs, C. L. , Vogel, H. , & Wheat, C. W. (2021). The genome of the margined white butterfly (Pieris macdunnoughii): Sex chromosome insights and the power of polishing with PoolSeq data. Genome Biology and Evolution, 13(4), evab053. 10.1093/gbe/evab053 PubMed DOI PMC

Suetsugu, Y. , Futahashi, R. , Kanamori, H. , Kadono‐Okuda, K. , Sasanuma, S.‐I. , Narukawa, J. , Ajimura, M. , Jouraku, A. , Namiki, N. , Shimomura, M. , Sezutsu, H. , Osanai‐Futahashi, M. , Suzuki, M. G. , Daimon, T. , Shinoda, T. , Taniai, K. , Asaoka, K. , Niwa, R. , Kawaoka, S. , … Mita, K. (2013). Large scale full‐length cDNA sequencing reveals a unique genomic landscape in a lepidopteran model insect, Bombyx mori. G3: Genes, Genomes, Genetics, 3(9), 1481–1492. 10.1534/g3.113.006239 PubMed DOI PMC

Toups, M. A. , & Vicoso, B. (2023). The X chromosome of insects likely predates the origin of class Insecta. Evolution, 77(11), 2504–2511. 10.1093/evolut/qpad169 PubMed DOI

Traut, W. , Schubert, V. , Dalikova, M. , Marec, F. , & Sahara, K. (2019). Activity and inactivity of moth sex chromosomes in somatic and meiotic cells. Chromosoma, 128(4), 533–545. 10.1007/s00412-019-00722-8 PubMed DOI

Veltsos, P. , Rodrigues, N. , Studer, T. , Ma, W. J. , Sermier, R. , Leuenberger, J. , & Perrin, N. (2020). No evidence that Y‐chromosome differentiation affects male fitness in a Swiss population of common frogs. Journal of Evolutionary Biology, 33(4), 401–409. 10.1111/jeb.13573 PubMed DOI

Vicoso, B. , & Charlesworth, B. (2006). Evolution on the X chromosome: Unusual patterns and processes. Nature Reviews Genetics, 7(8), 645–653. 10.1038/nrg1914 PubMed DOI

Vurture, G. W. , Sedlazeck, F. J. , Nattestad, M. , Underwood, C. J. , Fang, H. , Gurtowski, J. , & Schatz, M. C. (2017). GenomeScope: Fast reference‐free genome profiling from short reads. Bioinformatics, 33(14), 2202–2204. 10.1093/bioinformatics/btx153 PubMed DOI PMC

Walters, J. R. , & Hardcastle, T. J. (2011). Getting a full dose? Reconsidering sex chromosome dosage compensation in the silkworm, Bombyx mori . Genome Biology and Evolution, 3, 491–504. 10.1093/gbe/evr036 PubMed DOI PMC

Walters, J. R. , Hardcastle, T. J. , & Jiggins, C. D. (2015). Sex chromosome dosage compensation in Heliconius butterflies: Global yet still incomplete? Genome Biology and Evolution, 7(9), 2545–2559. 10.1093/gbe/evv156 PubMed DOI PMC

Wright, A. E. , Dean, R. , Zimmer, F. , & Mank, J. E. (2016). How to make a sex chromosome. Nature Communications, 7, 12087. 10.1038/ncomms12087 PubMed DOI PMC

Wright, C. J. , Stevens, L. , Mackintosh, A. , Lawniczak, M. , & Blaxter, M. (2023). Chromosome Evolution in Lepidoptera. ssiv . 10.1101/2023.05.12.540473 PubMed DOI PMC

Yoshido, A. , Šíchová, J. , Pospíšilová, K. , Nguyen, P. , Voleníková, A. , Šafář, J. , Provazník, J. , Vila, R. , & Marec, F. (2020). Evolution of multiple sex‐chromosomes associated with dynamic genome reshuffling in Leptidea wood‐white butterflies. Heredity, 125(3), 138–154. 10.1038/s41437-020-0325-9 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...