Satellite DNAs and the evolution of the multiple X1X2Y sex chromosomes in the wolf fish Hoplias malabaricus (Teleostei; Characiformes)

. 2024 Sep 02 ; 14 (1) : 20402. [epub] 20240902

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39223262

Grantová podpora
2022/00427-3 Fundação de Amparo à Pesquisa do Estado de São Paulo
2023/00955-2 Fundação de Amparo à Pesquisa do Estado de São Paulo
302928/2021-9 Conselho Nacional de Desenvolvimento Científico e Tecnológico

Odkazy

PubMed 39223262
PubMed Central PMC11369246
DOI 10.1038/s41598-024-70920-7
PII: 10.1038/s41598-024-70920-7
Knihovny.cz E-zdroje

Multiple sex chromosomes usually arise from chromosomal rearrangements which involve ancestral sex chromosomes. There is a fundamental condition to be met for their long-term fixation: the meiosis must function, leading to the stability of the emerged system, mainly concerning the segregation of the sex multivalent. Here, we sought to analyze the degree of differentiation and meiotic pairing properties in the selected fish multiple sex chromosome system present in the wolf-fish Hoplias malabaricus (HMA). This species complex encompasses seven known karyotype forms (karyomorphs) where the karyomorph C (HMA-C) exhibits a nascent XY sex chromosomes from which the multiple X1X2Y system evolved in karyomorph HMA-D via a Y-autosome fusion. We combined genomic and cytogenetic approaches to analyze the satellite DNA (satDNA) content in the genome of HMA-D karyomorph and to investigate its potential contribution to X1X2Y sex chromosome differentiation. We revealed 56 satDNA monomers of which the majority was AT-rich and with repeat units longer than 100 bp. Seven out of 18 satDNA families chosen for chromosomal mapping by fluorescence in situ hybridization (FISH) formed detectable accumulation in at least one of the three sex chromosomes (X1, X2 and neo-Y). Nine satDNA monomers showed only two hybridization signals limited to HMA-D autosomes, and the two remaining ones provided no visible FISH signals. Out of seven satDNAs located on the HMA-D sex chromosomes, five mapped also to XY chromosomes of HMA-C. We showed that after the autosome-Y fusion event, the neo-Y chromosome has not substantially accumulated or eliminated satDNA sequences except for minor changes in the centromere-proximal region. Finally, based on the obtained FISHpatterns, we speculate on the possible contribution of satDNA to sex trivalent pairing and segregation.

Zobrazit více v PubMed

Pennell, M. W. et al. Y Fuse? Sex chromosome fusions in fishes and reptiles. PLoS Genet.11, e1005237. 10.1111/j.1601-5223.1964.tb01953.x (2015). 10.1111/j.1601-5223.1964.tb01953.x PubMed DOI PMC

Sember, A. et al. Multiple sex chromosomes in teleost fishes from a cytogenetic perspective: state of the art and future challenges. Phil. Trans. R. Soc. B Biol. Sci.376, 20200098. 10.1098/rstb.2020.0098 (2021).10.1098/rstb.2020.0098 PubMed DOI PMC

Charlesworth, D. When and how do sex-linked regions become sex chromosomes? Evolution75, 569–581. 10.1111/evo.14196 (2021). 10.1111/evo.14196 PubMed DOI

Bergero, R. & Charlesworth, D. The evolution of restricted recombination in sex chromosomes. Trends Ecol. Evol.24, 94–102. 10.1016/j.tree.2008.09.010 (2009). 10.1016/j.tree.2008.09.010 PubMed DOI

Blackmon, H. & Demuth, J. P. The fragile Y hypothesis: Y chromosome aneuploidy as a selective pressure in sex chromosome and meiotic mechanism evolution. BioEssays37, 942–950. 10.1002/bies.201500040 (2015). 10.1002/bies.201500040 PubMed DOI

Kitano, J. et al. A role for a neo-sex chromosome in stickleback speciation. Nature461, 1079–1083. 10.1038/nature08441 (2009). 10.1038/nature08441 PubMed DOI PMC

Beaudry, F. E. G., Barrett, S. C. H. & Wright, S. I. Ancestral and neo-sex chromosomes contribute to population divergence in a dioecious plant. Evolution74, 256–269. 10.1111/evo.13892 (2020). 10.1111/evo.13892 PubMed DOI

Wang, S. et al. Neo-sex chromosome evolution shapes sex-dependent asymmetrical introgression barrier. Proc. Natl. Acad. U S A119, e2119382119. 10.1073/pnas.2119382119 (2022).10.1073/pnas.2119382119 PubMed DOI PMC

Smith, D. A. S. et al. Neo sex chromosomes, colour polymorphism and male-killing in the African queen butterfly, Danaus chrysippus (L.). Insects10, 291. 10.3390/insects10090291 (2019). 10.3390/insects10090291 PubMed DOI PMC

Charlesworth, D. & Charlesworth, B. Sex differences in fitness and selection for centric fusions between sex-chromosomes and autosomes. Genet. Res.35, 205–214. 10.1017/S0016672300014051 (1980). 10.1017/S0016672300014051 PubMed DOI

Matsumoto, T. & Kitano, J. The intricate relationship between sexually antagonistic selection and the evolution of sex chromosome fusions. J. Theor. Biol.404, 97–108. 10.1016/j.jtbi.2016.05.036 (2016). 10.1016/j.jtbi.2016.05.036 PubMed DOI

Mora, P. et al. Sex-biased gene content is associated with sex chromosome turnover in Danaini butterflies. Mol. Ecol.5, e17256 (2024).10.1111/mec.17256 PubMed DOI

Pokorná, M., Altmanová, M. & Kratochvíl, L. Multiple sex chromosomes in the light of female meiotic drive in amniote vertebrates. Chromosome Res.22, 35–44. 10.1007/s10577-014-9403-2 (2014). 10.1007/s10577-014-9403-2 PubMed DOI

Ma, W.-J. & Veltsos, P. The diversity and evolution of sex chromosomes in frogs. Genes12, 483. 10.3390/genes12040483 (2021). 10.3390/genes12040483 PubMed DOI PMC

Charlesworth, D. Some thoughts about the words we use for thinking about sex chromosome evolution. Phil. Trans. R. Soc. B Biol. Sci.377, 20210314. 10.1098/rstb.2021.0314 (2022).10.1098/rstb.2021.0314 PubMed DOI PMC

de Araújo, L. et al. Cytogenetic and molecular characterization of Eigenmanniaaff. desantanai (Gymnotiformes: Sternopygidae): A first report of system of sex chromosomes ZW1W2/ZZ in Gymnotiformes. Zebrafish20, 77–85. 10.1089/zeb.2022.0059 (2023). 10.1089/zeb.2022.0059 PubMed DOI

Marajó, L. et al. Chromosomal rearrangements and the first indication of an ♀X1X1X2X2/♂X1X2Y sex chromosome system in Rineloricaria fishes (Teleostei: Siluriformes). J. Fish Biol.102, 443–454. 10.1111/jfb.15275 (2023). 10.1111/jfb.15275 PubMed DOI

Ferchaud, A.-L. et al. Chromosome-level assembly reveals a putative Y-autosomal fusion in the sex determination system of the Greenland Halibut (Reinhardtius hippoglossoides). G3 (Bethesda)12, 376. 10.1093/g3journal/jkab376 (2022).10.1093/g3journal/jkab376 PubMed DOI PMC

Sassi, F. et al. Homeology of sex chromosomes in Amazonian Harttia armored catfishes supports the X-fission hypothesis for the X1X2Y sex chromosome system origin. Sci. Rep.13, 15756. 10.1038/s41598-023-42617-w (2023). 10.1038/s41598-023-42617-w PubMed DOI PMC

Sciurano, R. B., Rahn, M. I., Rey-Valzacchi, G., Coco, R. & Solari, A. J. The role of asynapsis in human spermatocyte failure. Int. J. Androl.35, 541–549. 10.1111/j.1365-2605.2011.01221.x (2012). 10.1111/j.1365-2605.2011.01221.x PubMed DOI

Wolf, K. W. How meiotic cells deal with non-exchange chromosomes. BioEssays16, 107–114. 10.1002/bies.950160207 (1994). 10.1002/bies.950160207 PubMed DOI

Nokkala, S., Kuznetsova, V. G., Maryanska-Nadachowska, A. & Nokkala, C. Holocentric chromosomes in meiosis. II. The modes of orientation and segregation of a trivalent. Chromosome Res.14, 559–565. 10.1007/s10577-006-1053-6 (2006). 10.1007/s10577-006-1053-6 PubMed DOI

Noronha, R. C. R., Nagamachi, C. Y., O’Brien, P. C. M., Ferguson-Smith, M. A. & Pieczarka, J. C. Neo-XY body: An analysis of XY1Y2 meiotic behavior in Carollia (Chiroptera, Phyllostomidae) by chromosome painting. Cytogenet. Genome Res.124, 37–43. 10.1159/000200086 (2009). 10.1159/000200086 PubMed DOI

Castillo, E. R. D., Bidau, C. J. & Martí, D. A. Neo-sex chromosome diversity in Neotropical melanopline grasshoppers (Melanoplinae, Acrididae). Genetica138, 775–786. 10.1007/s10709-010-9458-8 (2010). 10.1007/s10709-010-9458-8 PubMed DOI

Poggio, M. G., Gaspe, M. S., Papeschi, A. G. & Bressa, M. J. Cytogenetic study in a mutant of Triatoma infestans (Hemiptera: Reduviidae) carrying a spontaneous autosomal fusion and an extra chromosome. Cytogenet. Genome Res.139, 44–51. 10.1159/000342875 (2012). 10.1159/000342875 PubMed DOI

Farooq, U., Lovleen, & Saggoo, M. I. S. Male meiosis and behaviour of sex chromosomes in different populations of Rumex acetosa L. from the Western Himalayas, India. Plant Syst. Evol.300, 287–294. 10.1007/s00606-013-0881-z (2014).10.1007/s00606-013-0881-z DOI

Sember, A. et al. Patterns of sex chromosome differentiation in spiders: Insights from comparative genomic hybridisation. Genes11, 849. 10.3390/genes11080849 (2020). 10.3390/genes11080849 PubMed DOI PMC

Bertollo, L. A. C. & Mestriner, C. A. The X1X2Y sex chromosome system in the fish Hoplias malabaricus II. Meiotic analyses. Chromosome Res.6, 141–147. 10.1023/A:1009243114124 (1998). 10.1023/A:1009243114124 PubMed DOI

da Silva, M. et al. Repetitive DNA and meiotic behavior of sex chromosomes in Gymnotus pantanal (Gymnotiformes, Gymnotidae). Cytogenet. Genome Res.135, 143–149. 10.1159/000330777 (2011). 10.1159/000330777 PubMed DOI

Charlesworth, D., Charlesworth, B. & Marais, G. Steps in the evolution of heteromorphic sex chromosomes. Heredity95, 118–128. 10.1038/sj.hdy.6800697 (2005). 10.1038/sj.hdy.6800697 PubMed DOI

Ezaz, T. & Deakin, J. E. Repetitive sequence and sex chromosome evolution in vertebrates. Adv. Evol. Biol.2014, 1–9. 10.1155/2014/104683 (2014).10.1155/2014/104683 DOI

Hobza, R. et al. Impact of repetitive elements on the Y chromosome formation in plants. Genes8, 302. 10.3390/genes8110302 (2017). 10.3390/genes8110302 PubMed DOI PMC

Steinemann, S. & Steinemann, M. Y chromosomes: Born to be destroyed. BioEssays27, 1076–1083. 10.1002/bies.20288 (2005). 10.1002/bies.20288 PubMed DOI

Kent, T. V., Uzunović, J. & Wright, S. I. Coevolution between transposable elements and recombination. Phil. Trans. R. Soc. B Biol. Sci.372, 20160458. 10.1098/rstb.2016.0458 (2017).10.1098/rstb.2016.0458 PubMed DOI PMC

Kratochvil, L. et al. Expanding the classical paradigm: what we have learnt from vertebrates about sex chromosome evolution. Phil. Trans. R. Soc. B. Biol. Sci.376, 20200097 (2021).10.1098/rstb.2020.0097 PubMed DOI PMC

Huang, Z. et al. Recurrent chromosome reshuffling and the evolution of neo-sex chromosomes in parrots. Nat. Commun.13, 944. 10.1038/s41467-022-28585-1 (2022). 10.1038/s41467-022-28585-1 PubMed DOI PMC

Flynn, J. M., Hu, K. B. & Clark, A. G. Three recent sex chromosome-to-autosome fusions in a Drosophila virilis strain with high satellite DNA content. Genetics224, 062. 10.1093/genetics/iyad062 (2023).10.1093/genetics/iyad062 PubMed DOI PMC

Dobigny, G., Ozouf-Costaz, C., Bonillo, C. & Volobouev, V. Viability of X-autosome translocations in mammals: An epigenomic hypothesis from a rodent case-study. Chromosoma113, 34–41. 10.1007/s00412-004-0292-6 (2004). 10.1007/s00412-004-0292-6 PubMed DOI

Oliveira da Silva, W. et al. The emergence of a new sex-system (XX/XY1Y2) suggests a species complex in the “monotypic” rodent Oecomys auyantepui (Rodentia, Sigmodontinae). Sci. Rep.12, 8690. 10.1038/s41598-022-12706-3 (2022). 10.1038/s41598-022-12706-3 PubMed DOI PMC

Herpin, A. et al. Transcriptional rewiring of the sex determining dmrt1 gene duplicate by transposable elements. PLoS Genet.6, e1000844. 10.1371/journal.pgen.1000844 (2010). 10.1371/journal.pgen.1000844 PubMed DOI PMC

Wang, L. et al. Transposon-induced epigenetic silencing in the X chromosome as a novel form of dmrt1 expression regulation during sex determination in the fighting fish. BMC Biol.20, 5. 10.1186/s12915-021-01205-y (2022). 10.1186/s12915-021-01205-y PubMed DOI PMC

Lohe, A. R. & Roberts, P. A. An unusual Y chromosome of Drosophila simulans carrying amplified rDNA spacer without rRNA genes. Genetics125, 399–406. 10.1093/genetics/125.2.399 (1990). 10.1093/genetics/125.2.399 PubMed DOI PMC

Garrido-Ramos, M. A. Satellite DNA: An evolving topic. Genes8, 230. 10.3390/genes8090230 (2017). 10.3390/genes8090230 PubMed DOI PMC

Šatović-Vukšić, E. & Plohl, M. Satellite DNAs—From localized to highly dispersed genome components. Genes14, 742. 10.3390/genes14030742 (2023). 10.3390/genes14030742 PubMed DOI PMC

López-Flores, I. & Garrido-Ramos, M. A. The repetitive DNA content of eukaryotic genomes. In Repetitive DNA Vol. 7 (ed. Garrido-Ramos, M. A.) 1–28 (Karger Publishers, 2012). PubMed

Shapiro, J. A. & von Sternberg, R. Why repetitive DNA is essential to genome function. Biol. Rev.80, 227–250. 10.1017/s1464793104006657 (2005). 10.1017/s1464793104006657 PubMed DOI

Louzada, S. et al. Decoding the role of satellite DNA in genome architecture and plasticity—An evolutionary and clinical affair. Genes11, 72. 10.3390/genes11010072 (2020). 10.3390/genes11010072 PubMed DOI PMC

Talbert, P. B. & Henikoff, S. The genetics and epigenetics of satellite centromeres. Genome Res.32, 608–615. 10.1101/gr.275351.121 (2022). 10.1101/gr.275351.121 PubMed DOI PMC

Ruiz-Ruano, F. J., López-León, M. D., Cabrero, J. & Camacho, J. P. M. High-throughput analysis of the satellitome illuminates satellite DNA evolution. Sci, Rep6, 28333. 10.1038/srep28333 (2016). 10.1038/srep28333 PubMed DOI PMC

Camacho, J. P. M. et al. Satellitome comparison of two oedipodine grasshoppers highlights the contingent nature of satellite DNA evolution. BMC Biol.20, 36. 10.1186/s12915-021-01216-9 (2022). 10.1186/s12915-021-01216-9 PubMed DOI PMC

Novák, P., Neumann, P. & Macas, J. Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nat. Protoc.15, 3745–3776. 10.1038/s41596-020-0400-y (2020). 10.1038/s41596-020-0400-y PubMed DOI

Despot-Slade, E. et al. Satellitome analyses in nematodes illuminate complex species history and show conserved features in satellite DNAs. BMC Biol.20, 259. 10.1186/s12915-022-01460-7 (2022). 10.1186/s12915-022-01460-7 PubMed DOI PMC

Palacios-Gimenez, O. M. et al. Eight million years of satellite DNA evolution in grasshoppers of the genus Schistocerca illuminate the ins and outs of the library hypothesis. Genome Biol. Evol.12, 88–102. 10.1093/gbe/evaa018 (2020). 10.1093/gbe/evaa018 PubMed DOI PMC

de Lima, L. G. & Ruiz-Ruano, F. J. In-depth satellitome analyses of 37 Drosophila species illuminate repetitive DNA evolution in the Drosophila genus. Genome Biol. Evol.14, evac064. 10.1093/gbe/evac064 (2022). 10.1093/gbe/evac064 PubMed DOI PMC

Schmidt, N. et al. Repeat turnover meets stable chromosomes: Repetitive DNA sequences mark speciation and gene pool boundaries in sugar beet and wild beets. Plant J.118, 171–190. 10.1111/tpj.16599 (2023). 10.1111/tpj.16599 PubMed DOI

Belyayev, A. et al. The major satellite DNA families of the diploid Chenopodium album aggregate species: Arguments for and against the “library hypothesis”. PLoS One15, e0241206. 10.1371/journal.pone.0241206 (2020). 10.1371/journal.pone.0241206 PubMed DOI PMC

Heitkam, T. et al. Satellite DNA landscapes after allotetraploidization of quinoa (Chenopodium quinoa) reveal unique A and B subgenomes. Plant J.103, 32–52. 10.1111/tpj.14705 (2020). 10.1111/tpj.14705 PubMed DOI

Ávila Robledillo, L. et al. Extraordinary sequence diversity and promiscuity of centromeric satellites in the legume tribe Fabeae. Mol. Biol. Evol.37, 2341–2356. 10.1093/molbev/msaa090 (2020). 10.1093/molbev/msaa090 PubMed DOI PMC

Bracewell, R., Chatla, K., Nalley, M. J. & Bachtrog, D. Dynamic turnover of centromeres drives karyotype evolution in Drosophila. Elife8, e49002. 10.7554/eLife.49002 (2019). 10.7554/eLife.49002 PubMed DOI PMC

Nishihara, H., Stanyon, R., Tanabe, H. & Koga, A. Replacement of owl monkey centromere satellite by a newly evolved variant was a recent and rapid process. Genes Cells26, 979–986. 10.1111/gtc.12898 (2021). 10.1111/gtc.12898 PubMed DOI

Cabral-de-Mello, D. C. et al. The spread of satellite DNAs in euchromatin and insights into the multiple sex chromosome evolution in Hemiptera revealed by repeatome analysis of the bug Oxycarenus hyalinipennis. Insect Mol. Biol.32, 725–737. 10.1111/imb.12868 (2023). 10.1111/imb.12868 PubMed DOI

Ferretti, A. B. S. M., Milani, D., Palacios-Gimenez, O. M., Ruiz-Ruano, F. J. & Cabral-de-Mello, D. C. High dynamism for neo-sex chromosomes: Satellite DNAs reveal complex evolution in a grasshopper. Heredity125, 124–137. 10.1038/s41437-020-0327-7 (2020). 10.1038/s41437-020-0327-7 PubMed DOI PMC

Ruban, A., Schmutzer, T., Scholz, U. & Houben, A. How next-generation sequencing has aided our understanding of the sequence composition and origin of B chromosomes. Genes8, 294. 10.3390/genes8110294 (2017). 10.3390/genes8110294 PubMed DOI PMC

Crepaldi, C., Martí, E., Gonçalves, É. M., Martí, D. A. & Parise-Maltempi, P. P. Genomic differences between the sexes in a fish species seen through satellite DNAs. Front. Genet.12, 1885. 10.3389/fgene.2021.728670 (2021).10.3389/fgene.2021.728670 PubMed DOI PMC

Silva, D. M. Z. D. A. et al. High-throughput analysis unveils a highly shared satellite DNA library among three species of fish genus Astyanax. Sci. Rep.7, 12726. 10.1038/s41598-017-12939-7 (2017). 10.1038/s41598-017-12939-7 PubMed DOI PMC

Goes, C. A. G. et al. Revealing the satellite DNA history in Psalidodon and Astyanax characid fish by comparative satellitomics. Front. Genet.13, 884072. 10.3389/fgene.2022.884072 (2022). 10.3389/fgene.2022.884072 PubMed DOI PMC

Kretschmer, R. et al. Satellitome analysis illuminates the evolution of ZW sex chromosomes of Triportheidae fishes (Teleostei: Characiformes). Chromosoma131, 29–45. 10.1007/s00412-022-00768-1 (2022). 10.1007/s00412-022-00768-1 PubMed DOI

Utsunomia, R. et al. Satellitome landscape analysis of Megaleporinus macrocephalus (Teleostei, Anostomidae) reveals intense accumulation of satellite sequences on the heteromorphic sex chromosome. Sci. Rep.9, 5856. 10.1038/s41598-019-42383-8 (2019). 10.1038/s41598-019-42383-8 PubMed DOI PMC

Toma, G. A. et al. Cytogenetics meets genomics: Cytotaxonomy and genomic relationships among color variants of the Asian Arowana (Scleropages formosus). Int. J. Mol. Sci.24, 9005. 10.3390/ijms24109005 (2023). 10.3390/ijms24109005 PubMed DOI PMC

Marta, A., Dedukh, D., Bartoš, O., Majtánová, Z. & Janko, K. Cytogenetic characterization of seven novel satDNA markers in two species of spined loaches (Cobitis) and their clonal hybrids. Genes11, 617. 10.3390/genes11060617 (2020). 10.3390/genes11060617 PubMed DOI PMC

Bertollo, L. A. C., Born, G. G., Dergam, J. A., Fenocchio, A. S. & Moreira-Filho, O. A biodiversity approach in the neotropical Erythrinidae fish, Hoplias malabaricus. Karyotypic survey, geographic distribution of cytotypes and cytotaxonomic considerations. Chromosome Res.8, 603–613. 10.1023/A:1009233907558 (2000). 10.1023/A:1009233907558 PubMed DOI

Cioffi M. B., Yano, C. F., Sember, A. & Bertollo, L. A. C. Chromosomal evolution in lower vertebrates: sex chromosomes in neotropical fishes. Genes8, 258 (2017). 10.3390/genes8100258 PubMed DOI PMC

Cioffi, M. B., Franco, W., Ferreira, R. & Bertollo, L. A. C. Chromosomes as tools for discovering Biodiversity—The case of Erythrinidae fish family. In Recent Trends Cytogenet Studies Methodol Appl (ed. Tirunilai, P.) 125–146 (InTech, 2012).

Cioffi, M. B. & Bertollo, L. A. C. Initial steps in XY chromosome differentiation in Hoplias malabaricus and the origin of an X1X2Y sex chromosome system in this fish group. Heredity105, 554–561. 10.1038/hdy.2010.18 (2010). 10.1038/hdy.2010.18 PubMed DOI

Sember, A. et al. Sex chromosome evolution and genomic divergence in the fish Hoplias malabaricus (Characiformes, Erythrinidae). Front. Genet.9, 71 (2018). 10.3389/fgene.2018.00071 PubMed DOI PMC

Martins, C., Ferreira, I. A., Oliveira, C., Foresti, F. & Galetti, P. M. A tandemly repetitive centromeric DNA sequence of the fish Hoplias malabaricus (Characiformes: Erythrinidae) is derived from 5S rDNA. Genetica127, 133. 10.1007/s10709-005-2674-y (2006). 10.1007/s10709-005-2674-y PubMed DOI

dos Santos, R. Z. et al. A Long-term conserved satellite DNA that remains unexpanded in several genomes of Characiformes fish is actively transcribed. Genome Biol. Evol.13, evab002. 10.1093/gbe/evab002 (2021). 10.1093/gbe/evab002 PubMed DOI PMC

Goes, C. A. G. et al. The satellite DNA catalogues of two Serrasalmidae (Teleostei, Characiformes): Conservation of general satDNA features over 30 million years. Genes14, 91. 10.3390/genes14010091 (2022). 10.3390/genes14010091 PubMed DOI PMC

da Silva, M. J., Gazoni, T. & Haddad, C. F. B. Analysis in Proceratophrys boiei genome illuminates the satellite DNA content in a frog from the Brazilian Atlantic forest. Front. Genet.14, 1101397. 10.3389/fgene.2023.1101397 (2023). 10.3389/fgene.2023.1101397 PubMed DOI PMC

Sena, R. S. et al. Identification and characterization of satellite DNAs in two-toed sloths of the genus Choloepus (Megalonychidae, Xenarthra). Sci. Rep.10, 19202. 10.1038/s41598-020-76199-8 (2020). 10.1038/s41598-020-76199-8 PubMed DOI PMC

Vozdova, M. et al. Satellite DNA in Neotropical deer species. Genes12, 123. 10.3390/genes12010123 (2021). 10.3390/genes12010123 PubMed DOI PMC

Peona, V., Kutschera, V. E., Blom, M. P. K., Irestedt, M. & Suh, A. Satellite DNA evolution in Corvoidea inferred from short and long reads. Mol. Ecol.32, 1288–1305. 10.1111/mec.16484 (2023). 10.1111/mec.16484 PubMed DOI

Lisachov, A., Rumyantsev, A., Prokopov, D., Ferguson-Smith, M. & Trifonov, V. Conservation of major satellite DNAs in snake heterochromatin. Animals13, 334. 10.3390/ani13030334 (2023). 10.3390/ani13030334 PubMed DOI PMC

Melters, D. P. et al. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol.14, R10. 10.1186/gb-2013-14-1-r10 (2013). 10.1186/gb-2013-14-1-r10 PubMed DOI PMC

Voleníková, A. et al. Fast satellite DNA evolution in Nothobranchius annual killifishes. Chromosome Res.31, 33. 10.1007/s10577-023-09742-8 (2023). 10.1007/s10577-023-09742-8 PubMed DOI PMC

Henikoff, S., Ahmad, K. & Malik, H. S. The centromere paradox: Stable inheritance with rapidly evolving DNA. Science293, 1098–1102. 10.1126/science.1062939 (2001). 10.1126/science.1062939 PubMed DOI

Kitaoka, M., Smith, O. K., Straight, A. F. & Heald, R. Molecular conflicts disrupting centromere maintenance contribute to Xenopus hybrid inviability. Curr. Biol.32, 3939-3951.e6. 10.1016/j.cub.2022.07.037 (2022). 10.1016/j.cub.2022.07.037 PubMed DOI PMC

Ferree, P. M. & Barbash, D. A. Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in Drosophila. PLoS Biol.7, e1000234. 10.1371/journal.pbio.1000234 (2009). 10.1371/journal.pbio.1000234 PubMed DOI PMC

O’Neill, M. J. & O’Neill, R. J. Sex chromosome repeats tip the balance towards speciation. Mol. Ecol.27, 3783–3798. 10.1111/mec.14577 (2018). 10.1111/mec.14577 PubMed DOI

Utsunomia, R. et al. Genetic differentiation among distinct karyomorphs of the wolf fish Hoplias malabaricus species complex (Characiformes, Erythrinidae) and report of unusual hybridization with natural triploidy. J. Fish Biol.85, 1682–1692. 10.1111/jfb.12526 (2014). 10.1111/jfb.12526 PubMed DOI

Raskina, O., Barber, J. C., Nevo, E. & Belyayev, A. Repetitive DNA and chromosomal rearrangements: Speciation-related events in plant genomes. Cytogenet. Genome Res.120, 351–357. 10.1159/000121084 (2008). 10.1159/000121084 PubMed DOI

George, C. M. & Alani, E. Multiple cellular mechanisms prevent chromosomal rearrangements involving repetitive DNA. Crit. Rev. Biochem. Mol. Biol.47, 297–313. 10.3109/10409238.2012.675644 (2012). 10.3109/10409238.2012.675644 PubMed DOI PMC

Chen, J.-M., Cooper, D. N., Férec, C., Kehrer-Sawatzki, H. & Patrinos, G. P. Genomic rearrangements in inherited disease and cancer. Semin. Cancer Biol.20, 222–233. 10.1016/j.semcancer.2010.05.007 (2010). 10.1016/j.semcancer.2010.05.007 PubMed DOI

Barra, V. & Fachinetti, D. The dark side of centromeres: Types, causes and consequences of structural abnormalities implicating centromeric DNA. Nat. Commun.9, 4340. 10.1038/s41467-018-06545-y (2018). 10.1038/s41467-018-06545-y PubMed DOI PMC

McKinley, K. L. & Cheeseman, I. M. The molecular basis for centromere identity and function. Nat. Rev. Mol. Cell Biol.17, 16–29. 10.1038/nrm.2015.5 (2016). 10.1038/nrm.2015.5 PubMed DOI PMC

Furman, B. L. et al. Sex chromosome evolution: so many exceptions to the rules. Genome Biol. Evol.12, 750–763 (2020). 10.1093/gbe/evaa081 PubMed DOI PMC

Moreira-Filho, O., Bertollo, L. A. C. & Galetti, P. M. Distribution of sex chromosome mechanisms in neotropical fish and description of a ZZ/ZW system in Parodon hilarii (Parodontidae). Caryologia46, 115–125. 10.1080/00087114.1993.10797253 (1993).10.1080/00087114.1993.10797253 DOI

Östergren, G. The mechanism of co-orientation in bivalents and multivalents: The theory of orientation by pulling. Hereditas37, 85–156. 10.1111/j.1601-5223.1951.tb02891.x (1951).10.1111/j.1601-5223.1951.tb02891.x DOI

Štundlová, J. et al. Sex chromosome differentiation via changes in the Y chromosome repeat landscape in African annual killifishes Nothobranchius furzeri and N. kadleci. Chromosome Res.30, 309–333. 10.1007/s10577-022-09707-3 (2022). 10.1007/s10577-022-09707-3 PubMed DOI

Nanda, I. et al. Evolution of the degenerated Y-chromosome of the swamp guppy, Micropoecilia picta. Cells11, 1118. 10.3390/cells11071118 (2022). 10.3390/cells11071118 PubMed DOI PMC

Bertollo, L. A. C., Cioffi, M. B. & Moreira-Filho, O. Direct chromosome preparation from Freshwater Teleost Fishes. In Fish cytogenetic techniques (Chondrichthyans and Teleosts) (eds Ozouf-Costaz, C. et al.) 21–26 (CRC Press, 2015).

Kligerman, A. D. & Bloom, S. E. Rapid chromosome preparations from solid tissues of fishes. Can. J. Fish Aquat. Sci.34, 266–269. 10.1139/f77-039 (1977).10.1139/f77-039 DOI

Sambrook, J. & Russell, D. W. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 2001).

Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics30, 2114–2120. 10.1093/bioinformatics/btu170 (2014). 10.1093/bioinformatics/btu170 PubMed DOI PMC

Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics27, 863–864. 10.1093/bioinformatics/btr026 (2011). 10.1093/bioinformatics/btr026 PubMed DOI PMC

Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open (1996–2010).

Nascimento, M. et al. PHYLOViZ 2.0: Providing scalable data integration and visualization for multiple phylogenetic inference methods. Bioinformatics33, 128–129. 10.1093/bioinformatics/btw582 (2016). 10.1093/bioinformatics/btw582 PubMed DOI

Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods9, 357–359. 10.1038/nmeth.1923 (2012). 10.1038/nmeth.1923 PubMed DOI PMC

Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics28, 3150–3152. 10.1093/bioinformatics/bts565 (2012). 10.1093/bioinformatics/bts565 PubMed DOI PMC

Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res.32, 1792–1797. 10.1093/nar/gkh340 (2004). 10.1093/nar/gkh340 PubMed DOI PMC

Cioffi, M. B., Martins, C. & Bertollo, L. A. C. Comparative chromosome mapping of repetitive sequences. Implications for genomic evolution in the fish Hoplias malabaricus. BMC Genet.10, 34. 10.1186/1471-2156-10-34 (2009). 10.1186/1471-2156-10-34 PubMed DOI PMC

Yano, C. F., Bertollo, L. A. C. & de Cioffi, M. B. Fish-FISH: Molecular cytogenetics in fish species. In Fluorescence in situ Hybridization 2nd edn (ed. Liehr, T.) 429–443 (Springer, 2017).

Levan, A., Fredga, K. & Sandberg, A. A. Nomenclature for centromeric position on chromosomes. Hereditas52, 201–220. 10.1111/j.1601-5223.1964.tb01953.x (1964).10.1111/j.1601-5223.1964.tb01953.x DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...