Cytogenetic Characterization of Seven Novel satDNA Markers in Two Species of Spined Loaches (Cobitis) and Their Clonal Hybrids
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
32512717
PubMed Central
PMC7348982
DOI
10.3390/genes11060617
PII: genes11060617
Knihovny.cz E-resources
- Keywords
- FISH, clonal vertebrates, hybridization, mitotic and lampbrush chromosomes, satellite DNA,
- MeSH
- Species Specificity MeSH
- Hybridization, Genetic MeSH
- In Situ Hybridization, Fluorescence MeSH
- Karyotype MeSH
- Karyotyping MeSH
- Clonal Evolution genetics MeSH
- Cypriniformes genetics MeSH
- Reproduction, Asexual genetics MeSH
- DNA, Satellite genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Satellite MeSH
Interspecific hybridization is a powerful evolutionary force. However, the investigation of hybrids requires the application of methodologies that provide efficient and indubitable identification of both parental subgenomes in hybrid individuals. Repetitive DNA, and especially the satellite DNA sequences (satDNA), can rapidly diverge even between closely related species, hence providing a useful tool for cytogenetic investigations of hybrids. Recent progress in whole-genome sequencing (WGS) offers unprecedented possibilities for the development of new tools for species determination, including identification of species-specific satDNA markers. In this study, we focused on spined loaches (Cobitis, Teleostei), a group of fishes with frequent interspecific hybridization. Using the WGS of one species, C. elongatoides, we identified seven satDNA markers, which were mapped by fluorescence in situ hybridization on mitotic and lampbrush chromosomes of C. elongatoides, C. taenia and their triploid hybrids (C. elongatoides × 2C. taenia). Two of these markers were chromosome-specific in both species, one had centromeric localization in multiple chromosomes and four had variable patterns between tested species. Our study provided a novel set of cytogenetic markers for Cobitis species and demonstrated that NGS-based development of satDNA cytogenetic markers may provide a very efficient and easy tool for the investigation of hybrid genomes, cell ploidy, and karyotype evolution.
Department of Zoology Faculty of Science Charles University Prague 128 00 Prague Czech Republic
Institute of Zoology Academy of Science of Moldova MD 2028 Academiei 1 Chisinau Republic of Moldova
See more in PubMed
Bullini L. Origin and evolution of animal hybrid species. Trends Ecol. Evol. 1994;9:422–426. doi: 10.1016/0169-5347(94)90124-4. PubMed DOI
Abbott R., Albach D., Ansell S., Arntzen J.W., Baird S.J.E., Bierne N., Boughman J., Brelsford A., Buerkle C.A., Buggs R., et al. Hybridization and speciation. J. Evol. Biol. 2013;26:229–246. doi: 10.1111/j.1420-9101.2012.02599.x. PubMed DOI
Janko K., Pačes J., Wilkinson-Herbots H., Costa R.J., Roslein J., Drozd P., Iakovenko N., Rídl J., Hroudová M., Kočí J., et al. Hybrid asexuality as a primary postzygotic barrier between nascent species: On the interconnection between asexuality, hybridization and speciation. Mol. Ecol. 2018;27:248–263. doi: 10.1111/mec.14377. PubMed DOI PMC
Choleva L., Janko K., Gelas K.D., Bohlen J., Šlechtová V., Rábová M., Ráb P. Synthesis of Clonality and Polyploidy in Vertebrate Animals by Hybridization between Two Sexual Species. Evolution. 2012;66:2191–2203. doi: 10.1111/j.1558-5646.2012.01589.x. PubMed DOI
Stenberg P., Saura A. Meiosis and Its Deviations in Polyploid Animals. Cytogenet. Genome Res. 2013;140:185–203. doi: 10.1159/000351731. PubMed DOI
Ohara K., Dong S., Taniguchi N. High Proportion of Heterozygotes in Microsatellite DNA Loci of Wild Clonal Silver Crucian Carp, Carassius langsdorfii. Zool. Sci. 1999;16:909–913. doi: 10.2108/zsj.16.909. DOI
Morishima K., Horie S., Yamaha E., Arai K. A Cryptic Clonal Line of the Loach Misgurnus anguillicaudatus (Teleostei: Cobitidae) Evidenced by Induced Gynogenesis, Interspecific Hybridization, Microsatellite Genotyping and Multilocus DNA Fingerprinting. Zool. Sci. 2002;19:565–575. doi: 10.2108/zsj.19.565. PubMed DOI
Janko K., Culling M.A., Ráb P., Kotlík P. Ice age cloning – comparison of the Quaternary evolutionary histories of sexual and clonal forms of spiny loaches (Cobitis; Teleostei) using the analysis of mitochondrial DNA variation. Mol. Ecol. 2005;14:2991–3004. doi: 10.1111/j.1365-294X.2005.02583.x. PubMed DOI
Janko K., Flajšhans M., Choleva L., Bohlen J., ŠLechtová V., Rábová M., Lajbner Z., ŠLechta V., Ivanova P., Dobrovolov I., et al. Diversity of European spined loaches (genus Cobitis L.): An update of the geographic distribution of the Cobitis taenia hybrid complex with a description of new molecular tools for species and hybrid determination. J. Fish Biol. 2007;71:387–408. doi: 10.1111/j.1095-8649.2007.01663.x. DOI
Tóth B., Várkonyi E., Hidas A., Meleg E.E., Váradi L. Genetic analysis of offspring from intra- and interspecific crosses of Carassius auratus gibelio by chromosome and RAPD analysis. J. Fish Biol. 2005;66:784–797. doi: 10.1111/j.0022-1112.2005.00644.x. DOI
Angers B., Schlosser I.J. The origin of Phoxinus eos-neogaeus unisexual hybrids. Mol. Ecol. 2007;16:4562–4571. doi: 10.1111/j.1365-294X.2007.03511.x. PubMed DOI
Collares-Pereira M.J., Coelho M.M. Reconfirming the hybrid origin and generic status of the Iberian cyprinid complex Squalius alburnoides. J. Fish Biol. 2010;76:707–715. doi: 10.1111/j.1095-8649.2009.02460.x. PubMed DOI
Kottelat M. Conspectus Cobitidum: An Inventory of the Loaches of the World (Teleostei: Syprinformes: Cobitoidei) National University of Singapore; Singapore: 2012.
Vasil’ev V.P., Lebedeva E.B., Vasil’eva E.D., Ryskov A.P. Monoclonal and de novo arising tetraploid forms of the genus Cobitis (Cobitidae) from different clonal-bisexual complexes. Dokl. Biol. Sci. 2007;416:360. doi: 10.1134/S0012496607050109. PubMed DOI
Janko K., Kotusz J., Gelas K.D., Šlechtová V., Opoldusová Z., Drozd P., Choleva L., Popiołek M., Baláž M. Dynamic Formation of Asexual Diploid and Polyploid Lineages: Multilocus Analysis of Cobitis Reveals the Mechanisms Maintaining the Diversity of Clones. PLoS ONE. 2012;7:e45384. doi: 10.1371/journal.pone.0045384. PubMed DOI PMC
Choleva L., Musilova Z., Kohoutova-Sediva A., Paces J., Rab P., Janko K. Distinguishing between Incomplete Lineage Sorting and Genomic Introgressions: Complete Fixation of Allospecific Mitochondrial DNA in a Sexually Reproducing Fish (Cobitis; Teleostei), despite Clonal Reproduction of Hybrids. PLoS ONE. 2014;9:e80641. doi: 10.1371/journal.pone.0080641. PubMed DOI PMC
Kotusz J. Intra- and interpopulation morphological variability in diploid and varied-ploidy Cobitis from Poland. Folia Zool. 2000;49:219–226.
Bohlen J., Ráb P. Species and hybrid richness in spined loaches of the genus Cobitis (Teleostei: Cobitidae), with a checklist of European forms and suggestions for conservation. J. Fish Biol. 2001;59:75–89. doi: 10.1111/j.1095-8649.2001.tb01380.x. DOI
Grabowska A.I., Boroń A., Kirtiklis L., Spóz A., Juchno D., Kotusz J. Chromosomal inheritance of parental rDNAs distribution pattern detected by FISH in diploid F1 hybrid progeny of Cobitis (Teleostei, Cobitidae) species has non-Mendelian character. J. Fish Biol. 2020;96:261–273. doi: 10.1111/jfb.14216. PubMed DOI
Majtánová Z., Choleva L., Symonová R., Ráb P., Kotusz J., Pekárik L., Janko K. Asexual Reproduction Does Not Apparently Increase the Rate of Chromosomal Evolution: Karyotype Stability in Diploid and Triploid Clonal Hybrid Fish (Cobitis, Cypriniformes, Teleostei) PLoS ONE. 2016;11:e0146872. doi: 10.1371/journal.pone.0146872. PubMed DOI PMC
Boroń A. Karyotypes and cytogenetic diversity of the genus Cobitis (Pisces, Cobitidae) in Poland: A review. Cytogenetic evidence for a hybrid origin of some Cobitis triploids. Folia Biol. (Krakow) 2003;51:49–54. PubMed
Rábová M., Pelikánová Š., Choleva L., Ráb P. ECI XII European Congress of Ichthyology, Book of Abstracts. Wiley; Cavtat, Croatia: 2007. Cytogenetics of bisexual species and their asexual hybrid clones in European spined loaches, genus Cobitis. II. Mapping of telomeric (TTAGGG)n sequences and DAPI-positive heterochromatins in four parental species.
Cioffi M.B., Bertollo L.A.C. Chromosomal Distribution and Evolution of Repetitive DNAs in Fish. Repetit. DNA. 2012;7:197–221. doi: 10.1159/000337950. PubMed DOI
Mehrotra S., Goyal V. Repetitive Sequences in Plant Nuclear DNA: Types, Distribution, Evolution and Function. Genom. Proteom. Bioinform. 2014;12:164–171. doi: 10.1016/j.gpb.2014.07.003. PubMed DOI PMC
Garrido-Ramos M. Satellite DNA: An evolving topic. Genes. 2017;8:230. doi: 10.3390/genes8090230. PubMed DOI PMC
Pezer Ž., Brajković J., Feliciello I., Ugarković Đ. Transcription of Satellite DNAs in Insects. Prog. Mol. Subcell. Biol. 2011;51:161–178. PubMed
Biscotti M.A., Olmo E., Heslop-Harrison J.S. (Pat) Repetitive DNA in eukaryotic genomes. Chromosom. Res. 2015;23:415–420. doi: 10.1007/s10577-015-9499-z. PubMed DOI
Ferreira D., Meles S., Escudeiro A., Mendes-da-Silva A., Adega F., Chaves R. Satellite non-coding RNAs: The emerging players in cells, cellular pathways and cancer. Chromosom. Res. 2015;23:479–493. doi: 10.1007/s10577-015-9482-8. PubMed DOI
Hemleben V., Kovarik A., Torres-Ruiz R.A., Volkov R.A., Beridze T. Plant highly repeated satellite DNA: Molecular evolution, distribution and use for identification of hybrids. Syst. Biodivers. 2007;5:277–289. doi: 10.1017/S147720000700240X. DOI
Rayburn A.L., Gill B.S. Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol. Biol. Rep. 1986;4:102–109. doi: 10.1007/BF02732107. DOI
Lorite P., Muñoz-López M., Carrillo J.A., Sanllorente O., Vela J., Mora P., Tinaut A., Torres M.I., Palomeque T. Concerted evolution, a slow process for ant satellite DNA: Study of the satellite DNA in the Aphaenogaster genus (Hymenoptera, Formicidae) Org. Divers. Evol. 2017;17:595–606. doi: 10.1007/s13127-017-0333-7. DOI
Dover G.A. Molecular drive in multigene families: How biological novelties arise, spread and are assimilated. Trends Genet. 1986;2:159–165. doi: 10.1016/0168-9525(86)90211-8. DOI
López-Flores I., Garrido-Ramos M.A. The Repetitive DNA Content of Eukaryotic Genomes. Repetit. DNA. 2012;7:1–28. doi: 10.1159/000337118. PubMed DOI
Novák P., Ávila Robledillo L., Koblížková A., Vrbová I., Neumann P., Macas J. TAREAN: A computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Res. 2017;45:e111. doi: 10.1093/nar/gkx257. PubMed DOI PMC
Janko K., Bohlen J., Lamatsch D., Flajšhans M., Epplen J.T., Ráb P., Kotlík P., Šlechtová V. The gynogenetic reproduction of diploid and triploid hybrid spined loaches (Cobitis: Teleostei), and their ability to establish successful clonal lineages—on the evolution of polyploidy in asexual vertebrates. Genetica. 2007;131:185–194. doi: 10.1007/s10709-006-9130-5. PubMed DOI
Thompson J.D., Gibson T.J., Higgins D.G. Multiple Sequence Alignment Using ClustalW and ClustalX. Curr. Protoc. Bioinform. 2003;00:2–3. doi: 10.1002/0471250953.bi0203s00. PubMed DOI
R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2018. Version 3.5.2.
Charif D., Lobry J.R. SeqinR 1.0-2: A Contributed Package to the R Project for Statistical Computing Devoted to Biological Sequences Retrieval and Analysis. In: Bastolla U., Porto M., Roman H.E., editors. Structural Approaches to Sequence Evolution. Springer; Berlin/Heidelberg, Germany: 2007. pp. 207–232. (Biological and Medical Physics, Biomedical Engineering)
Bushnell B. BBTools Software Package. [(accessed on 16 October 2019)]; Available online: http://sourceforge.net/projects/bbmap.
Benson G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res. 1999;27:573–580. doi: 10.1093/nar/27.2.573. PubMed DOI PMC
Novák P., Neumann P., Pech J., Steinhaisl J., Macas J. RepeatExplorer: A Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29:792–793. doi: 10.1093/bioinformatics/btt054. PubMed DOI
Treangen T.J., Salzberg S.L. Repetitive DNA and next-generation sequencing: Computational challenges and solutions. Nat. Rev. Genet. 2012;13:36–46. doi: 10.1038/nrg3117. PubMed DOI PMC
Mori H., Evans-Yamamoto D., Ishiguro S., Tomita M., Yachie N. Fast and global detection of periodic sequence repeats in large genomic resources. Nucleic Acids Res. 2019;47:e8. doi: 10.1093/nar/gky890. PubMed DOI PMC
Ráb P. Cold-blooded vertebrates. Method. Chromosom. Anal. 1988:115–124.
Völker M., Ráb P. Fish Cytogenetic Techniques: Ray-Fin Fishes and Chondrichthyans. CRC Press; Boca Raton, FL, USA: 2015. Direct chromosome preparation from regenerating fish fin tissue.
Callan H.G. Lampbrush Chromosomes (Molecular Biology, Biochemistry and Biophysics Molekularbiologie, Biochemie und Biophysik) Springer; Berlin/Heidelberg, Germany: 1986. PubMed
Gall J.G., Murphy C., Callan H.G., Wu Z. Chapter 8 Lampbrush Chromosomes. In: Kay B.K., Peng H.B., editors. Methods in Cell Biology. Academic Press; Cambridge, MA, USA: 1991. pp. 149–166. PubMed
Dedukh D., Majtánová Z., Marta A., Pšenička M., Kotusz J., Klíma J., Juchno D., Boron A., Janko K. Parthenogenesis as a solution to hybrid sterility: The mechanistic basis of meiotic distortions in clonal and sterile hybrids. bioRxiv. 2019:663112. doi: 10.1101/663112. PubMed DOI PMC
Levan A., Fredga K., Sandberg A.A. Nomenclature for centromeric position on chromosomes. Hereditas. 1964;52:201–220. doi: 10.1111/j.1601-5223.1964.tb01953.x. DOI
Boron A., Kotusz J. A preliminary report and karyotype of a new Cobitis species in the ichthyofauna of Poland. Cytobios. 1999;98:59–64.
Kohn M., Högel J., Vogel W., Minich P., Kehrer-Sawatzki H., Graves J.A.M., Hameister H. Reconstruction of a 450-My-old ancestral vertebrate protokaryotype. Trends Genet. 2006;22:203–210. doi: 10.1016/j.tig.2006.02.008. PubMed DOI
Mank J.E., Avise J.C. Phylogenetic conservation of chromosome numbers in Actinopterygiian fishes. Genetica. 2006;127:321–327. doi: 10.1007/s10709-005-5248-0. PubMed DOI
Arai R. Fish Karyotypes: A Check List. Springer Science & Business Media; Tokyo, Japan: 2011.
Janko K., Vasil’ev V.P., Ráb P., Rábová M., Šlechtová V., Vasil’eva E.D. Genetic and morphological analyses of 50-chromosome spined loaches (Cobitis, Cobitidae, Pisces) from the Black Sea basin that are morphologically similar to C. taenia, with the description of a new species. Folia Zool. Praha. 2005;54:405–420.
Slijepcevic P. Telomeres and mechanisms of Robertsonian fusion. Chromosoma. 1998;107:136–140. doi: 10.1007/s004120050289. PubMed DOI
Bolzán A.D. Interstitial telomeric sequences in vertebrate chromosomes: Origin, function, instability and evolution. Mutat. Res. Rev. Mutat. Res. 2017;773:51–65. doi: 10.1016/j.mrrev.2017.04.002. PubMed DOI
Lin K.W., Yan J. Endings in the middle: Current knowledge of interstitial telomeric sequences. Mutat. Res./Rev. Mutat. Res. 2008;658:95–110. doi: 10.1016/j.mrrev.2007.08.006. PubMed DOI
Callan H.G., Lloyd L., Waddington C.H. Lampbrush chromosomes of crested newts Triturus cristatus (Laurenti) Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1960;243:135–219. doi: 10.1098/rstb.1960.0007. DOI
Sims S.H., Macgregor H.C., Pellatt P.S., Horner H.A. Chromosome 1 in crested and marbled newts (Triturus) Chromosoma. 1984;89:169–185. doi: 10.1007/BF00294996. DOI
Yonenaga Y. Karyotypes and Chromosome Polymorphism in Brazilian Rodents. Caryologia. 1975;28:269–286. doi: 10.1080/00087114.1975.10796617. DOI
Nakanishi A., Iwasa M.A. Karyological characterization of the Japanese water shrew, Chimarrogale platycephala (Soricidae, Soricomorpha) Caryologia. 2013;66:84–89. doi: 10.1080/00087114.2013.787207. DOI
Targino Valente G., de Andrade Vitorino C., Cabral-de-Mello D.C., Oliveira C., Lima Souza I., Martins C., Venere P.C. Comparative cytogenetics of ten species of cichlid fishes (Teleostei, Cichlidae) from the Araguaia River system, Brazil, by conventional cytogenetic methods. Comp. Cytogenet. 2012;6:163–181. doi: 10.3897/CompCytogen.v6i2.1739. PubMed DOI PMC
Ruiz-Ruano F.J., López-León M.D., Cabrero J., Camacho J.P.M. High-throughput analysis of the satellitome illuminates satellite DNA evolution. Sci. Rep. 2016;6:28333. doi: 10.1038/srep28333. PubMed DOI PMC
Louzada S., Lopes M., Ferreira D., Adega F., Escudeiro A., Gama-Carvalho M., Chaves R. Decoding the Role of Satellite DNA in Genome Architecture and Plasticity—An Evolutionary and Clinical Affair. Genes. 2020;11:72. doi: 10.3390/genes11010072. PubMed DOI PMC
del Bosque M.E.Q., López-Flores I., Suárez-Santiago V.N., Garrido-Ramos M.A. Satellite-DNA diversification and the evolution of major lineages in Cardueae (Carduoideae Asteraceae) J. Plant Res. 2014;127:575–583. doi: 10.1007/s10265-014-0648-9. PubMed DOI
Bolsheva N.L., Melnikova N.V., Kirov I.V., Dmitriev A.A., Krasnov G.S., Amosova А.V., Samatadze T.E., Yurkevich O.Y., Zoshchuk S.A., Kudryavtseva A.V., et al. Characterization of repeated DNA sequences in genomes of blue-flowered flax. BMC Evol. Biol. 2019;19:49. doi: 10.1186/s12862-019-1375-6. PubMed DOI PMC
Fry K., Salser W. Nucleotide sequences of HS-α satellite DNA from kangaroo rat Dipodomys ordii and characterization of similar sequences in other rodents. Cell. 1977;12:1069–1084. doi: 10.1016/0092-8674(77)90170-2. PubMed DOI
Ragghianti M., Guerrini F., Bucci S., Mancino G., Hotz H., Uzzell T., Guex G.-D. Molecular characterization of a centromeric satellite DNA in the hemiclonal hybrid frog Rana esculenta and its parental species. Chromosom. Res. 1995;3:497–506. doi: 10.1007/BF00713965. PubMed DOI
Kuroda M., Fujimoto T., Murakami M., Yamaha E., Arai K. Aberrant Meiotic Configurations Cause Sterility in Clone-Origin Triploid and Inter-Group Hybrid Males of the Dojo Loach, Misgurnus anguillicaudatus. Cytogenet. Genome Res. 2019;158:46–54. doi: 10.1159/000500303. PubMed DOI
Franck J.P.C., Kornfield I., Wright J.M. The Utility of SATA Satellite DNA Sequences for Inferring Phylogenetic Relationships among the Three Major Genera of Tilapiine Cichlid Fishes. Mol. Phylogenet. Evol. 1994;3:10–16. doi: 10.1006/mpev.1994.1002. PubMed DOI
Varley J.M., Macgregor H.C., Erba H.P. Satellite DNA is transcribed on lampbrush chromosomes. Nature. 1980;283:686–688. doi: 10.1038/283686a0. PubMed DOI
Krasikova A.V., Gaginskaia E.R. Organization of centromere regions of chromosomes in the lampbrush phase. Tsitologiia. 2010;52:515–533. PubMed
Eymery A., Callanan M., Vourc’h C. The secret message of heterochromatin: New insights into the mechanisms and function of centromeric and pericentric repeat sequence transcription. Int. J. Dev. Biol. 2009;53:259–268. doi: 10.1387/ijdb.082673ae. PubMed DOI
Gaginskaya E., Kulikova T., Krasikova A. Avian Lampbrush Chromosomes: A Powerful Tool for Exploration of Genome Expression. Cytogenet. Genome Res. 2009;124:251–267. doi: 10.1159/000218130. PubMed DOI
Torres G.A., Gong Z., Iovene M., Hirsch C.D., Buell C.R., Bryan G.J., Novák P., Macas J., Jiang J. Organization and Evolution of Subtelomeric Satellite Repeats in the Potato Genome. G3. 2011;1:85–92. doi: 10.1534/g3.111.000125. PubMed DOI PMC
Garrido-Ramos M.A. Satellite DNA in Plants: More than Just Rubbish. Cytogenet. Genome Res. 2015;146:153–170. doi: 10.1159/000437008. PubMed DOI
Vicari M.R., Nogaroto V., Noleto R.B., Cestari M.M., Cioffi M.B., Almeida M.C., Moreira-Filho O., Bertollo L.A.C., Artoni R.F. Satellite DNA and chromosomes in Neotropical fishes: Methods, applications and perspectives. J. Fish Biol. 2010;76:1094–1116. doi: 10.1111/j.1095-8649.2010.02564.x. PubMed DOI
Araújo N.P., de Lima L.G., Dias G.B., Kuhn G.C.S., de Melo A.L., Yonenaga-Yassuda Y., Stanyon R., Svartman M. Identification and characterization of a subtelomeric satellite DNA in Callitrichini monkeys. DNA Res. 2017;24:377–385. doi: 10.1093/dnares/dsx010. PubMed DOI PMC
Utsunomia R., Ruiz-Ruano F.J., Silva D.M.Z.A., Serrano É.A., Rosa I.F., Scudeler P.E.S., Hashimoto D.T., Oliveira C., Camacho J.P.M., Foresti F. A Glimpse into the Satellite DNA Library in Characidae Fish (Teleostei, Characiformes) Front. Genet. 2017;8 doi: 10.3389/fgene.2017.00103. PubMed DOI PMC
Louis E., Vershinin A. Telomeres: A diversity of solutions to the problem of chromosome ends. Chromosom. Res. 2005;13:425–429. doi: 10.1007/s10577-005-1000-y. DOI
Boroń A., Ozouf-Costaz C., Coutanceau J.-P., Woroniecka K. Gene mapping of 28S and 5S rDNA sites in the spined loach Cobitis taenia (Pisces, Cobitidae) from a diploid population and a diploid–tetraploid population. Genetica. 2006;128:71. doi: 10.1007/s10709-005-5536-8. PubMed DOI
Culling M.A., Janko K., Boron A., Vasil’ev V.P., Côté I.M., Hewitt G.M. European colonization by the spined loach (Cobitis taenia) from Ponto-Caspian refugia based on mitochondrial DNA variation. Mol. Ecol. 2006;15:173–190. doi: 10.1111/j.1365-294X.2005.02790.x. PubMed DOI
Lampbrush chromosomes of Danio rerio
A cyclical switch of gametogenic pathways in hybrids depends on the ploidy level
Genetic and karyotype divergence between parents affect clonality and sterility in hybrids