• Je něco špatně v tomto záznamu ?

Polylactide nanofibers with hydroxyapatite as growth substrates for osteoblast-like cells

K. Novotna, M. Zajdlova, T. Suchy, D. Hadraba, F. Lopot, M. Zaloudkova, TE. Douglas, M. Munzarova, M. Juklickova, D. Stranska, D. Kubies, D. Schaubroeck, S. Wille, L. Balcaen, M. Jarosova, H. Kozak, A. Kromka, Z. Svindrych, V. Lisa, K. Balik, L. Bacakova,

. 2014 ; 102 (11) : 3918-30.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc15023598

Various types of nanofibers are increasingly used in tissue engineering, mainly for their ability to mimic the architecture of tissue at the nanoscale. We evaluated the adhesion, growth, viability, and differentiation of human osteoblast-like MG 63 cells on polylactide (PLA) nanofibers prepared by needle-less electrospinning and loaded with 5 or 15 wt % of hydroxyapatite (HA) nanoparticles. On day 7 after seeding, the cell number was the highest on samples with 15 wt % of HA. This result was confirmed by the XTT test, especially after dynamic cultivation, when the number of metabolically active cells on these samples was even higher than on control polystyrene. Staining with a live/dead kit showed that the viability of cells on all nanofibrous scaffolds was very high and comparable to that on control polystyrene dishes. An enzyme-linked immunosorbent assay revealed that the concentration of osteocalcin was also higher in cells on samples with 15 wt % of HA. There was no immune activation of cells (measured by production of TNF-alpha), associated with the incorporation of HA. Moreover, the addition of HA suppressed the creep behavior of the scaffolds in their dry state. Thus, nanofibrous PLA scaffolds have potential for bone tissue engineering, particularly those with 15 wt % of HA.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15023598
003      
CZ-PrNML
005      
20150724105505.0
007      
ta
008      
150709s2014 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1002/jbm.a.35061 $2 doi
035    __
$a (PubMed)24375970
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Novotna, Katarina $u Department of Biomaterials and Tissue Engineering Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska, 1083, 14220 Prague 4, Czech Republic.
245    10
$a Polylactide nanofibers with hydroxyapatite as growth substrates for osteoblast-like cells / $c K. Novotna, M. Zajdlova, T. Suchy, D. Hadraba, F. Lopot, M. Zaloudkova, TE. Douglas, M. Munzarova, M. Juklickova, D. Stranska, D. Kubies, D. Schaubroeck, S. Wille, L. Balcaen, M. Jarosova, H. Kozak, A. Kromka, Z. Svindrych, V. Lisa, K. Balik, L. Bacakova,
520    9_
$a Various types of nanofibers are increasingly used in tissue engineering, mainly for their ability to mimic the architecture of tissue at the nanoscale. We evaluated the adhesion, growth, viability, and differentiation of human osteoblast-like MG 63 cells on polylactide (PLA) nanofibers prepared by needle-less electrospinning and loaded with 5 or 15 wt % of hydroxyapatite (HA) nanoparticles. On day 7 after seeding, the cell number was the highest on samples with 15 wt % of HA. This result was confirmed by the XTT test, especially after dynamic cultivation, when the number of metabolically active cells on these samples was even higher than on control polystyrene. Staining with a live/dead kit showed that the viability of cells on all nanofibrous scaffolds was very high and comparable to that on control polystyrene dishes. An enzyme-linked immunosorbent assay revealed that the concentration of osteocalcin was also higher in cells on samples with 15 wt % of HA. There was no immune activation of cells (measured by production of TNF-alpha), associated with the incorporation of HA. Moreover, the addition of HA suppressed the creep behavior of the scaffolds in their dry state. Thus, nanofibrous PLA scaffolds have potential for bone tissue engineering, particularly those with 15 wt % of HA.
650    _2
$a kostní náhrady $7 D018786
650    _2
$a buněčná adheze $7 D002448
650    12
$a buněčná diferenciace $7 D002454
650    _2
$a buněčné linie $7 D002460
650    _2
$a viabilita buněk $7 D002470
650    _2
$a hydroxyapatit $x chemie $7 D017886
650    _2
$a lidé $7 D006801
650    _2
$a nanovlákna $x chemie $7 D057139
650    _2
$a osteoblasty $x cytologie $x metabolismus $7 D010006
650    _2
$a osteokalcin $x biosyntéza $7 D015675
650    _2
$a polyestery $x chemie $7 D011091
650    _2
$a tkáňové inženýrství $x metody $7 D023822
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Zajdlova, Martina
700    1_
$a Suchy, Tomas
700    1_
$a Hadraba, Daniel
700    1_
$a Lopot, Frantisek
700    1_
$a Zaloudkova, Margit
700    1_
$a Douglas, Timothy E L
700    1_
$a Munzarova, Marcela
700    1_
$a Juklickova, Martina
700    1_
$a Stranska, Denisa
700    1_
$a Kubies, Dana
700    1_
$a Schaubroeck, David
700    1_
$a Wille, Sebastian
700    1_
$a Balcaen, Lieve
700    1_
$a Jarosova, Marketa
700    1_
$a Kozak, Halyna
700    1_
$a Kromka, Alexander
700    1_
$a Svindrych, Zdenek
700    1_
$a Lisa, Vera
700    1_
$a Balik, Karel
700    1_
$a Bacakova, Lucie
773    0_
$w MED00007498 $t Journal of biomedical materials research. Part A $x 1552-4965 $g Roč. 102, č. 11 (2014), s. 3918-30
856    41
$u https://pubmed.ncbi.nlm.nih.gov/24375970 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20150709 $b ABA008
991    __
$a 20150724105545 $b ABA008
999    __
$a ok $b bmc $g 1083935 $s 906591
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 102 $c 11 $d 3918-30 $i 1552-4965 $m Journal of biomedical materials research. Part A $n J Biomed Mater Res $x MED00007498
LZP    __
$a Pubmed-20150709

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...