Polyommatine Blue Butterflies Reveal Unexpected Integrity of the W Sex Chromosome Amid Extensive Chromosomal Fragmentation Linked to Telomere Restoration
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
PID2020-117739GA-I00
Czech Science Foundation
MCIN
10.13039/501100011033
AEI
CEP - Centrální evidence projektů
2021-SGR-01334
AEI
CEP - Centrální evidence projektů
Departament de Recerca i Universitats
PubMed
40796147
PubMed Central
PMC12405885
DOI
10.1093/gbe/evaf157
PII: 8231705
Knihovny.cz E-zdroje
- Klíčová slova
- Polyommatus, butterfly, fission, fusion, sex chromosomes, telomere,
- MeSH
- chromozomy hmyzu MeSH
- karyotyp MeSH
- motýli * genetika MeSH
- pohlavní chromozomy * genetika MeSH
- polyploidie MeSH
- telomery * genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Chromosomal rearrangements act as barriers to gene flow and can thus promote speciation. In moths and butterflies (Lepidoptera), which possess holocentric chromosomes facilitating karyotype changes, chromosome fusions are more common than fissions. Yet, limited evidence suggests that when speciation involves chromosomal rearrangements, it is most often linked to fissions. Notable karyotypic variation is observed in three clades of the subfamily Polyommatinae (Lycaenidae), with chromosome numbers ranging from n = 10 to 225. We investigated genome sizes and karyotypes in several species of the genera Polyommatus and Lysandra with modal and derived high chromosome numbers. Our findings showed no support for polyploidy, confirming previous conclusions about karyotypic diversification via chromosome fragmentation in this butterfly family. Species with high chromosome numbers have slightly larger genomes, which indicate a potential role of repetitive sequences but contradict the hypothesis of holocentric drive. Ends of fragmented chromosomes were healed with telomeres synthesized de novo, which were significantly larger than those of species with modal karyotype. No interstitial telomeric sequences were detected on autosomes. Internal telomeric signals on sex chromosomes, however, revealed multiple sex chromosome systems in Polyommatus (Plebicula) dorylas and Polyommatus icarus, with two karyotype races differing in sex chromosome constitution in the latter. Notably, the W chromosome resisted fragmentation, presumably due to its epigenetic silencing.
European Molecular Biology Laboratory International Centre for Advanced Training Heidelberg Germany
University of Kansas Department of Ecology and Evolutionary Biology Lawrence KS USA
University of South Bohemia Faculty of Science České Budějovice 370 05 Czech Republic
Zobrazit více v PubMed
Augustijnen H, et al. A macroevolutionary role for chromosomal fusion and fission in PubMed DOI PMC
Baker RJ, Bickham JW. Speciation by monobrachial centric fusions. Proc Natl Acad Sci U S A. 1986:83:8245–8248. 10.1073/pnas.83.21.8245. PubMed DOI PMC
Boman J, Wiklund C, Vila R, Backström N. Meiotic drive against chromosome fusions in butterfly hybrids. Chromosome Res. 2024:32:7. 10.1007/s10577-024-09752-0. PubMed DOI PMC
Bracewell R, Tran A, Chatla K, Bachtrog D. Sex and neo-sex chromosome evolution in beetles. PLoS Genet. 2024:20:e1011477. 10.1371/journal.pgen.1011477. PubMed DOI PMC
Brashear WA, Bredemeyer KR, Murphy WJ. Genomic architecture constrained placental mammal X chromosome evolution. Genome Res. 2021:31:1353–1365. 10.1101/gr.275274.121. PubMed DOI PMC
Buntrock L, Marec F, Krueger S, Traut W. Organ growth without cell division: somatic polyploidy in a moth, PubMed DOI
Bureš P, Zedek F. Holokinetic drive: centromere drive in chromosomes without centromeres. Evolution. 2014:68:2412–2420. 10.1111/evo.12437. PubMed DOI
Cabral-de-Mello DC, et al. The burst of satellite DNA in PubMed DOI PMC
Carabajal Paladino LZ, et al. Sex chromosome turnover in moths of the diverse superfamily Gelechioidea. Genome Biol Evol. 2019:11:1307–1319. 10.1093/gbe/evz075. PubMed DOI PMC
Carabajal Paladino LZ, Nguyen P, Šíchová J, Marec F. Mapping of single-copy genes by TSA-FISH in the codling moth, cydia pomonella. BMC Genet. 2014:15:S15. 10.1186/1471-2156-15-S2-S15. PubMed DOI PMC
Carey SB, et al. Representing sex chromosomes in genome assemblies. Cell Genom. 2022:2:100132. 10.1016/j.xgen.2022.100132. PubMed DOI PMC
Cornet C, et al. Holocentric repeat landscapes: from micro-evolutionary patterns to macro-evolutionary associations with karyotype evolution. Mol Ecol. 2024:33:e17100. 10.1111/mec.17100. PubMed DOI PMC
Coutsis JG, de Prins J, de Prins W. The chromosome number and karyotype of the two morphs of
Dalíková M, et al. The role of repetitive sequences in repatterning of major ribosomal DNA clusters in Lepidoptera. Genome Biol Evol. 2023:15:evad090. 10.1093/gbe/evad090. PubMed DOI PMC
De Lesse H. Les nombres de chromosomes dans le groupe de DOI
De Lesse H. Les nombres de chromosomes dans le groupe de DOI
De Prins J, Saitoh K. Karyology and sex determination. In: Kristensen NP, editor. Handbook of zoology. Lepidoptera, moths and butterflies. De Gruyter; 2003. p. 449–468.
Descimon H, Mallet J. Bad species. In: Settele J, Shreeve TG, Konvička M, Dyck VH, editors. Ecology of butterflies in Europe. Cambridge University Press; 2010. p. 219–249.
De Vos JM, Augustijnen H, Bätscher L, Lucek K. Speciation through chromosomal fusion and fission in Lepidoptera. Philos Trans R Soc Lond B Biol Sci. 2020:375:20190539. 10.1098/rstb.2019.0539. PubMed DOI PMC
Dincă V, Lukhtanov VA, Talavera G, Vila R. Unexpected layers of cryptic diversity in wood white PubMed DOI
Drinnenberg IA, deYoung D, Henikoff S, Malik HS. Recurrent loss of PubMed DOI PMC
Ellegren H. Sex-chromosome evolution: recent progress and the influence of male and female heterogamety. Nat Rev Genet. 2011:12:157–166. 10.1038/nrg2948. PubMed DOI
Ennis TJ. Sex chromatin and chromosome numbers in Lepidoptera. Can J Genet Cytol. 1976:18:119–130. 10.1139/g76-017. PubMed DOI
Escudero M, Márquez-Corro JI, Hipp AL. The phylogenetic origins and evolutionary history of holocentric chromosomes. Syst Bot. 2016:41:580–585. 10.1600/036364416X692442. DOI
Faria R, Navarro A. Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends Ecol Evol. 2010:25:660–669. 10.1016/j.tree.2010.07.008. PubMed DOI
Fujiwara H, Nakazato Y, Okazaki S, Ninaki O. Stability and telomere structure of chromosomal fragments in two different mosaic strains of the silkworm, DOI
Fuková I, Nguyen P, Marec F. Codling moth cytogenetics: karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome. 2005:48:1083–1092. 10.1139/g05-063. PubMed DOI
Gasparotto AE, et al. A step forward in the genome characterization of the sugarcane borer, PubMed DOI
Gebert D, et al. Large PubMed DOI PMC
Gómez-Blanco D, Tobler M, Hasselquist D. Why and when should organisms elongate their telomeres? Elaborations on the ‘excess resources elongation’ and ‘last resort elongation’ hypotheses. Ecol Evol. 2023:13:e10825. 10.1002/ece3.10825. PubMed DOI PMC
Hara K, et al. Altered expression of testis-specific genes, piRNAs, and transposons in the silkworm ovary masculinized by a W chromosome mutation. BMC Genomics. 2012:13:119. 10.1186/1471-2164-13-119. PubMed DOI PMC
Hebert FO, et al. Expansion of LINEs and species-specific DNA repeats drives genome expansion in Asian gypsy moths. Sci Rep. 2019:9:16413. 10.1038/s41598-019-52840-z. PubMed DOI PMC
Jankowska M, et al. Holokinetic centromeres and efficient telomere healing enable rapid karyotype evolution. Chromosoma. 2015:124:519–528. 10.1007/s00412-015-0524-y. PubMed DOI
Kandul NP, et al. Phylogeny of PubMed DOI
Kandul NP, Lukhtanov VA, Pierce NE. Karyotypic diversity and speciation in PubMed DOI
Kawaoka S, et al. The silkworm W chromosome is a source of female-enriched piRNAs. RNA. 2011:17:2144–2151. 10.1261/rna.027565.111. PubMed DOI PMC
Lohse K, et al. The genome sequence of the Adonis blue, PubMed DOI PMC
Lohse K, et al. The genome sequence of the common blue, PubMed DOI PMC
Lorković Z. Die Chromosomenzahlen in der Spermatogenese der Tagfalter. Chromosoma. 1941:2:155–191. 10.1007/BF00325958. DOI
Lucek K, Augustijnen H, Escudero M. A holocentric twist to chromosomal speciation? Trends Ecol Evol. 2022:37:655–662. 10.1016/j.tree.2022.04.002. PubMed DOI
Lukhtanov VA. The blue butterfly PubMed DOI PMC
Lukhtanov VA, et al. Versatility of multivalent orientation, inverted meiosis, and rescued fitness in holocentric chromosomal hybrids. Proc Natl Acad Sci U S A. 2018:115:E9610–E9619. 10.1073/pnas.1802610115. PubMed DOI PMC
Lukhtanov VA, Dantchenko AV, Kandul NP. Die karyotypen von
Marec F. Genetic control of pest Lepidoptera: induction of sex-linked recessive lethal mutations in
Marec F. Synaptonemal complexes in insects. Int J Insect Morphol Embryol. 1996:25:205–233. 10.1016/0020-7322(96)00009-8. DOI
Marques A, Drinnenberg IA. Same but different: centromere regulations in holocentric insects and plants. Curr Opin Cell Biol. 2025:93:102484. 10.1016/j.ceb.2025.102484. PubMed DOI
Mathers TC, et al. Chromosome-scale genome assemblies of aphids reveal extensively rearranged autosomes and long-term conservation of the X chromosome. Mol Biol Evol. 2021:38:856–875. 10.1093/molbev/msaa246. PubMed DOI PMC
Mediouni J, Fuková I, Frydrychová R, Dhouibi MH, Marec F. Karyotype, sex chromatin and sex chromosome differentiation in the carob moth, DOI
Mora P, et al. Sex-biased gene content is associated with sex chromosome turnover in Danaini butterflies. Mol Ecol. 2024:33:e17256. 10.1111/mec.17256. PubMed DOI PMC
Munguira M, Martin J, Pérez-Valiente M. Karyology and distribution as tools in the taxonomy of Iberian
Nguyen P, et al. Neo-sex chromosomes and adaptive potential in tortricid pests. Proc Natl Acad Sci U S A. 2013:110:6931–6936. 10.1073/pnas.1220372110. PubMed DOI PMC
Nguyen P, Sahara K, Yoshido A, Marec F. Evolutionary dynamics of rDNA clusters on chromosomes of moths and butterflies (Lepidoptera). Genetica. 2010:138:343–354. 10.1007/s10709-009-9424-5. PubMed DOI
Ohno S. Sex chromosomes and sex-linked genes. Springer; 1966.
Palmer Droguett DH, et al. Neo-sex chromosome evolution in treehoppers despite long-term X chromosome conservation. Genome Biol Evol. 2024:16:evae264. 10.1093/gbe/evae264. PubMed DOI PMC
Pazhenkova EA, Lukhtanov VA. Chromosomal conservatism vs chromosomal megaevolution: enigma of karyotypic evolution in Lepidoptera. Chromosome Res. 2023:31:16. 10.1007/s10577-023-09725-9. PubMed DOI
Pennell MW, et al. Y fuse? Sex chromosome fusions in fishes and reptiles. PLoS Genet. 2015:11:e1005237. 10.1371/journal.pgen.1005237. PubMed DOI PMC
Pflug JM, Holmes VR, Burrus C, Johnston JS, Maddison DR. Measuring genome sizes using read-depth, k-mers, and flow cytometry: methodological comparisons in beetles (Coleoptera). G3 (Bethesda). 2020:10:3047–3060. 10.1534/g3.120.401028. PubMed DOI PMC
Robinson R. Lepidoptera genetics. Pergamon Press; 1971.
Sahara K, Marec F, Traut W. TTAGG telomeric repeats in chromosomes of some insects and other arthropods. Chromosome Res. 1999:7:449–460. 10.1023/A:1009297729547. PubMed DOI
Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012:9:676–682. 10.1038/nmeth.2019. PubMed DOI PMC
Šíchová J, Nguyen P, Dalíková M, Marec F. Chromosomal evolution in tortricid moths: conserved karyotypes with diverged features. PLoS One. 2013:8:e64520. 10.1371/journal.pone.0064520. PubMed DOI PMC
Speel EJ, Hopman AH, Komminoth P. Signal amplification for DNA and mRNA. In: Darby IA, editor. In situ hybridization protocols. Humana Press; 2000. p. 195–216.
Talavera G, Lukhtanov VA, Pierce NE, Vila R. Establishing criteria for higher-level classification using molecular data: the systematics of PubMed DOI
Talavera G, Lukhtanov VA, Rieppel L, Pierce NE, Vila R. In the shadow of phylogenetic uncertainty: the recent diversification of PubMed DOI
Talla V, et al. Rapid increase in genome size as a consequence of transposable element hyperactivity in wood-white (Leptidea) butterflies. Genome Biol Evol. 2017:9:2491–2505. 10.1093/gbe/evx163. PubMed DOI PMC
Tomaszkiewicz M, Medvedev P, Makova KD. Y and W chromosome assemblies: approaches and discoveries. Trends Genet. 2017:33:266–282. 10.1016/j.tig.2017.01.008. PubMed DOI
Traut W. Pachytene mapping in the female silkworm, Bombyx mori L. (Lepidoptera). Chromosoma. 1976:58:275–284. 10.1007/BF00292094. PubMed DOI
Traut W, Sahara K, Ffrench-Constant RH. Lepidopteran synteny units reveal deep chromosomal conservation in butterflies and moths. G3 (Bethesda). 2023:13:jkad134. 10.1093/g3journal/jkad134. PubMed DOI PMC
Traut W, Schubert V, Daliková M, Marec F, Sahara K. Activity and inactivity of moth sex chromosomes in somatic and meiotic cells. Chromosoma. 2019:128:533–545. 10.1007/s00412-019-00722-8. PubMed DOI
Van Nieukerken EJ, et al. Order Lepidoptera linnaeus, 1758. In: Zhang Z-Q, editor. Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Magnolia Press; 2011. p. 212–221.
Van't Hof AE, Marec F, Saccheri IJ, Brakefield PM, Zwaan BJ. Cytogenetic characterization and AFLP-based genetic linkage mapping for the butterfly PubMed DOI PMC
Van't Hof EA, et al. Linkage map of the peppered moth, PubMed DOI PMC
Vershinina AO, Anokhin BA, Lukhtanov VA. Ribosomal DNA clusters and telomeric (TTAGG)n repeats in blue butterflies (Lepidoptera, Lycaenidae) with low and high chromosome numbers. Comp Cytogenet. 2015:9:161–171. 10.3897/CompCytogen.v9i2.4715. PubMed DOI PMC
Vershinina AO, Lukhtanov VA. Evolutionary mechanisms of runaway chromosome number change in PubMed DOI PMC
Vila R, et al. The genome sequence of the chalkhill blue, PubMed DOI PMC
White MJD. The evidence against polyploidy in sexually-reproducing animals. Am Nat. 1946:80:610–618. 10.1086/281481. PubMed DOI
Wiemers M. 2003. Chromosome differentiation and the radiation of the butterfly subgenus
Wiemers M, Stradomsky BV, Vodolazhsky DI. A molecular phylogeny of DOI
Winnepenninckx B, Backeljau T, De Wachter R. Extraction of high molecular weight DNA from molluscs. Trends Genet. 1993:9:407. 10.1016/0168-9525(93)90102-N. PubMed DOI
Wright CJ, et al. The 229 chromosomes of the Atlas blue butterfly reveal rules constraining chromosome evolution in Lepidoptera. bioRxiv. 2025:2025.03.14.642909. 10.1101/2025.03.14.642909 DOI
Wright CJ, Stevens L, Mackintosh A, Lawniczak M, Blaxter M. Comparative genomics reveals the dynamics of chromosome evolution in Lepidoptera. Nat Ecol Evol. 2024:8:777–790. 10.1038/s41559-024-02329-4. PubMed DOI PMC
Yoshida K, Kitano J. Tempo and mode in karyotype evolution revealed by a probabilistic model incorporating both chromosome number and morphology. PLoS Genet. 2021:17:e1009502. 10.1371/journal.pgen.1009502. PubMed DOI PMC
Yoshido A, et al. Evolution of multiple sex chromosomes associated with dynamic genome reshuffling in PubMed DOI PMC
Yoshido A, Marec F, Sahara K. Resolution of sex chromosome constitution by genomic PubMed DOI
Yoshido A, Marec F, Sahara K. The fate of W chromosomes in hybrids between wild silkmoths, PubMed DOI PMC