Karyotypes of water frogs from the Pelophylax esculentus complex: results of cross-species chromosomal painting

. 2023 Nov ; 132 (4) : 329-342. [epub] 20231125

Jazyk angličtina Země Rakousko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38001396

Grantová podpora
20-74-00030 Russian Science Foundation
67985904 RVO CEP - Centrální evidence projektů
23-07028K Grantová Agentura České Republiky

Odkazy

PubMed 38001396
DOI 10.1007/s00412-023-00812-8
PII: 10.1007/s00412-023-00812-8
Knihovny.cz E-zdroje

Amphibian species have the largest genome size enriched with repetitive sequences and relatively similar karyotypes. Moreover, many amphibian species frequently hybridize causing nuclear and mitochondrial genome introgressions. In addition, hybridization in some amphibian species may lead to clonality and polyploidization. All such events were found in water frogs from the genus Pelophylax. Among the species within the genus Pelophylax, P. esculentus complex is the most widely distributed and well-studied. This complex includes two parental species, P. ridibundus and P. lessonae, and their hybrids, P. esculentus, reproducing hemiclonally. Parental species and their hybrids have similar but slightly polymorphic karyotypes, so their precise identification is still required. Here, we have developed a complete set of 13 chromosome painting probes for two parental species allowing the precise identification of all chromosomes. Applying chromosomal painting, we identified homologous chromosomes in both parental species and orthologous chromosomes in their diploid hemiclonal hybrids. Comparative painting did not reveal interchromosomal exchanges between the studied water frog species and their hybrids. Using cross-specific chromosome painting, we detected unequal distribution of the signals along chromosomes suggesting the presence of species-specific tandem repeats. Application of chromosomal paints to the karyotypes of hybrids revealed differences in the intensity of staining for P. ridibundus and P. lessonae chromosomes. Thus, both parental genomes have a divergence in unique sequences. Obtained chromosome probes may serve as a powerful tool to unravel chromosomal evolution in phylogenetically related species, identify individual chromosomes in different cell types, and investigate the elimination of chromosomes in hybrid water frogs.

Zobrazit více v PubMed

Akın Ç, Can Bilgin C, Beerli P, Westaway R, Ohst T, Litvinchuk SN, Uzzell T, Bilgin M, Hotz H, Guex G-D, Plötner J (2010) Phylogeographic patterns of genetic diversity in eastern Mediterranean water frogs were determined by geological processes and climate change in the Late Cenozoic. J Biogeogr 37:2111–2124 PubMed DOI PMC

Albert PS, Zhang T, Semrau K, Rouillard J-M, Kao Y-H, Wang C-JR, Danilova TV, Jiang J, Birchler JA (2019) Whole-chromosome paints in maize reveal rearrangements, nuclear domains, and chromosomal relationships. Proc Natl Acad Sci 116:1679–1685 PubMed DOI PMC

Alexander AM, Su Y-C, Oliveros CH, Olson KV, Travers SL, Brown RM (2017) Genomic data reveals potential for hybridization, introgression, and incomplete lineage sorting to confound phylogenetic relationships in an adaptive radiation of narrow-mouth frogs. Evolution 71:475–488 PubMed DOI

Alix K, Gérard PR, Schwarzacher T, (Pat) Heslop-Harrison JS (2017) Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. Ann Bot 120:183–194 PubMed DOI PMC

Arioli M (2007) Reproductive patterns and population genetics in pure hybridogenetic water frog populations of Rana esculenta (PhD Thesis). University of Zurich

Baack EJ, Whitney KD, Rieseberg LH (2005) Hybridization and genome size evolution: timing and magnitude of nuclear DNA content increases in Helianthus homoploid hybrid species. New Phytol 167:623–630 PubMed DOI PMC

Berger L (1968) Morphology of the F1 generation of various crosses within Rana esculenta-complex. Acta Zool Cracoviensia 13:301–324

Bucci S, Ragghianti M, Mancino G, Berger L, Hotz H, Uzzell T (1990) Lampbrush and mitotic chromosomes of the hemiclonally reproducing hybrid Rana esculenta and its parental species. J Exp Zool 255:37–56 PubMed DOI

Bullini L (1985) Speciation by hybridization in animals. Boll Zool 52:121–137 DOI

Chmielewska M, Dedukh D, Haczkiewicz K, Rozenblut-Kościsty B, Kaźmierczak M, Kolenda K, Serwa E, Pietras-Lebioda A, Krasikova A, Ogielska M (2018) The programmed DNA elimination and formation of micronuclei in germ line cells of the natural hybridogenetic water frog Pelophylax esculentus. Sci Rep 8:7870 PubMed DOI PMC

Chmielewska M, Kaźmierczak M, Rozenblut-Kościsty B, Kolenda K, Dudzik A, Dedukh D, Ogielska M (2022) Genome elimination from the germline cells in diploid and triploid male water frogs Pelophylax esculentus. Front Cell Dev Biol 10:1008506 PubMed DOI PMC

Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301 PubMed DOI

Dawley RM, Bogart JP (1989) Evolution and ecology of unisexual vertebrates. New York State Museum, Albany, NY

De Lucca EJ, Jim J, Foresti F (1974) Chromosomal studies in twelve species of Leptodactylidae and one Brachycephalidae. Caryologia 27:183–192 DOI

Dedukh D, Mazepa G, Shabanov D, Rosanov J, Litvinchuk S, Borkin L, Saifitdinova A, Krasikova A (2013) Cytological maps of lampbrush chromosomes of European water frogs (Pelophylax esculentus complex) from the Eastern Ukraine. BMC Genet 14:26 PubMed DOI PMC

Dedukh D, Litvinchuk S, Rosanov J, Mazepa G, Saifitdinova A, Shabanov D, Krasikova A (2015) Optional endoreplication and selective elimination of parental genomes during oogenesis in diploid and triploid hybrid European water frogs. PLoS ONE 10:e0123304 PubMed DOI PMC

Dedukh D, Litvinchuk J, Svinin A, Litvinchuk S, Rosanov J, Krasikova A (2019) Variation in hybridogenetic hybrid emergence between populations of water frogs from the Pelophylax esculentus complex. PLoS ONE 14:e0224759 PubMed DOI

Dedukh D, Riumin S, Chmielewska M, Rozenblut-Kościsty B, Kolenda K, Kaźmierczak M, Dudzik A, Ogielska M, Krasikova A (2020) Micronuclei in germ cells of hybrid frogs from Pelophylax esculentus complex contain gradually eliminated chromosomes. Sci Rep 10:8720 DOI PMC

Denaro L (1972) Karyotypes of Leptodactylidae Anurans. J Herpetol 6:71–74 DOI

Derjusheva S, Kurganova A, Krasikova A, Saifitdinova A, Habermann FA, Gaginskaya E (2003) Precise identification of chicken chromosomes in the lampbrush form using chromosome painting probes. Chromosome Res 11:749–757 PubMed DOI

Doležálková M, Sember A, Marec F, Ráb P, Plötner J, Choleva L (2016) Is premeiotic genome elimination an exclusive mechanism for hemiclonal reproduction in hybrid males of the genus Pelophylax? BMC Genet 17:100 PubMed DOI PMC

Doležálková-Kaštánková M, Pruvost NBM, Plötner J, Reyer H-U, Janko K, Choleva L (2018) All-male hybrids of a tetrapod Pelophylax esculentus share its origin and genetics of maintenance. Biol Sex Differ 9:13 PubMed DOI PMC

Dufresnes C, Denoël M, di Santo L, Dubey S (2017) Multiple uprising invasions of Pelophylax water frogs, potentially inducing a new hybridogenetic complex. Sci Rep 7:6506 PubMed DOI PMC

Dufresnes C, Litvinchuk SN, Rozenblut-Kościsty B, Rodrigues N, Perrin N, Crochet P, Jeffries DL (2020) Hybridization and introgression between toads with different sex chromosome systems. Evol Lett 4:444–456 DOI PMC

Ebendal T (1977) Karyotype and serum protein pattern in a Swedish population of Rana lessonae (Amphibia, Anura). Hereditas 85:75–80 DOI

Kalaycı TE, Kalaycı G, Özdemir N (2017) Phylogeny and systematics of Anatolian mountain frogs. Biochem Syst Ecol 73:26–34 DOI

Fontdevila A (2019) Hybrid genome evolution by transposition: an update. J Hered 110:124–136 DOI

Frost DR (2020) Amphibian species of the world: an online reference. Version 6.0 Electronic Database. Am Mus Nat Hist NY

Fry K, Salser W (1977) Nucleotide sequences of HS-alpha satellite DNA from kangaroo rat Dipodomys ordii and characterization of similar sequences in other rodents. Cell 12:1069–1084 PubMed DOI

Giménez MD, Panithanarak T, Hauffe HC, Searle JB (2016) Empirical demonstration of hybrid chromosomal races in house mice. Evol Int J Org Evol 70:1651–1658 DOI

Gokhman VE, Cioffi M, de König B, Pollmann C, Gantert M, Krogmann C, Steidle L, Kosyakova N, Steidle JLM, Liehr T, Al-Rikabi A (2019) Microdissection and whole chromosome painting confirm karyotype transformation in cryptic species of the Lariophagus distinguendus (Förster, 1841) complex (Hymenoptera: Pteromalidae). PLOS ONE 14:e0225257 PubMed DOI PMC

Graf J-D, Polls-Pelaz M (1989) Evolutionary genetics of the Rana esculenta complex., in: Dawley RM, Bogart JP (Eds.), Evolution and ecology of unisexual vertebrates. 289–302

Graphodatsky AS, Trifonov VA, Stanyon R (2011) The genome diversity and karyotype evolution of mammals. Mol Cytogenet 4:22 PubMed DOI

Green D, Sessions SK (1991) Amphibian cytogenetics and evolution -, 1st edn. Academic Press Inc, Harcourt Brace Jovanovich, Boston

Hemleben V, Kovarik A, Torres-Ruiz RA, Volkov RA, Beridze T (2007) Plant highly repeated satellite DNA: molecular evolution, distribution and use for identification of hybrids. Syst Biodivers 5:277–289 DOI

Heppich S (1978) Hybridogenesis in Rana esculenta: C-band karyotypes of Rana ridibunda, Rana lessonae and Rana esculenta. J Zool Syst Evol Res 16:27–39 DOI

Heppich S, Tunner HG, Greilhuber J (1982) Premeiotic chromosome doubling after genome elimination during spermatogenesis of the species hybrid Rana esculenta. Theor Appl Genet 61:101–104 PubMed DOI

Hikosaka A, Kawahara A (2004) Lineage-specific tandem repeats riding on a transposable element of MITE in Xenopus evolution: a new mechanism for creating simple sequence repeats. J Mol Evol 59:738–746 PubMed DOI

Ivanov VG, Madianov NN (1973) Comparative karyology of frogs of the genus Rana. Tsitologiia 15:920–928 PubMed

Jauch A, Wienberg J, Stanyon R, Arnold N, Tofanelli S, Ishida T, Cremer T (1992) Reconstruction of genomic rearrangements in great apes and gibbons by chromosome painting. Proc Natl Acad Sci 89:8611–8615 PubMed DOI PMC

Kierzkowski P, Paśko Ł, Rybacki M, Socha M, Ogielska M (2011) Genome dosage effect and hybrid morphology—the case of the hybridogenetic water frogs of the Pelophylax esculentus complex. Ann Zool Fenn 48:56–66 DOI

Knudsen K, Scheel JJ (1975) Contribution to systematics of European green frogs, in: Bulletin de la societe zoologique de France-evolution et zoologie. Soc Zoologique France Inst Oceanographique 195 Rue Saint-Jacques, 677–679

Koref-Santibañez S (1979) The karyotypes of Rana lessonae Camerano, Rana ridibunda Pallas and the hybrid form Rana “esculenta” Linne (Anura). Mitt Zool Mus Berl 55:115–124

Koref-Santibanez S, Günther R (1980) Karyological and serological studies in Rana lessonae, R. ridibunda and in their hybrid R. ‘esculenta’(Amphibia, Anura). Genetica 52:195–207 DOI

Kosyakova N, Liehr T, Al-Rikabi ABH (2017) FISH-microdissection. In: Liehr T (ed) fluorescence in situ hybridization (FISH): application guide, Springer Protocols Handbooks. Springer, Berlin, Heidelberg, pp 81–100 DOI

Kretschmer R, Ferguson-Smith MA, De Oliveira EHC (2018) Karyotype evolution in birds: from conventional staining to chromosome painting. Genes 9:181 PubMed DOI PMC

Krylov V, Tlapakova T (2015) Xenopus cytogenetics and chromosomal evolution. Cytogenet Genome Res 145:192–200 PubMed DOI

Krylov V, Kubickova S, Rubes J, Macha J, Tlapakova T, Seifertova E, Sebkova N (2010) Preparation of Xenopus tropicalis whole chromosome painting probes using laser microdissection and reconstruction of X. laevis tetraploid karyotype by Zoo-FISH. Chromosome Res 18:431–439 DOI

Lamb JC, Yu W, Han F, Birchler JA (2007) Plant chromosomes from end to end: telomeres, heterochromatin and centromeres. Curr Opin Plant Biol 10:116–122 PubMed DOI

Leducq J-B, Nielly-Thibault L, Charron G, Eberlein C, Verta J-P, Samani P, Sylvester K, Hittinger CT, Bell G, Landry CR (2016) Speciation driven by hybridization and chromosomal plasticity in a wild yeast. Nat Microbiol 1:1–10 DOI

Litvinchuk S, Borkin L, Skorinov D, Pasynkova R, Rosanov Y (2016) Natural polyploidy in amphibians. Biol Commun 3:77–86

Lukhtanov VA, Shapoval NA, Anokhin BA, Saifitdinova AF, Kuznetsova VG (2015) Homoploid hybrid speciation and genome evolution via chromosome sorting. Proc r Soc B Biol Sci 282:20150157 DOI

Lukhtanov VA, Dincă V, Friberg M, Vila R, Wiklund C (2020) Incomplete sterility of chromosomal hybrids: implications for karyotype evolution and homoploid hybrid speciation. Front Genet 11

Lymberakis P, Poulakakis N, Manthalou G, Tsigenopoulos CS, Magoulas A, Mylonas M (2007) Mitochondrial phylogeography of Rana (Pelophylax) populations in the Eastern Mediterranean region. Mol Phylogenet Evol 44:115–125 PubMed DOI

Macgregor HC, Sessions SK, Arntzen JW (1990) An integrative analysis of phylogenetic relationships among newts of the genus Triturus (family Salamandridae), using comparative biochemistry, cytogenetics and reproductive interactions. J Evol Biol 3:329–373 DOI

Manaresi S, Marescalchi O, Scali V (1992) The chromosome complement of the hybrid Bacillus whitei complex (Insecta Phasmatodea) I. The Paleo-and Neo-Standard Karyotypes Cytologia (tokyo) 57:101–109 DOI

Marracci S, Michelotti V, Guex G-D, Hotz H, Uzzell T, Ragghianti M (2011) RrS1-like sequences of water frogs from Central Europe and around the Aegean Sea: chromosomal organization, evolution, possible function. J Mol Evol 72:368–382 PubMed DOI

Marta A, Dedukh D, Bartoš O, Majtánová Z, Janko K (2020) Cytogenetic characterization of seven novel satDNA markers in two species of spined loaches (Cobitis) and their clonal hybrids. Genes 11:617 PubMed DOI PMC

Martins C (2007) Chromosomes and repetitive DNAs: a contribution to the knowledge of fish genome. Fish Cytogenet 421:452

Martirosyan A, Stepanyan I (2009) Features of the karyotypes of Pelophylax ridibundus Pallas, 1771 and Rana macrocnemis Boulenger, 1885 (Amphibia: Ranidae) from Armenia. Comp Cytogenet 3:11–24 DOI

Mikulíček P, Kautman M, Demovič B, Janko K (2014) When a clonal genome finds its way back to a sexual species: evidence from ongoing but rare introgression in the hybridogenetic water frog complex. J Evol Biol 27:628–642 PubMed DOI

Miura I, Ohtani H, Hanada H, Ichikawa Y, Kashiwagi A, Nakamura M (1997) Evidence for two successive pericentric inversions in sex lampbrush chromosomes of Rana rugosa (Anura: Ranidae). Chromosoma 106:178–182 PubMed DOI

Morescalchi A (1980) Evolution and karyology of the amphibians. Boll Zool 47:113–126 DOI

Ogielska M (1994) Nucleus-like bodies in gonial cells of Rana esculenta [Amphibia, Anura] tadpoles-a putative way of chromosome elimination. Zool Pol 39

Ogielska M, Kierzkowski P, Rybacki M (2004) DNA content and genome composition of diploid and triploid water frogs belonging to the Rana esculenta complex (Amphibia, Anura). Can J Zool 82(12):1894–1901 DOI

Perkins RD, Gamboa JR, Jonika MM, Lo J, Shum A, Adams RH, Blackmon H (2019) A database of amphibian karyotypes. Chromosome Res 27:313–319 PubMed DOI

Picariello O, Odierna G, Petraccioli A, Amor N, Feliciello I, Chinali G (2012) Characterization of two major satellite DNAs specific to the genus Discoglossus (Amphibia, Anura). Ital J Zool 79:385–394 DOI

Plötner J (2005) Die westpaläarktischen Wasserfrösche. Von Märtyrern der Wissenschaft zur biologischen Sensation. Laurenti, Bielefeld: Zeitschrift für Feldherpetologie, Beiheft 9

Plötner J, Uzzell T, Beerli P, Spolsky C, Ohst T, Litvinchuk SN, Guex G-D, Reyer H-U, Hotz H (2008) Widespread unidirectional transfer of mitochondrial DNA: a case in western Palaearctic water frogs. J Evol Biol 21:668–681 PubMed DOI PMC

Ragghianti M, Guerrini F, Bucci S, Mancino G, Hotz H, Uzzell T, Guex G-D (1995) Molecular characterization of a centromeric satellite DNA in the hemiclonal hybrid frog Rana esculenta and its parental species. Chromosome Res 3:497–506 PubMed DOI

Ried T, Schröck E, Ning Y, Wienberg J (1998) Chromosome painting: a useful art. Hum Mol Genet 7:1619–1626 DOI

Rieseberg LH (1997) Hybrid origins of plant species. Annu Rev Ecol Syst 28:359–389 DOI

Romanenko SA, Biltueva LS, Serdyukova NA, Kulemzina AI, Beklemisheva VR, Gladkikh OL, Lemskaya NA, Interesova EA, Korentovich MA, Vorobieva NV et al (2015) Segmental paleotetraploidy revealed in sterlet (Acipenser ruthenus) genome by chromosome painting. Mol Cytogenet 8:90 PubMed DOI PMC

Ruiz-Herrera A, Farré M, Robinson TJ (2012) Molecular cytogenetic and genomic insights into chromosomal evolution. Heredity 108:28–36 PubMed DOI

Schmeller DS (2004) Tying ecology and genetics of hemiclonally reproducing waterfrogs (Rana, Anura). Ann Zool Fenn 41:681–687

Schmeller DS, Seitz A, Crivelli A, Veith M (2005) Crossing species’ range borders: interspecies gene exchange mediated by hybridogenesis. Proc Biol Sci 272:1625–1631 PubMed PMC

Schmid M (1978) Chromosome banding in amphibia. Chromosoma 66:361–388 DOI

Schön I, Martens K, van Dijk P (eds) (2009) Lost sex: the evolutionary biology of parthenogenesis, 2009th, edition. Springer

Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, Fukui A, Hikosaka A, Suzuki A, Kondo M et al (2016) Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538:336–343 PubMed DOI PMC

Sessions SK (2008) Evolutionary cytogenetics in salamanders. Chromosome Res 16:183–201 PubMed DOI

Spasic-Boskovic O, Krizmanic I, Vujosevic M (1999) Population composition and genetic variation of water frogs (Anura: Ranidae) from Yugoslavia. Caryologia 52:9–20 DOI

Stanyon R, Rocchi M, Capozzi O, Roberto R, Misceo D, Ventura M, Cardone MF, Bigoni F, Archidiacono N (2008) Primate chromosome evolution: ancestral karyotypes, marker order and neocentromeres. Chromosome Res 16:17–39 DOI

Stöck M, Dedukh D, Reifová R, Lamatsch DK, Starostová Z, Janko K (2021) Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: along the ‘extended speciation continuum. Philos Trans R Soc B Biol Sci 376:20200103 DOI

Svinin A, Dedukh DV, Borkin LJ, Ermakov O, Ivanov A, Litvinchuk J, Zamaletdinov R, Mikhaylova R, Trubyanov AB, Skorinov D, Rosanov Y, Litvinchuk S (2021) Genetic structure, morphological variation, and gametogenic peculiarities in water frogs (Pelophylax) from northeastern European Russia. J Zool Syst Evol Res 59:646–662 DOI

Telenius H, Carter NP, Bebb CE, Nordenskjo’ld M, Ponder BAJ, Tunnacliffe A (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13:718–725 PubMed DOI

Trifonov VA, Vorobieva NN, Rens W (2009) FISH with and without COT1 DNA. In: Liehr T (ed) fluorescence in situ hybridization (FISH)—application guide, Springer Protocols Handbooks. Springer, Berlin, Heidelberg, pp 99–109 DOI

Tunner HG (1973) Demonstration of the hybrid origin of the common green frog Rana esculenta L. Naturwissenschaften 60:481–482 PubMed DOI

Tunner HG, Heppich S (1981) Premeiotic genome exclusion during oogenesis in the common edible frog, Rana esculenta. Naturwissenschaften 68:207–208 DOI

Tunner HG, Heppich S (1983) A genetic analysis of water frogs from Greece: evidence for the existence of a cryptic species. J Zool Syst Evol Res 20:209–223 DOI

Tunner HG, Heppich-Tunner S (1991) Genome exclusion and two strategies of chromosome duplication in oogenesis of a hybrid frog. Naturwissenschaften 78(1):32–34 DOI

Ungerer MC, Strakosh SC, Zhen Y (2006) Genome expansion in three hybrid sunflower species is associated with retrotransposon proliferation. Curr Biol 16:R872–R873 PubMed DOI

Vinogradov AE, Borkin LJ, Günther R, Rosanov JM (1990) Genome elimination in diploid and triploid Rana esculenta males: cytological evidence from DNA flow cytometry. Genome 33:619–627 PubMed DOI

Wienberg J, Stanyon R (1997) Comparative painting of mammalian chromosomes. Curr Opin Genet Dev 7:784–791 PubMed DOI

Yang F, Trifonov V, Ng BL, Kosyakova N, Carter NP (2009) Generation of paint probes by flow-sorted and microdissected chromosomes. In: Liehr T (ed) fluorescence in situ hybridization (FISH)—application guide, Springer Protocols Handbooks. Springer, Berlin, Heidelberg, pp 35–52 DOI

Zaleśna A, Choleva L, Ogielska M, Rábová M, Marec F, Ráb P (2011) Evidence for integrity of parental genomes in the diploid hybridogenetic water frog Pelophylax esculentus by genomic in situ hybridization. Cytogenet Genome Res 134:206–212 PubMed DOI

Zlotina A, Dedukh D, Krasikova A (2017) Amphibian and avian karyotype evolution: insights from lampbrush chromosome studies. Genes 8:311 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...