• This record comes from PubMed

Cytogenetic Characterization of Seven Novel satDNA Markers in Two Species of Spined Loaches (Cobitis) and Their Clonal Hybrids

. 2020 Jun 04 ; 11 (6) : . [epub] 20200604

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Interspecific hybridization is a powerful evolutionary force. However, the investigation of hybrids requires the application of methodologies that provide efficient and indubitable identification of both parental subgenomes in hybrid individuals. Repetitive DNA, and especially the satellite DNA sequences (satDNA), can rapidly diverge even between closely related species, hence providing a useful tool for cytogenetic investigations of hybrids. Recent progress in whole-genome sequencing (WGS) offers unprecedented possibilities for the development of new tools for species determination, including identification of species-specific satDNA markers. In this study, we focused on spined loaches (Cobitis, Teleostei), a group of fishes with frequent interspecific hybridization. Using the WGS of one species, C. elongatoides, we identified seven satDNA markers, which were mapped by fluorescence in situ hybridization on mitotic and lampbrush chromosomes of C. elongatoides, C. taenia and their triploid hybrids (C. elongatoides × 2C. taenia). Two of these markers were chromosome-specific in both species, one had centromeric localization in multiple chromosomes and four had variable patterns between tested species. Our study provided a novel set of cytogenetic markers for Cobitis species and demonstrated that NGS-based development of satDNA cytogenetic markers may provide a very efficient and easy tool for the investigation of hybrid genomes, cell ploidy, and karyotype evolution.

See more in PubMed

Bullini L. Origin and evolution of animal hybrid species. Trends Ecol. Evol. 1994;9:422–426. doi: 10.1016/0169-5347(94)90124-4. PubMed DOI

Abbott R., Albach D., Ansell S., Arntzen J.W., Baird S.J.E., Bierne N., Boughman J., Brelsford A., Buerkle C.A., Buggs R., et al. Hybridization and speciation. J. Evol. Biol. 2013;26:229–246. doi: 10.1111/j.1420-9101.2012.02599.x. PubMed DOI

Janko K., Pačes J., Wilkinson-Herbots H., Costa R.J., Roslein J., Drozd P., Iakovenko N., Rídl J., Hroudová M., Kočí J., et al. Hybrid asexuality as a primary postzygotic barrier between nascent species: On the interconnection between asexuality, hybridization and speciation. Mol. Ecol. 2018;27:248–263. doi: 10.1111/mec.14377. PubMed DOI PMC

Choleva L., Janko K., Gelas K.D., Bohlen J., Šlechtová V., Rábová M., Ráb P. Synthesis of Clonality and Polyploidy in Vertebrate Animals by Hybridization between Two Sexual Species. Evolution. 2012;66:2191–2203. doi: 10.1111/j.1558-5646.2012.01589.x. PubMed DOI

Stenberg P., Saura A. Meiosis and Its Deviations in Polyploid Animals. Cytogenet. Genome Res. 2013;140:185–203. doi: 10.1159/000351731. PubMed DOI

Ohara K., Dong S., Taniguchi N. High Proportion of Heterozygotes in Microsatellite DNA Loci of Wild Clonal Silver Crucian Carp, Carassius langsdorfii. Zool. Sci. 1999;16:909–913. doi: 10.2108/zsj.16.909. DOI

Morishima K., Horie S., Yamaha E., Arai K. A Cryptic Clonal Line of the Loach Misgurnus anguillicaudatus (Teleostei: Cobitidae) Evidenced by Induced Gynogenesis, Interspecific Hybridization, Microsatellite Genotyping and Multilocus DNA Fingerprinting. Zool. Sci. 2002;19:565–575. doi: 10.2108/zsj.19.565. PubMed DOI

Janko K., Culling M.A., Ráb P., Kotlík P. Ice age cloning – comparison of the Quaternary evolutionary histories of sexual and clonal forms of spiny loaches (Cobitis; Teleostei) using the analysis of mitochondrial DNA variation. Mol. Ecol. 2005;14:2991–3004. doi: 10.1111/j.1365-294X.2005.02583.x. PubMed DOI

Janko K., Flajšhans M., Choleva L., Bohlen J., ŠLechtová V., Rábová M., Lajbner Z., ŠLechta V., Ivanova P., Dobrovolov I., et al. Diversity of European spined loaches (genus Cobitis L.): An update of the geographic distribution of the Cobitis taenia hybrid complex with a description of new molecular tools for species and hybrid determination. J. Fish Biol. 2007;71:387–408. doi: 10.1111/j.1095-8649.2007.01663.x. DOI

Tóth B., Várkonyi E., Hidas A., Meleg E.E., Váradi L. Genetic analysis of offspring from intra- and interspecific crosses of Carassius auratus gibelio by chromosome and RAPD analysis. J. Fish Biol. 2005;66:784–797. doi: 10.1111/j.0022-1112.2005.00644.x. DOI

Angers B., Schlosser I.J. The origin of Phoxinus eos-neogaeus unisexual hybrids. Mol. Ecol. 2007;16:4562–4571. doi: 10.1111/j.1365-294X.2007.03511.x. PubMed DOI

Collares-Pereira M.J., Coelho M.M. Reconfirming the hybrid origin and generic status of the Iberian cyprinid complex Squalius alburnoides. J. Fish Biol. 2010;76:707–715. doi: 10.1111/j.1095-8649.2009.02460.x. PubMed DOI

Kottelat M. Conspectus Cobitidum: An Inventory of the Loaches of the World (Teleostei: Syprinformes: Cobitoidei) National University of Singapore; Singapore: 2012.

Vasil’ev V.P., Lebedeva E.B., Vasil’eva E.D., Ryskov A.P. Monoclonal and de novo arising tetraploid forms of the genus Cobitis (Cobitidae) from different clonal-bisexual complexes. Dokl. Biol. Sci. 2007;416:360. doi: 10.1134/S0012496607050109. PubMed DOI

Janko K., Kotusz J., Gelas K.D., Šlechtová V., Opoldusová Z., Drozd P., Choleva L., Popiołek M., Baláž M. Dynamic Formation of Asexual Diploid and Polyploid Lineages: Multilocus Analysis of Cobitis Reveals the Mechanisms Maintaining the Diversity of Clones. PLoS ONE. 2012;7:e45384. doi: 10.1371/journal.pone.0045384. PubMed DOI PMC

Choleva L., Musilova Z., Kohoutova-Sediva A., Paces J., Rab P., Janko K. Distinguishing between Incomplete Lineage Sorting and Genomic Introgressions: Complete Fixation of Allospecific Mitochondrial DNA in a Sexually Reproducing Fish (Cobitis; Teleostei), despite Clonal Reproduction of Hybrids. PLoS ONE. 2014;9:e80641. doi: 10.1371/journal.pone.0080641. PubMed DOI PMC

Kotusz J. Intra- and interpopulation morphological variability in diploid and varied-ploidy Cobitis from Poland. Folia Zool. 2000;49:219–226.

Bohlen J., Ráb P. Species and hybrid richness in spined loaches of the genus Cobitis (Teleostei: Cobitidae), with a checklist of European forms and suggestions for conservation. J. Fish Biol. 2001;59:75–89. doi: 10.1111/j.1095-8649.2001.tb01380.x. DOI

Grabowska A.I., Boroń A., Kirtiklis L., Spóz A., Juchno D., Kotusz J. Chromosomal inheritance of parental rDNAs distribution pattern detected by FISH in diploid F1 hybrid progeny of Cobitis (Teleostei, Cobitidae) species has non-Mendelian character. J. Fish Biol. 2020;96:261–273. doi: 10.1111/jfb.14216. PubMed DOI

Majtánová Z., Choleva L., Symonová R., Ráb P., Kotusz J., Pekárik L., Janko K. Asexual Reproduction Does Not Apparently Increase the Rate of Chromosomal Evolution: Karyotype Stability in Diploid and Triploid Clonal Hybrid Fish (Cobitis, Cypriniformes, Teleostei) PLoS ONE. 2016;11:e0146872. doi: 10.1371/journal.pone.0146872. PubMed DOI PMC

Boroń A. Karyotypes and cytogenetic diversity of the genus Cobitis (Pisces, Cobitidae) in Poland: A review. Cytogenetic evidence for a hybrid origin of some Cobitis triploids. Folia Biol. (Krakow) 2003;51:49–54. PubMed

Rábová M., Pelikánová Š., Choleva L., Ráb P. ECI XII European Congress of Ichthyology, Book of Abstracts. Wiley; Cavtat, Croatia: 2007. Cytogenetics of bisexual species and their asexual hybrid clones in European spined loaches, genus Cobitis. II. Mapping of telomeric (TTAGGG)n sequences and DAPI-positive heterochromatins in four parental species.

Cioffi M.B., Bertollo L.A.C. Chromosomal Distribution and Evolution of Repetitive DNAs in Fish. Repetit. DNA. 2012;7:197–221. doi: 10.1159/000337950. PubMed DOI

Mehrotra S., Goyal V. Repetitive Sequences in Plant Nuclear DNA: Types, Distribution, Evolution and Function. Genom. Proteom. Bioinform. 2014;12:164–171. doi: 10.1016/j.gpb.2014.07.003. PubMed DOI PMC

Garrido-Ramos M. Satellite DNA: An evolving topic. Genes. 2017;8:230. doi: 10.3390/genes8090230. PubMed DOI PMC

Pezer Ž., Brajković J., Feliciello I., Ugarković Đ. Transcription of Satellite DNAs in Insects. Prog. Mol. Subcell. Biol. 2011;51:161–178. PubMed

Biscotti M.A., Olmo E., Heslop-Harrison J.S. (Pat) Repetitive DNA in eukaryotic genomes. Chromosom. Res. 2015;23:415–420. doi: 10.1007/s10577-015-9499-z. PubMed DOI

Ferreira D., Meles S., Escudeiro A., Mendes-da-Silva A., Adega F., Chaves R. Satellite non-coding RNAs: The emerging players in cells, cellular pathways and cancer. Chromosom. Res. 2015;23:479–493. doi: 10.1007/s10577-015-9482-8. PubMed DOI

Hemleben V., Kovarik A., Torres-Ruiz R.A., Volkov R.A., Beridze T. Plant highly repeated satellite DNA: Molecular evolution, distribution and use for identification of hybrids. Syst. Biodivers. 2007;5:277–289. doi: 10.1017/S147720000700240X. DOI

Rayburn A.L., Gill B.S. Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol. Biol. Rep. 1986;4:102–109. doi: 10.1007/BF02732107. DOI

Lorite P., Muñoz-López M., Carrillo J.A., Sanllorente O., Vela J., Mora P., Tinaut A., Torres M.I., Palomeque T. Concerted evolution, a slow process for ant satellite DNA: Study of the satellite DNA in the Aphaenogaster genus (Hymenoptera, Formicidae) Org. Divers. Evol. 2017;17:595–606. doi: 10.1007/s13127-017-0333-7. DOI

Dover G.A. Molecular drive in multigene families: How biological novelties arise, spread and are assimilated. Trends Genet. 1986;2:159–165. doi: 10.1016/0168-9525(86)90211-8. DOI

López-Flores I., Garrido-Ramos M.A. The Repetitive DNA Content of Eukaryotic Genomes. Repetit. DNA. 2012;7:1–28. doi: 10.1159/000337118. PubMed DOI

Novák P., Ávila Robledillo L., Koblížková A., Vrbová I., Neumann P., Macas J. TAREAN: A computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res. 2017;45:e111. doi: 10.1093/nar/gkx257. PubMed DOI PMC

Janko K., Bohlen J., Lamatsch D., Flajšhans M., Epplen J.T., Ráb P., Kotlík P., Šlechtová V. The gynogenetic reproduction of diploid and triploid hybrid spined loaches (Cobitis: Teleostei), and their ability to establish successful clonal lineages—on the evolution of polyploidy in asexual vertebrates. Genetica. 2007;131:185–194. doi: 10.1007/s10709-006-9130-5. PubMed DOI

Thompson J.D., Gibson T.J., Higgins D.G. Multiple Sequence Alignment Using ClustalW and ClustalX. Curr. Protoc. Bioinform. 2003;00:2–3. doi: 10.1002/0471250953.bi0203s00. PubMed DOI

R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2018. Version 3.5.2.

Charif D., Lobry J.R. SeqinR 1.0-2: A Contributed Package to the R Project for Statistical Computing Devoted to Biological Sequences Retrieval and Analysis. In: Bastolla U., Porto M., Roman H.E., editors. Structural Approaches to Sequence Evolution. Springer; Berlin/Heidelberg, Germany: 2007. pp. 207–232. (Biological and Medical Physics, Biomedical Engineering)

Bushnell B. BBTools Software Package. [(accessed on 16 October 2019)]; Available online: http://sourceforge.net/projects/bbmap.

Benson G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999;27:573–580. doi: 10.1093/nar/27.2.573. PubMed DOI PMC

Novák P., Neumann P., Pech J., Steinhaisl J., Macas J. RepeatExplorer: A Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29:792–793. doi: 10.1093/bioinformatics/btt054. PubMed DOI

Treangen T.J., Salzberg S.L. Repetitive DNA and next-generation sequencing: Computational challenges and solutions. Nat. Rev. Genet. 2012;13:36–46. doi: 10.1038/nrg3117. PubMed DOI PMC

Mori H., Evans-Yamamoto D., Ishiguro S., Tomita M., Yachie N. Fast and global detection of periodic sequence repeats in large genomic resources. Nucleic Acids Res. 2019;47:e8. doi: 10.1093/nar/gky890. PubMed DOI PMC

Ráb P. Cold-blooded vertebrates. Method. Chromosom. Anal. 1988:115–124.

Völker M., Ráb P. Fish Cytogenetic Techniques: Ray-Fin Fishes and Chondrichthyans. CRC Press; Boca Raton, FL, USA: 2015. Direct chromosome preparation from regenerating fish fin tissue.

Callan H.G. Lampbrush Chromosomes (Molecular Biology, Biochemistry and Biophysics Molekularbiologie, Biochemie und Biophysik) Springer; Berlin/Heidelberg, Germany: 1986. PubMed

Gall J.G., Murphy C., Callan H.G., Wu Z. Chapter 8 Lampbrush Chromosomes. In: Kay B.K., Peng H.B., editors. Methods in Cell Biology. Academic Press; Cambridge, MA, USA: 1991. pp. 149–166. PubMed

Dedukh D., Majtánová Z., Marta A., Pšenička M., Kotusz J., Klíma J., Juchno D., Boron A., Janko K. Parthenogenesis as a solution to hybrid sterility: The mechanistic basis of meiotic distortions in clonal and sterile hybrids. bioRxiv. 2019:663112. doi: 10.1101/663112. PubMed DOI PMC

Levan A., Fredga K., Sandberg A.A. Nomenclature for centromeric position on chromosomes. Hereditas. 1964;52:201–220. doi: 10.1111/j.1601-5223.1964.tb01953.x. DOI

Boron A., Kotusz J. A preliminary report and karyotype of a new Cobitis species in the ichthyofauna of Poland. Cytobios. 1999;98:59–64.

Kohn M., Högel J., Vogel W., Minich P., Kehrer-Sawatzki H., Graves J.A.M., Hameister H. Reconstruction of a 450-My-old ancestral vertebrate protokaryotype. Trends Genet. 2006;22:203–210. doi: 10.1016/j.tig.2006.02.008. PubMed DOI

Mank J.E., Avise J.C. Phylogenetic conservation of chromosome numbers in Actinopterygiian fishes. Genetica. 2006;127:321–327. doi: 10.1007/s10709-005-5248-0. PubMed DOI

Arai R. Fish Karyotypes: A Check List. Springer Science & Business Media; Tokyo, Japan: 2011.

Janko K., Vasil’ev V.P., Ráb P., Rábová M., Šlechtová V., Vasil’eva E.D. Genetic and morphological analyses of 50-chromosome spined loaches (Cobitis, Cobitidae, Pisces) from the Black Sea basin that are morphologically similar to C. taenia, with the description of a new species. Folia Zool. Praha. 2005;54:405–420.

Slijepcevic P. Telomeres and mechanisms of Robertsonian fusion. Chromosoma. 1998;107:136–140. doi: 10.1007/s004120050289. PubMed DOI

Bolzán A.D. Interstitial telomeric sequences in vertebrate chromosomes: Origin, function, instability and evolution. Mutat. Res. Rev. Mutat. Res. 2017;773:51–65. doi: 10.1016/j.mrrev.2017.04.002. PubMed DOI

Lin K.W., Yan J. Endings in the middle: Current knowledge of interstitial telomeric sequences. Mutat. Res./Rev. Mutat. Res. 2008;658:95–110. doi: 10.1016/j.mrrev.2007.08.006. PubMed DOI

Callan H.G., Lloyd L., Waddington C.H. Lampbrush chromosomes of crested newts Triturus cristatus (Laurenti) Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1960;243:135–219. doi: 10.1098/rstb.1960.0007. DOI

Sims S.H., Macgregor H.C., Pellatt P.S., Horner H.A. Chromosome 1 in crested and marbled newts (Triturus) Chromosoma. 1984;89:169–185. doi: 10.1007/BF00294996. DOI

Yonenaga Y. Karyotypes and Chromosome Polymorphism in Brazilian Rodents. Caryologia. 1975;28:269–286. doi: 10.1080/00087114.1975.10796617. DOI

Nakanishi A., Iwasa M.A. Karyological characterization of the Japanese water shrew, Chimarrogale platycephala (Soricidae, Soricomorpha) Caryologia. 2013;66:84–89. doi: 10.1080/00087114.2013.787207. DOI

Targino Valente G., de Andrade Vitorino C., Cabral-de-Mello D.C., Oliveira C., Lima Souza I., Martins C., Venere P.C. Comparative cytogenetics of ten species of cichlid fishes (Teleostei, Cichlidae) from the Araguaia River system, Brazil, by conventional cytogenetic methods. Comp. Cytogenet. 2012;6:163–181. doi: 10.3897/CompCytogen.v6i2.1739. PubMed DOI PMC

Ruiz-Ruano F.J., López-León M.D., Cabrero J., Camacho J.P.M. High-throughput analysis of the satellitome illuminates satellite DNA evolution. Sci. Rep. 2016;6:28333. doi: 10.1038/srep28333. PubMed DOI PMC

Louzada S., Lopes M., Ferreira D., Adega F., Escudeiro A., Gama-Carvalho M., Chaves R. Decoding the Role of Satellite DNA in Genome Architecture and Plasticity—An Evolutionary and Clinical Affair. Genes. 2020;11:72. doi: 10.3390/genes11010072. PubMed DOI PMC

del Bosque M.E.Q., López-Flores I., Suárez-Santiago V.N., Garrido-Ramos M.A. Satellite-DNA diversification and the evolution of major lineages in Cardueae (Carduoideae Asteraceae) J. Plant Res. 2014;127:575–583. doi: 10.1007/s10265-014-0648-9. PubMed DOI

Bolsheva N.L., Melnikova N.V., Kirov I.V., Dmitriev A.A., Krasnov G.S., Amosova А.V., Samatadze T.E., Yurkevich O.Y., Zoshchuk S.A., Kudryavtseva A.V., et al. Characterization of repeated DNA sequences in genomes of blue-flowered flax. BMC Evol. Biol. 2019;19:49. doi: 10.1186/s12862-019-1375-6. PubMed DOI PMC

Fry K., Salser W. Nucleotide sequences of HS-α satellite DNA from kangaroo rat Dipodomys ordii and characterization of similar sequences in other rodents. Cell. 1977;12:1069–1084. doi: 10.1016/0092-8674(77)90170-2. PubMed DOI

Ragghianti M., Guerrini F., Bucci S., Mancino G., Hotz H., Uzzell T., Guex G.-D. Molecular characterization of a centromeric satellite DNA in the hemiclonal hybrid frog Rana esculenta and its parental species. Chromosom. Res. 1995;3:497–506. doi: 10.1007/BF00713965. PubMed DOI

Kuroda M., Fujimoto T., Murakami M., Yamaha E., Arai K. Aberrant Meiotic Configurations Cause Sterility in Clone-Origin Triploid and Inter-Group Hybrid Males of the Dojo Loach, Misgurnus anguillicaudatus. Cytogenet. Genome Res. 2019;158:46–54. doi: 10.1159/000500303. PubMed DOI

Franck J.P.C., Kornfield I., Wright J.M. The Utility of SATA Satellite DNA Sequences for Inferring Phylogenetic Relationships among the Three Major Genera of Tilapiine Cichlid Fishes. Mol. Phylogenet. Evol. 1994;3:10–16. doi: 10.1006/mpev.1994.1002. PubMed DOI

Varley J.M., Macgregor H.C., Erba H.P. Satellite DNA is transcribed on lampbrush chromosomes. Nature. 1980;283:686–688. doi: 10.1038/283686a0. PubMed DOI

Krasikova A.V., Gaginskaia E.R. Organization of centromere regions of chromosomes in the lampbrush phase. Tsitologiia. 2010;52:515–533. PubMed

Eymery A., Callanan M., Vourc’h C. The secret message of heterochromatin: New insights into the mechanisms and function of centromeric and pericentric repeat sequence transcription. Int. J. Dev. Biol. 2009;53:259–268. doi: 10.1387/ijdb.082673ae. PubMed DOI

Gaginskaya E., Kulikova T., Krasikova A. Avian Lampbrush Chromosomes: A Powerful Tool for Exploration of Genome Expression. Cytogenet. Genome Res. 2009;124:251–267. doi: 10.1159/000218130. PubMed DOI

Torres G.A., Gong Z., Iovene M., Hirsch C.D., Buell C.R., Bryan G.J., Novák P., Macas J., Jiang J. Organization and Evolution of Subtelomeric Satellite Repeats in the Potato Genome. G3. 2011;1:85–92. doi: 10.1534/g3.111.000125. PubMed DOI PMC

Garrido-Ramos M.A. Satellite DNA in Plants: More than Just Rubbish. Cytogenet. Genome Res. 2015;146:153–170. doi: 10.1159/000437008. PubMed DOI

Vicari M.R., Nogaroto V., Noleto R.B., Cestari M.M., Cioffi M.B., Almeida M.C., Moreira-Filho O., Bertollo L.A.C., Artoni R.F. Satellite DNA and chromosomes in Neotropical fishes: Methods, applications and perspectives. J. Fish Biol. 2010;76:1094–1116. doi: 10.1111/j.1095-8649.2010.02564.x. PubMed DOI

Araújo N.P., de Lima L.G., Dias G.B., Kuhn G.C.S., de Melo A.L., Yonenaga-Yassuda Y., Stanyon R., Svartman M. Identification and characterization of a subtelomeric satellite DNA in Callitrichini monkeys. DNA Res. 2017;24:377–385. doi: 10.1093/dnares/dsx010. PubMed DOI PMC

Utsunomia R., Ruiz-Ruano F.J., Silva D.M.Z.A., Serrano É.A., Rosa I.F., Scudeler P.E.S., Hashimoto D.T., Oliveira C., Camacho J.P.M., Foresti F. A Glimpse into the Satellite DNA Library in Characidae Fish (Teleostei, Characiformes) Front. Genet. 2017;8 doi: 10.3389/fgene.2017.00103. PubMed DOI PMC

Louis E., Vershinin A. Telomeres: A diversity of solutions to the problem of chromosome ends. Chromosom. Res. 2005;13:425–429. doi: 10.1007/s10577-005-1000-y. DOI

Boroń A., Ozouf-Costaz C., Coutanceau J.-P., Woroniecka K. Gene mapping of 28S and 5S rDNA sites in the spined loach Cobitis taenia (Pisces, Cobitidae) from a diploid population and a diploid–tetraploid population. Genetica. 2006;128:71. doi: 10.1007/s10709-005-5536-8. PubMed DOI

Culling M.A., Janko K., Boron A., Vasil’ev V.P., Côté I.M., Hewitt G.M. European colonization by the spined loach (Cobitis taenia) from Ponto-Caspian refugia based on mitochondrial DNA variation. Mol. Ecol. 2006;15:173–190. doi: 10.1111/j.1365-294X.2005.02790.x. PubMed DOI

Newest 20 citations...

See more in
Medvik | PubMed

Lampbrush chromosomes of Danio rerio

. 2025 Jan 16 ; 33 (1) : 2. [epub] 20250116

A Detailed Karyological Investigation of three Endemic Cobitis Linnaeus, 1758 Species (Teleostei, Cobitidae) in Anatolia, Türkiye

. 2024 ; 164 (5-6) : 243-256. [epub] 20241202

Satellite DNAs and the evolution of the multiple X1X2Y sex chromosomes in the wolf fish Hoplias malabaricus (Teleostei; Characiformes)

. 2024 Sep 02 ; 14 (1) : 20402. [epub] 20240902

A cyclical switch of gametogenic pathways in hybrids depends on the ploidy level

. 2024 Apr 08 ; 7 (1) : 424. [epub] 20240408

Genetic and karyotype divergence between parents affect clonality and sterility in hybrids

. 2023 Nov 06 ; 12 () : . [epub] 20231106

Karyotypes of water frogs from the Pelophylax esculentus complex: results of cross-species chromosomal painting

. 2023 Nov ; 132 (4) : 329-342. [epub] 20231125

Challenges and Costs of Asexuality: Variation in Premeiotic Genome Duplication in Gynogenetic Hybrids from Cobitis taenia Complex

. 2021 Nov 09 ; 22 (22) : . [epub] 20211109

Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: along the 'extended speciation continuum'

. 2021 Sep 13 ; 376 (1833) : 20200103. [epub] 20210726

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...