Satellite DNAs and the evolution of the multiple X1X2Y sex chromosomes in the wolf fish Hoplias malabaricus (Teleostei; Characiformes)
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2022/00427-3
Fundação de Amparo à Pesquisa do Estado de São Paulo
2023/00955-2
Fundação de Amparo à Pesquisa do Estado de São Paulo
302928/2021-9
Conselho Nacional de Desenvolvimento Científico e Tecnológico
PubMed
39223262
PubMed Central
PMC11369246
DOI
10.1038/s41598-024-70920-7
PII: 10.1038/s41598-024-70920-7
Knihovny.cz E-zdroje
- Klíčová slova
- FISH, Meiosis, Multiple sex chromosomes, Satellitome, Sex trivalent,
- MeSH
- Characiformes * genetika MeSH
- chromozom Y genetika MeSH
- hybridizace in situ fluorescenční * MeSH
- karyotyp MeSH
- meióza genetika MeSH
- molekulární evoluce MeSH
- pohlavní chromozomy * genetika MeSH
- satelitní DNA * genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- satelitní DNA * MeSH
Multiple sex chromosomes usually arise from chromosomal rearrangements which involve ancestral sex chromosomes. There is a fundamental condition to be met for their long-term fixation: the meiosis must function, leading to the stability of the emerged system, mainly concerning the segregation of the sex multivalent. Here, we sought to analyze the degree of differentiation and meiotic pairing properties in the selected fish multiple sex chromosome system present in the wolf-fish Hoplias malabaricus (HMA). This species complex encompasses seven known karyotype forms (karyomorphs) where the karyomorph C (HMA-C) exhibits a nascent XY sex chromosomes from which the multiple X1X2Y system evolved in karyomorph HMA-D via a Y-autosome fusion. We combined genomic and cytogenetic approaches to analyze the satellite DNA (satDNA) content in the genome of HMA-D karyomorph and to investigate its potential contribution to X1X2Y sex chromosome differentiation. We revealed 56 satDNA monomers of which the majority was AT-rich and with repeat units longer than 100 bp. Seven out of 18 satDNA families chosen for chromosomal mapping by fluorescence in situ hybridization (FISH) formed detectable accumulation in at least one of the three sex chromosomes (X1, X2 and neo-Y). Nine satDNA monomers showed only two hybridization signals limited to HMA-D autosomes, and the two remaining ones provided no visible FISH signals. Out of seven satDNAs located on the HMA-D sex chromosomes, five mapped also to XY chromosomes of HMA-C. We showed that after the autosome-Y fusion event, the neo-Y chromosome has not substantially accumulated or eliminated satDNA sequences except for minor changes in the centromere-proximal region. Finally, based on the obtained FISHpatterns, we speculate on the possible contribution of satDNA to sex trivalent pairing and segregation.
Zobrazit více v PubMed
Pennell, M. W. et al. Y Fuse? Sex chromosome fusions in fishes and reptiles. PLoS Genet.11, e1005237. 10.1111/j.1601-5223.1964.tb01953.x (2015). 10.1111/j.1601-5223.1964.tb01953.x PubMed DOI PMC
Sember, A. et al. Multiple sex chromosomes in teleost fishes from a cytogenetic perspective: state of the art and future challenges. Phil. Trans. R. Soc. B Biol. Sci.376, 20200098. 10.1098/rstb.2020.0098 (2021).10.1098/rstb.2020.0098 PubMed DOI PMC
Charlesworth, D. When and how do sex-linked regions become sex chromosomes? Evolution75, 569–581. 10.1111/evo.14196 (2021). 10.1111/evo.14196 PubMed DOI
Bergero, R. & Charlesworth, D. The evolution of restricted recombination in sex chromosomes. Trends Ecol. Evol.24, 94–102. 10.1016/j.tree.2008.09.010 (2009). 10.1016/j.tree.2008.09.010 PubMed DOI
Blackmon, H. & Demuth, J. P. The fragile Y hypothesis: Y chromosome aneuploidy as a selective pressure in sex chromosome and meiotic mechanism evolution. BioEssays37, 942–950. 10.1002/bies.201500040 (2015). 10.1002/bies.201500040 PubMed DOI
Kitano, J. et al. A role for a neo-sex chromosome in stickleback speciation. Nature461, 1079–1083. 10.1038/nature08441 (2009). 10.1038/nature08441 PubMed DOI PMC
Beaudry, F. E. G., Barrett, S. C. H. & Wright, S. I. Ancestral and neo-sex chromosomes contribute to population divergence in a dioecious plant. Evolution74, 256–269. 10.1111/evo.13892 (2020). 10.1111/evo.13892 PubMed DOI
Wang, S. et al. Neo-sex chromosome evolution shapes sex-dependent asymmetrical introgression barrier. Proc. Natl. Acad. U S A119, e2119382119. 10.1073/pnas.2119382119 (2022).10.1073/pnas.2119382119 PubMed DOI PMC
Smith, D. A. S. et al. Neo sex chromosomes, colour polymorphism and male-killing in the African queen butterfly, Danaus chrysippus (L.). Insects10, 291. 10.3390/insects10090291 (2019). 10.3390/insects10090291 PubMed DOI PMC
Charlesworth, D. & Charlesworth, B. Sex differences in fitness and selection for centric fusions between sex-chromosomes and autosomes. Genet. Res.35, 205–214. 10.1017/S0016672300014051 (1980). 10.1017/S0016672300014051 PubMed DOI
Matsumoto, T. & Kitano, J. The intricate relationship between sexually antagonistic selection and the evolution of sex chromosome fusions. J. Theor. Biol.404, 97–108. 10.1016/j.jtbi.2016.05.036 (2016). 10.1016/j.jtbi.2016.05.036 PubMed DOI
Mora, P. et al. Sex-biased gene content is associated with sex chromosome turnover in Danaini butterflies. Mol. Ecol.5, e17256 (2024).10.1111/mec.17256 PubMed DOI
Pokorná, M., Altmanová, M. & Kratochvíl, L. Multiple sex chromosomes in the light of female meiotic drive in amniote vertebrates. Chromosome Res.22, 35–44. 10.1007/s10577-014-9403-2 (2014). 10.1007/s10577-014-9403-2 PubMed DOI
Ma, W.-J. & Veltsos, P. The diversity and evolution of sex chromosomes in frogs. Genes12, 483. 10.3390/genes12040483 (2021). 10.3390/genes12040483 PubMed DOI PMC
Charlesworth, D. Some thoughts about the words we use for thinking about sex chromosome evolution. Phil. Trans. R. Soc. B Biol. Sci.377, 20210314. 10.1098/rstb.2021.0314 (2022).10.1098/rstb.2021.0314 PubMed DOI PMC
de Araújo, L. et al. Cytogenetic and molecular characterization of Eigenmanniaaff. desantanai (Gymnotiformes: Sternopygidae): A first report of system of sex chromosomes ZW1W2/ZZ in Gymnotiformes. Zebrafish20, 77–85. 10.1089/zeb.2022.0059 (2023). 10.1089/zeb.2022.0059 PubMed DOI
Marajó, L. et al. Chromosomal rearrangements and the first indication of an ♀X1X1X2X2/♂X1X2Y sex chromosome system in Rineloricaria fishes (Teleostei: Siluriformes). J. Fish Biol.102, 443–454. 10.1111/jfb.15275 (2023). 10.1111/jfb.15275 PubMed DOI
Ferchaud, A.-L. et al. Chromosome-level assembly reveals a putative Y-autosomal fusion in the sex determination system of the Greenland Halibut (Reinhardtius hippoglossoides). G3 (Bethesda)12, 376. 10.1093/g3journal/jkab376 (2022).10.1093/g3journal/jkab376 PubMed DOI PMC
Sassi, F. et al. Homeology of sex chromosomes in Amazonian Harttia armored catfishes supports the X-fission hypothesis for the X1X2Y sex chromosome system origin. Sci. Rep.13, 15756. 10.1038/s41598-023-42617-w (2023). 10.1038/s41598-023-42617-w PubMed DOI PMC
Sciurano, R. B., Rahn, M. I., Rey-Valzacchi, G., Coco, R. & Solari, A. J. The role of asynapsis in human spermatocyte failure. Int. J. Androl.35, 541–549. 10.1111/j.1365-2605.2011.01221.x (2012). 10.1111/j.1365-2605.2011.01221.x PubMed DOI
Wolf, K. W. How meiotic cells deal with non-exchange chromosomes. BioEssays16, 107–114. 10.1002/bies.950160207 (1994). 10.1002/bies.950160207 PubMed DOI
Nokkala, S., Kuznetsova, V. G., Maryanska-Nadachowska, A. & Nokkala, C. Holocentric chromosomes in meiosis. II. The modes of orientation and segregation of a trivalent. Chromosome Res.14, 559–565. 10.1007/s10577-006-1053-6 (2006). 10.1007/s10577-006-1053-6 PubMed DOI
Noronha, R. C. R., Nagamachi, C. Y., O’Brien, P. C. M., Ferguson-Smith, M. A. & Pieczarka, J. C. Neo-XY body: An analysis of XY1Y2 meiotic behavior in Carollia (Chiroptera, Phyllostomidae) by chromosome painting. Cytogenet. Genome Res.124, 37–43. 10.1159/000200086 (2009). 10.1159/000200086 PubMed DOI
Castillo, E. R. D., Bidau, C. J. & Martí, D. A. Neo-sex chromosome diversity in Neotropical melanopline grasshoppers (Melanoplinae, Acrididae). Genetica138, 775–786. 10.1007/s10709-010-9458-8 (2010). 10.1007/s10709-010-9458-8 PubMed DOI
Poggio, M. G., Gaspe, M. S., Papeschi, A. G. & Bressa, M. J. Cytogenetic study in a mutant of Triatoma infestans (Hemiptera: Reduviidae) carrying a spontaneous autosomal fusion and an extra chromosome. Cytogenet. Genome Res.139, 44–51. 10.1159/000342875 (2012). 10.1159/000342875 PubMed DOI
Farooq, U., Lovleen, & Saggoo, M. I. S. Male meiosis and behaviour of sex chromosomes in different populations of Rumex acetosa L. from the Western Himalayas, India. Plant Syst. Evol.300, 287–294. 10.1007/s00606-013-0881-z (2014).10.1007/s00606-013-0881-z DOI
Sember, A. et al. Patterns of sex chromosome differentiation in spiders: Insights from comparative genomic hybridisation. Genes11, 849. 10.3390/genes11080849 (2020). 10.3390/genes11080849 PubMed DOI PMC
Bertollo, L. A. C. & Mestriner, C. A. The X1X2Y sex chromosome system in the fish Hoplias malabaricus II. Meiotic analyses. Chromosome Res.6, 141–147. 10.1023/A:1009243114124 (1998). 10.1023/A:1009243114124 PubMed DOI
da Silva, M. et al. Repetitive DNA and meiotic behavior of sex chromosomes in Gymnotus pantanal (Gymnotiformes, Gymnotidae). Cytogenet. Genome Res.135, 143–149. 10.1159/000330777 (2011). 10.1159/000330777 PubMed DOI
Charlesworth, D., Charlesworth, B. & Marais, G. Steps in the evolution of heteromorphic sex chromosomes. Heredity95, 118–128. 10.1038/sj.hdy.6800697 (2005). 10.1038/sj.hdy.6800697 PubMed DOI
Ezaz, T. & Deakin, J. E. Repetitive sequence and sex chromosome evolution in vertebrates. Adv. Evol. Biol.2014, 1–9. 10.1155/2014/104683 (2014).10.1155/2014/104683 DOI
Hobza, R. et al. Impact of repetitive elements on the Y chromosome formation in plants. Genes8, 302. 10.3390/genes8110302 (2017). 10.3390/genes8110302 PubMed DOI PMC
Steinemann, S. & Steinemann, M. Y chromosomes: Born to be destroyed. BioEssays27, 1076–1083. 10.1002/bies.20288 (2005). 10.1002/bies.20288 PubMed DOI
Kent, T. V., Uzunović, J. & Wright, S. I. Coevolution between transposable elements and recombination. Phil. Trans. R. Soc. B Biol. Sci.372, 20160458. 10.1098/rstb.2016.0458 (2017).10.1098/rstb.2016.0458 PubMed DOI PMC
Kratochvil, L. et al. Expanding the classical paradigm: what we have learnt from vertebrates about sex chromosome evolution. Phil. Trans. R. Soc. B. Biol. Sci.376, 20200097 (2021).10.1098/rstb.2020.0097 PubMed DOI PMC
Huang, Z. et al. Recurrent chromosome reshuffling and the evolution of neo-sex chromosomes in parrots. Nat. Commun.13, 944. 10.1038/s41467-022-28585-1 (2022). 10.1038/s41467-022-28585-1 PubMed DOI PMC
Flynn, J. M., Hu, K. B. & Clark, A. G. Three recent sex chromosome-to-autosome fusions in a Drosophila virilis strain with high satellite DNA content. Genetics224, 062. 10.1093/genetics/iyad062 (2023).10.1093/genetics/iyad062 PubMed DOI PMC
Dobigny, G., Ozouf-Costaz, C., Bonillo, C. & Volobouev, V. Viability of X-autosome translocations in mammals: An epigenomic hypothesis from a rodent case-study. Chromosoma113, 34–41. 10.1007/s00412-004-0292-6 (2004). 10.1007/s00412-004-0292-6 PubMed DOI
Oliveira da Silva, W. et al. The emergence of a new sex-system (XX/XY1Y2) suggests a species complex in the “monotypic” rodent Oecomys auyantepui (Rodentia, Sigmodontinae). Sci. Rep.12, 8690. 10.1038/s41598-022-12706-3 (2022). 10.1038/s41598-022-12706-3 PubMed DOI PMC
Herpin, A. et al. Transcriptional rewiring of the sex determining dmrt1 gene duplicate by transposable elements. PLoS Genet.6, e1000844. 10.1371/journal.pgen.1000844 (2010). 10.1371/journal.pgen.1000844 PubMed DOI PMC
Wang, L. et al. Transposon-induced epigenetic silencing in the X chromosome as a novel form of dmrt1 expression regulation during sex determination in the fighting fish. BMC Biol.20, 5. 10.1186/s12915-021-01205-y (2022). 10.1186/s12915-021-01205-y PubMed DOI PMC
Lohe, A. R. & Roberts, P. A. An unusual Y chromosome of Drosophila simulans carrying amplified rDNA spacer without rRNA genes. Genetics125, 399–406. 10.1093/genetics/125.2.399 (1990). 10.1093/genetics/125.2.399 PubMed DOI PMC
Garrido-Ramos, M. A. Satellite DNA: An evolving topic. Genes8, 230. 10.3390/genes8090230 (2017). 10.3390/genes8090230 PubMed DOI PMC
Šatović-Vukšić, E. & Plohl, M. Satellite DNAs—From localized to highly dispersed genome components. Genes14, 742. 10.3390/genes14030742 (2023). 10.3390/genes14030742 PubMed DOI PMC
López-Flores, I. & Garrido-Ramos, M. A. The repetitive DNA content of eukaryotic genomes. In Repetitive DNA Vol. 7 (ed. Garrido-Ramos, M. A.) 1–28 (Karger Publishers, 2012). PubMed
Shapiro, J. A. & von Sternberg, R. Why repetitive DNA is essential to genome function. Biol. Rev.80, 227–250. 10.1017/s1464793104006657 (2005). 10.1017/s1464793104006657 PubMed DOI
Louzada, S. et al. Decoding the role of satellite DNA in genome architecture and plasticity—An evolutionary and clinical affair. Genes11, 72. 10.3390/genes11010072 (2020). 10.3390/genes11010072 PubMed DOI PMC
Talbert, P. B. & Henikoff, S. The genetics and epigenetics of satellite centromeres. Genome Res.32, 608–615. 10.1101/gr.275351.121 (2022). 10.1101/gr.275351.121 PubMed DOI PMC
Ruiz-Ruano, F. J., López-León, M. D., Cabrero, J. & Camacho, J. P. M. High-throughput analysis of the satellitome illuminates satellite DNA evolution. Sci, Rep6, 28333. 10.1038/srep28333 (2016). 10.1038/srep28333 PubMed DOI PMC
Camacho, J. P. M. et al. Satellitome comparison of two oedipodine grasshoppers highlights the contingent nature of satellite DNA evolution. BMC Biol.20, 36. 10.1186/s12915-021-01216-9 (2022). 10.1186/s12915-021-01216-9 PubMed DOI PMC
Novák, P., Neumann, P. & Macas, J. Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nat. Protoc.15, 3745–3776. 10.1038/s41596-020-0400-y (2020). 10.1038/s41596-020-0400-y PubMed DOI
Despot-Slade, E. et al. Satellitome analyses in nematodes illuminate complex species history and show conserved features in satellite DNAs. BMC Biol.20, 259. 10.1186/s12915-022-01460-7 (2022). 10.1186/s12915-022-01460-7 PubMed DOI PMC
Palacios-Gimenez, O. M. et al. Eight million years of satellite DNA evolution in grasshoppers of the genus Schistocerca illuminate the ins and outs of the library hypothesis. Genome Biol. Evol.12, 88–102. 10.1093/gbe/evaa018 (2020). 10.1093/gbe/evaa018 PubMed DOI PMC
de Lima, L. G. & Ruiz-Ruano, F. J. In-depth satellitome analyses of 37 Drosophila species illuminate repetitive DNA evolution in the Drosophila genus. Genome Biol. Evol.14, evac064. 10.1093/gbe/evac064 (2022). 10.1093/gbe/evac064 PubMed DOI PMC
Schmidt, N. et al. Repeat turnover meets stable chromosomes: Repetitive DNA sequences mark speciation and gene pool boundaries in sugar beet and wild beets. Plant J.118, 171–190. 10.1111/tpj.16599 (2023). 10.1111/tpj.16599 PubMed DOI
Belyayev, A. et al. The major satellite DNA families of the diploid Chenopodium album aggregate species: Arguments for and against the “library hypothesis”. PLoS One15, e0241206. 10.1371/journal.pone.0241206 (2020). 10.1371/journal.pone.0241206 PubMed DOI PMC
Heitkam, T. et al. Satellite DNA landscapes after allotetraploidization of quinoa (Chenopodium quinoa) reveal unique A and B subgenomes. Plant J.103, 32–52. 10.1111/tpj.14705 (2020). 10.1111/tpj.14705 PubMed DOI
Ávila Robledillo, L. et al. Extraordinary sequence diversity and promiscuity of centromeric satellites in the legume tribe Fabeae. Mol. Biol. Evol.37, 2341–2356. 10.1093/molbev/msaa090 (2020). 10.1093/molbev/msaa090 PubMed DOI PMC
Bracewell, R., Chatla, K., Nalley, M. J. & Bachtrog, D. Dynamic turnover of centromeres drives karyotype evolution in Drosophila. Elife8, e49002. 10.7554/eLife.49002 (2019). 10.7554/eLife.49002 PubMed DOI PMC
Nishihara, H., Stanyon, R., Tanabe, H. & Koga, A. Replacement of owl monkey centromere satellite by a newly evolved variant was a recent and rapid process. Genes Cells26, 979–986. 10.1111/gtc.12898 (2021). 10.1111/gtc.12898 PubMed DOI
Cabral-de-Mello, D. C. et al. The spread of satellite DNAs in euchromatin and insights into the multiple sex chromosome evolution in Hemiptera revealed by repeatome analysis of the bug Oxycarenus hyalinipennis. Insect Mol. Biol.32, 725–737. 10.1111/imb.12868 (2023). 10.1111/imb.12868 PubMed DOI
Ferretti, A. B. S. M., Milani, D., Palacios-Gimenez, O. M., Ruiz-Ruano, F. J. & Cabral-de-Mello, D. C. High dynamism for neo-sex chromosomes: Satellite DNAs reveal complex evolution in a grasshopper. Heredity125, 124–137. 10.1038/s41437-020-0327-7 (2020). 10.1038/s41437-020-0327-7 PubMed DOI PMC
Ruban, A., Schmutzer, T., Scholz, U. & Houben, A. How next-generation sequencing has aided our understanding of the sequence composition and origin of B chromosomes. Genes8, 294. 10.3390/genes8110294 (2017). 10.3390/genes8110294 PubMed DOI PMC
Crepaldi, C., Martí, E., Gonçalves, É. M., Martí, D. A. & Parise-Maltempi, P. P. Genomic differences between the sexes in a fish species seen through satellite DNAs. Front. Genet.12, 1885. 10.3389/fgene.2021.728670 (2021).10.3389/fgene.2021.728670 PubMed DOI PMC
Silva, D. M. Z. D. A. et al. High-throughput analysis unveils a highly shared satellite DNA library among three species of fish genus Astyanax. Sci. Rep.7, 12726. 10.1038/s41598-017-12939-7 (2017). 10.1038/s41598-017-12939-7 PubMed DOI PMC
Goes, C. A. G. et al. Revealing the satellite DNA history in Psalidodon and Astyanax characid fish by comparative satellitomics. Front. Genet.13, 884072. 10.3389/fgene.2022.884072 (2022). 10.3389/fgene.2022.884072 PubMed DOI PMC
Kretschmer, R. et al. Satellitome analysis illuminates the evolution of ZW sex chromosomes of Triportheidae fishes (Teleostei: Characiformes). Chromosoma131, 29–45. 10.1007/s00412-022-00768-1 (2022). 10.1007/s00412-022-00768-1 PubMed DOI
Utsunomia, R. et al. Satellitome landscape analysis of Megaleporinus macrocephalus (Teleostei, Anostomidae) reveals intense accumulation of satellite sequences on the heteromorphic sex chromosome. Sci. Rep.9, 5856. 10.1038/s41598-019-42383-8 (2019). 10.1038/s41598-019-42383-8 PubMed DOI PMC
Toma, G. A. et al. Cytogenetics meets genomics: Cytotaxonomy and genomic relationships among color variants of the Asian Arowana (Scleropages formosus). Int. J. Mol. Sci.24, 9005. 10.3390/ijms24109005 (2023). 10.3390/ijms24109005 PubMed DOI PMC
Marta, A., Dedukh, D., Bartoš, O., Majtánová, Z. & Janko, K. Cytogenetic characterization of seven novel satDNA markers in two species of spined loaches (Cobitis) and their clonal hybrids. Genes11, 617. 10.3390/genes11060617 (2020). 10.3390/genes11060617 PubMed DOI PMC
Bertollo, L. A. C., Born, G. G., Dergam, J. A., Fenocchio, A. S. & Moreira-Filho, O. A biodiversity approach in the neotropical Erythrinidae fish, Hoplias malabaricus. Karyotypic survey, geographic distribution of cytotypes and cytotaxonomic considerations. Chromosome Res.8, 603–613. 10.1023/A:1009233907558 (2000). 10.1023/A:1009233907558 PubMed DOI
Cioffi M. B., Yano, C. F., Sember, A. & Bertollo, L. A. C. Chromosomal evolution in lower vertebrates: sex chromosomes in neotropical fishes. Genes8, 258 (2017). 10.3390/genes8100258 PubMed DOI PMC
Cioffi, M. B., Franco, W., Ferreira, R. & Bertollo, L. A. C. Chromosomes as tools for discovering Biodiversity—The case of Erythrinidae fish family. In Recent Trends Cytogenet Studies Methodol Appl (ed. Tirunilai, P.) 125–146 (InTech, 2012).
Cioffi, M. B. & Bertollo, L. A. C. Initial steps in XY chromosome differentiation in Hoplias malabaricus and the origin of an X1X2Y sex chromosome system in this fish group. Heredity105, 554–561. 10.1038/hdy.2010.18 (2010). 10.1038/hdy.2010.18 PubMed DOI
Sember, A. et al. Sex chromosome evolution and genomic divergence in the fish Hoplias malabaricus (Characiformes, Erythrinidae). Front. Genet.9, 71 (2018). 10.3389/fgene.2018.00071 PubMed DOI PMC
Martins, C., Ferreira, I. A., Oliveira, C., Foresti, F. & Galetti, P. M. A tandemly repetitive centromeric DNA sequence of the fish Hoplias malabaricus (Characiformes: Erythrinidae) is derived from 5S rDNA. Genetica127, 133. 10.1007/s10709-005-2674-y (2006). 10.1007/s10709-005-2674-y PubMed DOI
dos Santos, R. Z. et al. A Long-term conserved satellite DNA that remains unexpanded in several genomes of Characiformes fish is actively transcribed. Genome Biol. Evol.13, evab002. 10.1093/gbe/evab002 (2021). 10.1093/gbe/evab002 PubMed DOI PMC
Goes, C. A. G. et al. The satellite DNA catalogues of two Serrasalmidae (Teleostei, Characiformes): Conservation of general satDNA features over 30 million years. Genes14, 91. 10.3390/genes14010091 (2022). 10.3390/genes14010091 PubMed DOI PMC
da Silva, M. J., Gazoni, T. & Haddad, C. F. B. Analysis in Proceratophrys boiei genome illuminates the satellite DNA content in a frog from the Brazilian Atlantic forest. Front. Genet.14, 1101397. 10.3389/fgene.2023.1101397 (2023). 10.3389/fgene.2023.1101397 PubMed DOI PMC
Sena, R. S. et al. Identification and characterization of satellite DNAs in two-toed sloths of the genus Choloepus (Megalonychidae, Xenarthra). Sci. Rep.10, 19202. 10.1038/s41598-020-76199-8 (2020). 10.1038/s41598-020-76199-8 PubMed DOI PMC
Vozdova, M. et al. Satellite DNA in Neotropical deer species. Genes12, 123. 10.3390/genes12010123 (2021). 10.3390/genes12010123 PubMed DOI PMC
Peona, V., Kutschera, V. E., Blom, M. P. K., Irestedt, M. & Suh, A. Satellite DNA evolution in Corvoidea inferred from short and long reads. Mol. Ecol.32, 1288–1305. 10.1111/mec.16484 (2023). 10.1111/mec.16484 PubMed DOI
Lisachov, A., Rumyantsev, A., Prokopov, D., Ferguson-Smith, M. & Trifonov, V. Conservation of major satellite DNAs in snake heterochromatin. Animals13, 334. 10.3390/ani13030334 (2023). 10.3390/ani13030334 PubMed DOI PMC
Melters, D. P. et al. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol.14, R10. 10.1186/gb-2013-14-1-r10 (2013). 10.1186/gb-2013-14-1-r10 PubMed DOI PMC
Voleníková, A. et al. Fast satellite DNA evolution in Nothobranchius annual killifishes. Chromosome Res.31, 33. 10.1007/s10577-023-09742-8 (2023). 10.1007/s10577-023-09742-8 PubMed DOI PMC
Henikoff, S., Ahmad, K. & Malik, H. S. The centromere paradox: Stable inheritance with rapidly evolving DNA. Science293, 1098–1102. 10.1126/science.1062939 (2001). 10.1126/science.1062939 PubMed DOI
Kitaoka, M., Smith, O. K., Straight, A. F. & Heald, R. Molecular conflicts disrupting centromere maintenance contribute to Xenopus hybrid inviability. Curr. Biol.32, 3939-3951.e6. 10.1016/j.cub.2022.07.037 (2022). 10.1016/j.cub.2022.07.037 PubMed DOI PMC
Ferree, P. M. & Barbash, D. A. Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in Drosophila. PLoS Biol.7, e1000234. 10.1371/journal.pbio.1000234 (2009). 10.1371/journal.pbio.1000234 PubMed DOI PMC
O’Neill, M. J. & O’Neill, R. J. Sex chromosome repeats tip the balance towards speciation. Mol. Ecol.27, 3783–3798. 10.1111/mec.14577 (2018). 10.1111/mec.14577 PubMed DOI
Utsunomia, R. et al. Genetic differentiation among distinct karyomorphs of the wolf fish Hoplias malabaricus species complex (Characiformes, Erythrinidae) and report of unusual hybridization with natural triploidy. J. Fish Biol.85, 1682–1692. 10.1111/jfb.12526 (2014). 10.1111/jfb.12526 PubMed DOI
Raskina, O., Barber, J. C., Nevo, E. & Belyayev, A. Repetitive DNA and chromosomal rearrangements: Speciation-related events in plant genomes. Cytogenet. Genome Res.120, 351–357. 10.1159/000121084 (2008). 10.1159/000121084 PubMed DOI
George, C. M. & Alani, E. Multiple cellular mechanisms prevent chromosomal rearrangements involving repetitive DNA. Crit. Rev. Biochem. Mol. Biol.47, 297–313. 10.3109/10409238.2012.675644 (2012). 10.3109/10409238.2012.675644 PubMed DOI PMC
Chen, J.-M., Cooper, D. N., Férec, C., Kehrer-Sawatzki, H. & Patrinos, G. P. Genomic rearrangements in inherited disease and cancer. Semin. Cancer Biol.20, 222–233. 10.1016/j.semcancer.2010.05.007 (2010). 10.1016/j.semcancer.2010.05.007 PubMed DOI
Barra, V. & Fachinetti, D. The dark side of centromeres: Types, causes and consequences of structural abnormalities implicating centromeric DNA. Nat. Commun.9, 4340. 10.1038/s41467-018-06545-y (2018). 10.1038/s41467-018-06545-y PubMed DOI PMC
McKinley, K. L. & Cheeseman, I. M. The molecular basis for centromere identity and function. Nat. Rev. Mol. Cell Biol.17, 16–29. 10.1038/nrm.2015.5 (2016). 10.1038/nrm.2015.5 PubMed DOI PMC
Furman, B. L. et al. Sex chromosome evolution: so many exceptions to the rules. Genome Biol. Evol.12, 750–763 (2020). 10.1093/gbe/evaa081 PubMed DOI PMC
Moreira-Filho, O., Bertollo, L. A. C. & Galetti, P. M. Distribution of sex chromosome mechanisms in neotropical fish and description of a ZZ/ZW system in Parodon hilarii (Parodontidae). Caryologia46, 115–125. 10.1080/00087114.1993.10797253 (1993).10.1080/00087114.1993.10797253 DOI
Östergren, G. The mechanism of co-orientation in bivalents and multivalents: The theory of orientation by pulling. Hereditas37, 85–156. 10.1111/j.1601-5223.1951.tb02891.x (1951).10.1111/j.1601-5223.1951.tb02891.x DOI
Štundlová, J. et al. Sex chromosome differentiation via changes in the Y chromosome repeat landscape in African annual killifishes Nothobranchius furzeri and N. kadleci. Chromosome Res.30, 309–333. 10.1007/s10577-022-09707-3 (2022). 10.1007/s10577-022-09707-3 PubMed DOI
Nanda, I. et al. Evolution of the degenerated Y-chromosome of the swamp guppy, Micropoecilia picta. Cells11, 1118. 10.3390/cells11071118 (2022). 10.3390/cells11071118 PubMed DOI PMC
Bertollo, L. A. C., Cioffi, M. B. & Moreira-Filho, O. Direct chromosome preparation from Freshwater Teleost Fishes. In Fish cytogenetic techniques (Chondrichthyans and Teleosts) (eds Ozouf-Costaz, C. et al.) 21–26 (CRC Press, 2015).
Kligerman, A. D. & Bloom, S. E. Rapid chromosome preparations from solid tissues of fishes. Can. J. Fish Aquat. Sci.34, 266–269. 10.1139/f77-039 (1977).10.1139/f77-039 DOI
Sambrook, J. & Russell, D. W. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 2001).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics30, 2114–2120. 10.1093/bioinformatics/btu170 (2014). 10.1093/bioinformatics/btu170 PubMed DOI PMC
Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics27, 863–864. 10.1093/bioinformatics/btr026 (2011). 10.1093/bioinformatics/btr026 PubMed DOI PMC
Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open (1996–2010).
Nascimento, M. et al. PHYLOViZ 2.0: Providing scalable data integration and visualization for multiple phylogenetic inference methods. Bioinformatics33, 128–129. 10.1093/bioinformatics/btw582 (2016). 10.1093/bioinformatics/btw582 PubMed DOI
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods9, 357–359. 10.1038/nmeth.1923 (2012). 10.1038/nmeth.1923 PubMed DOI PMC
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics28, 3150–3152. 10.1093/bioinformatics/bts565 (2012). 10.1093/bioinformatics/bts565 PubMed DOI PMC
Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res.32, 1792–1797. 10.1093/nar/gkh340 (2004). 10.1093/nar/gkh340 PubMed DOI PMC
Cioffi, M. B., Martins, C. & Bertollo, L. A. C. Comparative chromosome mapping of repetitive sequences. Implications for genomic evolution in the fish Hoplias malabaricus. BMC Genet.10, 34. 10.1186/1471-2156-10-34 (2009). 10.1186/1471-2156-10-34 PubMed DOI PMC
Yano, C. F., Bertollo, L. A. C. & de Cioffi, M. B. Fish-FISH: Molecular cytogenetics in fish species. In Fluorescence in situ Hybridization 2nd edn (ed. Liehr, T.) 429–443 (Springer, 2017).
Levan, A., Fredga, K. & Sandberg, A. A. Nomenclature for centromeric position on chromosomes. Hereditas52, 201–220. 10.1111/j.1601-5223.1964.tb01953.x (1964).10.1111/j.1601-5223.1964.tb01953.x DOI