Polyommatine Blue Butterflies Reveal Unexpected Integrity of the W Sex Chromosome Amid Extensive Chromosomal Fragmentation Linked to Telomere Restoration

. 2025 Sep 02 ; 17 (9) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40796147

Grantová podpora
PID2020-117739GA-I00 Czech Science Foundation
MCIN
10.13039/501100011033 AEI CEP - Centrální evidence projektů
2021-SGR-01334 AEI CEP - Centrální evidence projektů
Departament de Recerca i Universitats

Chromosomal rearrangements act as barriers to gene flow and can thus promote speciation. In moths and butterflies (Lepidoptera), which possess holocentric chromosomes facilitating karyotype changes, chromosome fusions are more common than fissions. Yet, limited evidence suggests that when speciation involves chromosomal rearrangements, it is most often linked to fissions. Notable karyotypic variation is observed in three clades of the subfamily Polyommatinae (Lycaenidae), with chromosome numbers ranging from n = 10 to 225. We investigated genome sizes and karyotypes in several species of the genera Polyommatus and Lysandra with modal and derived high chromosome numbers. Our findings showed no support for polyploidy, confirming previous conclusions about karyotypic diversification via chromosome fragmentation in this butterfly family. Species with high chromosome numbers have slightly larger genomes, which indicate a potential role of repetitive sequences but contradict the hypothesis of holocentric drive. Ends of fragmented chromosomes were healed with telomeres synthesized de novo, which were significantly larger than those of species with modal karyotype. No interstitial telomeric sequences were detected on autosomes. Internal telomeric signals on sex chromosomes, however, revealed multiple sex chromosome systems in Polyommatus (Plebicula) dorylas and Polyommatus icarus, with two karyotype races differing in sex chromosome constitution in the latter. Notably, the W chromosome resisted fragmentation, presumably due to its epigenetic silencing.

Zobrazit více v PubMed

Augustijnen  H, et al.  A macroevolutionary role for chromosomal fusion and fission in PubMed DOI PMC

Baker  RJ, Bickham  JW. Speciation by monobrachial centric fusions. Proc Natl Acad Sci U S A. 1986:83:8245–8248. 10.1073/pnas.83.21.8245. PubMed DOI PMC

Boman  J, Wiklund  C, Vila  R, Backström  N. Meiotic drive against chromosome fusions in butterfly hybrids. Chromosome Res. 2024:32:7. 10.1007/s10577-024-09752-0. PubMed DOI PMC

Bracewell  R, Tran  A, Chatla  K, Bachtrog  D. Sex and neo-sex chromosome evolution in beetles. PLoS Genet. 2024:20:e1011477. 10.1371/journal.pgen.1011477. PubMed DOI PMC

Brashear  WA, Bredemeyer  KR, Murphy  WJ. Genomic architecture constrained placental mammal X chromosome evolution. Genome Res. 2021:31:1353–1365. 10.1101/gr.275274.121. PubMed DOI PMC

Buntrock  L, Marec  F, Krueger  S, Traut  W. Organ growth without cell division: somatic polyploidy in a moth, PubMed DOI

Bureš  P, Zedek  F. Holokinetic drive: centromere drive in chromosomes without centromeres. Evolution. 2014:68:2412–2420. 10.1111/evo.12437. PubMed DOI

Cabral-de-Mello  DC, et al.  The burst of satellite DNA in PubMed DOI PMC

Carabajal Paladino  LZ, et al.  Sex chromosome turnover in moths of the diverse superfamily Gelechioidea. Genome Biol Evol. 2019:11:1307–1319. 10.1093/gbe/evz075. PubMed DOI PMC

Carabajal Paladino  LZ, Nguyen  P, Šíchová  J, Marec  F. Mapping of single-copy genes by TSA-FISH in the codling moth, cydia pomonella. BMC Genet. 2014:15:S15. 10.1186/1471-2156-15-S2-S15. PubMed DOI PMC

Carey  SB, et al.  Representing sex chromosomes in genome assemblies. Cell Genom. 2022:2:100132. 10.1016/j.xgen.2022.100132. PubMed DOI PMC

Cornet  C, et al.  Holocentric repeat landscapes: from micro-evolutionary patterns to macro-evolutionary associations with karyotype evolution. Mol Ecol. 2024:33:e17100. 10.1111/mec.17100. PubMed DOI PMC

Coutsis  JG, de Prins  J, de Prins  W. The chromosome number and karyotype of the two morphs of

Dalíková  M, et al.  The role of repetitive sequences in repatterning of major ribosomal DNA clusters in Lepidoptera. Genome Biol Evol. 2023:15:evad090. 10.1093/gbe/evad090. PubMed DOI PMC

De Lesse  H. Les nombres de chromosomes dans le groupe de DOI

De Lesse  H. Les nombres de chromosomes dans le groupe de DOI

De Prins  J, Saitoh  K. Karyology and sex determination. In: Kristensen  NP, editor. Handbook of zoology. Lepidoptera, moths and butterflies. De Gruyter; 2003. p. 449–468.

Descimon  H, Mallet  J. Bad species. In: Settele  J, Shreeve  TG, Konvička  M, Dyck  VH, editors. Ecology of butterflies in Europe. Cambridge University Press; 2010. p. 219–249.

De Vos  JM, Augustijnen  H, Bätscher  L, Lucek  K. Speciation through chromosomal fusion and fission in Lepidoptera. Philos Trans R Soc Lond B Biol Sci. 2020:375:20190539. 10.1098/rstb.2019.0539. PubMed DOI PMC

Dincă  V, Lukhtanov  VA, Talavera  G, Vila  R. Unexpected layers of cryptic diversity in wood white PubMed DOI

Drinnenberg  IA, deYoung  D, Henikoff  S, Malik  HS. Recurrent loss of PubMed DOI PMC

Ellegren  H. Sex-chromosome evolution: recent progress and the influence of male and female heterogamety. Nat Rev Genet. 2011:12:157–166. 10.1038/nrg2948. PubMed DOI

Ennis  TJ. Sex chromatin and chromosome numbers in Lepidoptera. Can J Genet Cytol. 1976:18:119–130. 10.1139/g76-017. PubMed DOI

Escudero  M, Márquez-Corro  JI, Hipp  AL. The phylogenetic origins and evolutionary history of holocentric chromosomes. Syst Bot. 2016:41:580–585. 10.1600/036364416X692442. DOI

Faria  R, Navarro  A. Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends Ecol Evol. 2010:25:660–669. 10.1016/j.tree.2010.07.008. PubMed DOI

Fujiwara  H, Nakazato  Y, Okazaki  S, Ninaki  O. Stability and telomere structure of chromosomal fragments in two different mosaic strains of the silkworm, DOI

Fuková  I, Nguyen  P, Marec  F. Codling moth cytogenetics: karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome. 2005:48:1083–1092. 10.1139/g05-063. PubMed DOI

Gasparotto  AE, et al.  A step forward in the genome characterization of the sugarcane borer, PubMed DOI

Gebert  D, et al.  Large PubMed DOI PMC

Gómez-Blanco  D, Tobler  M, Hasselquist  D. Why and when should organisms elongate their telomeres? Elaborations on the ‘excess resources elongation’ and ‘last resort elongation’ hypotheses. Ecol Evol. 2023:13:e10825. 10.1002/ece3.10825. PubMed DOI PMC

Hara  K, et al.  Altered expression of testis-specific genes, piRNAs, and transposons in the silkworm ovary masculinized by a W chromosome mutation. BMC Genomics. 2012:13:119. 10.1186/1471-2164-13-119. PubMed DOI PMC

Hebert  FO, et al.  Expansion of LINEs and species-specific DNA repeats drives genome expansion in Asian gypsy moths. Sci Rep. 2019:9:16413. 10.1038/s41598-019-52840-z. PubMed DOI PMC

Jankowska  M, et al.  Holokinetic centromeres and efficient telomere healing enable rapid karyotype evolution. Chromosoma. 2015:124:519–528. 10.1007/s00412-015-0524-y. PubMed DOI

Kandul  NP, et al.  Phylogeny of PubMed DOI

Kandul  NP, Lukhtanov  VA, Pierce  NE. Karyotypic diversity and speciation in PubMed DOI

Kawaoka  S, et al.  The silkworm W chromosome is a source of female-enriched piRNAs. RNA. 2011:17:2144–2151. 10.1261/rna.027565.111. PubMed DOI PMC

Lohse  K, et al.  The genome sequence of the Adonis blue, PubMed DOI PMC

Lohse  K, et al.  The genome sequence of the common blue, PubMed DOI PMC

Lorković  Z. Die Chromosomenzahlen in der Spermatogenese der Tagfalter. Chromosoma. 1941:2:155–191. 10.1007/BF00325958. DOI

Lucek  K, Augustijnen  H, Escudero  M. A holocentric twist to chromosomal speciation?  Trends Ecol Evol. 2022:37:655–662. 10.1016/j.tree.2022.04.002. PubMed DOI

Lukhtanov  VA. The blue butterfly PubMed DOI PMC

Lukhtanov  VA, et al.  Versatility of multivalent orientation, inverted meiosis, and rescued fitness in holocentric chromosomal hybrids. Proc Natl Acad Sci U S A. 2018:115:E9610–E9619. 10.1073/pnas.1802610115. PubMed DOI PMC

Lukhtanov  VA, Dantchenko  AV, Kandul  NP. Die karyotypen von

Marec  F. Genetic control of pest Lepidoptera: induction of sex-linked recessive lethal mutations in

Marec  F. Synaptonemal complexes in insects. Int J Insect Morphol Embryol. 1996:25:205–233. 10.1016/0020-7322(96)00009-8. DOI

Marques  A, Drinnenberg  IA. Same but different: centromere regulations in holocentric insects and plants. Curr Opin Cell Biol. 2025:93:102484. 10.1016/j.ceb.2025.102484. PubMed DOI

Mathers  TC, et al.  Chromosome-scale genome assemblies of aphids reveal extensively rearranged autosomes and long-term conservation of the X chromosome. Mol Biol Evol. 2021:38:856–875. 10.1093/molbev/msaa246. PubMed DOI PMC

Mediouni  J, Fuková  I, Frydrychová  R, Dhouibi  MH, Marec  F. Karyotype, sex chromatin and sex chromosome differentiation in the carob moth, DOI

Mora  P, et al.  Sex-biased gene content is associated with sex chromosome turnover in Danaini butterflies. Mol Ecol. 2024:33:e17256. 10.1111/mec.17256. PubMed DOI PMC

Munguira  M, Martin  J, Pérez-Valiente  M. Karyology and distribution as tools in the taxonomy of Iberian

Nguyen  P, et al.  Neo-sex chromosomes and adaptive potential in tortricid pests. Proc Natl Acad Sci U S A. 2013:110:6931–6936. 10.1073/pnas.1220372110. PubMed DOI PMC

Nguyen  P, Sahara  K, Yoshido  A, Marec  F. Evolutionary dynamics of rDNA clusters on chromosomes of moths and butterflies (Lepidoptera). Genetica. 2010:138:343–354. 10.1007/s10709-009-9424-5. PubMed DOI

Ohno  S. Sex chromosomes and sex-linked genes. Springer; 1966.

Palmer Droguett  DH, et al.  Neo-sex chromosome evolution in treehoppers despite long-term X chromosome conservation. Genome Biol Evol. 2024:16:evae264. 10.1093/gbe/evae264. PubMed DOI PMC

Pazhenkova  EA, Lukhtanov  VA. Chromosomal conservatism vs chromosomal megaevolution: enigma of karyotypic evolution in Lepidoptera. Chromosome Res. 2023:31:16. 10.1007/s10577-023-09725-9. PubMed DOI

Pennell  MW, et al.  Y fuse? Sex chromosome fusions in fishes and reptiles. PLoS Genet. 2015:11:e1005237. 10.1371/journal.pgen.1005237. PubMed DOI PMC

Pflug  JM, Holmes  VR, Burrus  C, Johnston  JS, Maddison  DR. Measuring genome sizes using read-depth, k-mers, and flow cytometry: methodological comparisons in beetles (Coleoptera). G3 (Bethesda). 2020:10:3047–3060. 10.1534/g3.120.401028. PubMed DOI PMC

Robinson  R. Lepidoptera genetics. Pergamon Press; 1971.

Sahara  K, Marec  F, Traut  W. TTAGG telomeric repeats in chromosomes of some insects and other arthropods. Chromosome Res. 1999:7:449–460. 10.1023/A:1009297729547. PubMed DOI

Schindelin  J, et al.  Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012:9:676–682. 10.1038/nmeth.2019. PubMed DOI PMC

Šíchová  J, Nguyen  P, Dalíková  M, Marec  F. Chromosomal evolution in tortricid moths: conserved karyotypes with diverged features. PLoS One. 2013:8:e64520. 10.1371/journal.pone.0064520. PubMed DOI PMC

Speel  EJ, Hopman  AH, Komminoth  P. Signal amplification for DNA and mRNA. In: Darby  IA, editor. In situ hybridization protocols. Humana Press; 2000. p. 195–216.

Talavera  G, Lukhtanov  VA, Pierce  NE, Vila  R. Establishing criteria for higher-level classification using molecular data: the systematics of PubMed DOI

Talavera  G, Lukhtanov  VA, Rieppel  L, Pierce  NE, Vila  R. In the shadow of phylogenetic uncertainty: the recent diversification of PubMed DOI

Talla  V, et al.  Rapid increase in genome size as a consequence of transposable element hyperactivity in wood-white (Leptidea) butterflies. Genome Biol Evol. 2017:9:2491–2505. 10.1093/gbe/evx163. PubMed DOI PMC

Tomaszkiewicz  M, Medvedev  P, Makova  KD. Y and W chromosome assemblies: approaches and discoveries. Trends Genet. 2017:33:266–282. 10.1016/j.tig.2017.01.008. PubMed DOI

Traut  W. Pachytene mapping in the female silkworm, Bombyx mori L. (Lepidoptera). Chromosoma. 1976:58:275–284. 10.1007/BF00292094. PubMed DOI

Traut  W, Sahara  K, Ffrench-Constant  RH. Lepidopteran synteny units reveal deep chromosomal conservation in butterflies and moths. G3 (Bethesda). 2023:13:jkad134. 10.1093/g3journal/jkad134. PubMed DOI PMC

Traut  W, Schubert  V, Daliková  M, Marec  F, Sahara  K. Activity and inactivity of moth sex chromosomes in somatic and meiotic cells. Chromosoma. 2019:128:533–545. 10.1007/s00412-019-00722-8. PubMed DOI

Van Nieukerken  EJ, et al.  Order Lepidoptera linnaeus, 1758. In: Zhang  Z-Q, editor. Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Magnolia Press; 2011. p. 212–221.

Van't Hof  AE, Marec  F, Saccheri  IJ, Brakefield  PM, Zwaan  BJ. Cytogenetic characterization and AFLP-based genetic linkage mapping for the butterfly PubMed DOI PMC

Van't Hof  EA, et al.  Linkage map of the peppered moth, PubMed DOI PMC

Vershinina  AO, Anokhin  BA, Lukhtanov  VA. Ribosomal DNA clusters and telomeric (TTAGG)n repeats in blue butterflies (Lepidoptera, Lycaenidae) with low and high chromosome numbers. Comp Cytogenet. 2015:9:161–171. 10.3897/CompCytogen.v9i2.4715. PubMed DOI PMC

Vershinina  AO, Lukhtanov  VA. Evolutionary mechanisms of runaway chromosome number change in PubMed DOI PMC

Vila  R, et al.  The genome sequence of the chalkhill blue, PubMed DOI PMC

White  MJD. The evidence against polyploidy in sexually-reproducing animals. Am Nat. 1946:80:610–618. 10.1086/281481. PubMed DOI

Wiemers  M. 2003. Chromosome differentiation and the radiation of the butterfly subgenus

Wiemers  M, Stradomsky  BV, Vodolazhsky  DI. A molecular phylogeny of DOI

Winnepenninckx  B, Backeljau  T, De Wachter  R. Extraction of high molecular weight DNA from molluscs. Trends Genet. 1993:9:407. 10.1016/0168-9525(93)90102-N. PubMed DOI

Wright  CJ, et al. The 229 chromosomes of the Atlas blue butterfly reveal rules constraining chromosome evolution in Lepidoptera. bioRxiv. 2025:2025.03.14.642909. 10.1101/2025.03.14.642909 DOI

Wright  CJ, Stevens  L, Mackintosh  A, Lawniczak  M, Blaxter  M. Comparative genomics reveals the dynamics of chromosome evolution in Lepidoptera. Nat Ecol Evol. 2024:8:777–790. 10.1038/s41559-024-02329-4. PubMed DOI PMC

Yoshida  K, Kitano  J. Tempo and mode in karyotype evolution revealed by a probabilistic model incorporating both chromosome number and morphology. PLoS Genet. 2021:17:e1009502. 10.1371/journal.pgen.1009502. PubMed DOI PMC

Yoshido  A, et al.  Evolution of multiple sex chromosomes associated with dynamic genome reshuffling in PubMed DOI PMC

Yoshido  A, Marec  F, Sahara  K. Resolution of sex chromosome constitution by genomic PubMed DOI

Yoshido  A, Marec  F, Sahara  K. The fate of W chromosomes in hybrids between wild silkmoths, PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...