A cyclical switch of gametogenic pathways in hybrids depends on the ploidy level

. 2024 Apr 08 ; 7 (1) : 424. [epub] 20240408

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38589507

Grantová podpora
21-25185S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
21-25185S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
2015R1A2A2A01007117 and 2019R1I1A2A02057134 National Research Foundation of Korea (NRF)

Odkazy

PubMed 38589507
PubMed Central PMC11001910
DOI 10.1038/s42003-024-05948-6
PII: 10.1038/s42003-024-05948-6
Knihovny.cz E-zdroje

The cellular and molecular mechanisms governing sexual reproduction are conserved across eukaryotes. Nevertheless, hybridization can disrupt these mechanisms, leading to asexual reproduction, often accompanied by polyploidy. In this study, we investigate how ploidy level and ratio of parental genomes in hybrids affect their reproductive mode. We analyze the gametogenesis of sexual species and their diploid and triploid hybrids from the freshwater fish family Cobitidae, using newly developed cytogenetic markers. We find that diploid hybrid females possess oogonia and oocytes with original (diploid) and duplicated (tetraploid) ploidy. Diploid oocytes cannot progress beyond pachytene due to aberrant pairing. However, tetraploid oocytes, which emerge after premeiotic genome endoreplication, exhibit normal pairing and result in diploid gametes. Triploid hybrid females possess diploid, triploid, and haploid oogonia and oocytes. Triploid and haploid oocytes cannot progress beyond pachytene checkpoint due to aberrant chromosome pairing, while diploid oocytes have normal pairing in meiosis, resulting in haploid gametes. Diploid oocytes emerge after premeiotic elimination of a single-copied genome. Triploid hybrid males are sterile due to aberrant pairing and the failure of chromosomal segregation during meiotic divisions. Thus, changes in ploidy and genome dosage may lead to cyclical alteration of gametogenic pathways in hybrids.

Zobrazit více v PubMed

Lenormand T, Engelstädter J, Johnston SE, Wijnker E, Haag CR. Evolutionary mysteries in meiosis. Philos. Trans. R. Soc. B: Biol. Sci. 2016;371:20160001. doi: 10.1098/rstb.2016.0001. PubMed DOI PMC

Otto SP, Lenormand T. Resolving the paradox of sex and recombination. Nat. Rev. Genet. 2002;3:252–261. doi: 10.1038/nrg761. PubMed DOI

Arnold ML, Hodges SA. Are natural hybrids fit or unfit relative to their parents? Trends Ecol. Evol. 1995;10:67–71. doi: 10.1016/S0169-5347(00)88979-X. PubMed DOI

Coyne, J. A., Orr, H. A., Coyne, J. A. & Orr, H. A. Speciation (Oxford University Press, 2004).

Rieseberg LH. Chromosomal rearrangements and speciation. Trends Ecol. Evol. 2001;16:351–358. doi: 10.1016/S0169-5347(01)02187-5. PubMed DOI

Abbott R, et al. Hybridization and speciation. J. Evol. Biol. 2013;26:229–246. doi: 10.1111/j.1420-9101.2012.02599.x. PubMed DOI

Dawley, R. M. & Bogart, J. P. Evolution and Ecology of Unisexual Vertebrates (New York State Museum, 1989).

Janko K, et al. Hybrid asexuality as a primary postzygotic barrier between nascent species: On the interconnection between asexuality, hybridization and speciation. Mol. Ecol. 2018;27:248–263. doi: 10.1111/mec.14377. PubMed DOI PMC

Schön, I., Martens, K. & Dijk, P. Lost Sex: The Evolutionary Biology of Parthenogenesis (Springer, 2009).

Stöck M, et al. Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: along the ‘extended speciation continuum’. Philos. Trans. R. Soc. B: Biol. Sci. 2021;376:20200103. doi: 10.1098/rstb.2020.0103. PubMed DOI PMC

Dedukh D, Krasikova A. Delete and survive: strategies of programmed genetic material elimination in eukaryotes. Biol. Rev. 2022;97:195–216. doi: 10.1111/brv.12796. PubMed DOI PMC

Bogart JP, Bi K, Fu J, Noble DW, Niedzwiecki J. Unisexual salamanders (genus Ambystoma) present a new reproductive mode for eukaryotes. Genome. 2007;50:119–136. doi: 10.1139/G06-152. PubMed DOI

Dedukh D, et al. Achiasmatic meiosis in the unisexual Amazon molly, Poecilia formosa. Chromosome Res. 2022;30:443–457. doi: 10.1007/s10577-022-09708-2. PubMed DOI PMC

Monaco, P. J., Rasch, E. M. & Balsano, J. S. Apomictic reproduction in the amazon molly, Poecilia formosa, and its triploid hybrids. in Evolutionary Genetics of Fishes (ed. Turner, B. J.) 311–328 (Springer US, 1984).

Cimino MC. Meiosis in triploid all-female fish (Poeciliopsis, Poeciliidae) Science. 1972;175:1484–1486. doi: 10.1126/science.175.4029.1484. PubMed DOI

Dedukh D, Altmanová M, Klíma J, Kratochvíl L. Premeiotic endoreplication is essential for obligate parthenogenesis in geckos. Development. 2022;149:dev200345. doi: 10.1242/dev.200345. PubMed DOI

Dedukh D, et al. Parthenogenesis as a solution to hybrid sterility: the mechanistic basis of meiotic distortions in clonal and sterile hybrids. Genetics. 2020;215:975–987. doi: 10.1534/genetics.119.302988. PubMed DOI PMC

Itono M, et al. Premeiotic endomitosis produces diploid eggs in the natural clone loach, Misgurnus anguillicaudatus (Teleostei: Cobitidae) J. Exp. Zool. Part A: Comp. Exp. Biol. 2006;305A:513–523. doi: 10.1002/jez.a.283. PubMed DOI

Kuroda M, Fujimoto T, Murakami M, Yamaha E, Arai K. Clonal reproduction assured by sister chromosome pairing in dojo loach, a teleost fish. Chromosome Res. 2018;26:243–253. doi: 10.1007/s10577-018-9581-4. PubMed DOI

Lutes AA, Neaves WB, Baumann DP, Wiegraebe W, Baumann P. Sister chromosome pairing maintains heterozygosity in parthenogenetic lizards. Nature. 2010;464:283–286. doi: 10.1038/nature08818. PubMed DOI PMC

Macgregor HC, Uzzell TM. Gynogenesis in salamanders related to Ambystoma jeffersonianum. Science. 1964;143:1043–1045. doi: 10.1126/science.143.3610.1043. PubMed DOI

Stöck M, et al. A bisexually reproducing all-triploid vertebrate. Nat. Genet. 2002;30:325–328. doi: 10.1038/ng839. PubMed DOI

Janko K, et al. Genome fractionation and loss of heterozygosity in hybrids and polyploids: mechanisms, consequences for selection, and link to gene function. Mol. Biol. Evol. 2021;38:5255–5274. doi: 10.1093/molbev/msab249. PubMed DOI PMC

Dedukh D, Marta A, Janko K. Challenges and costs of asexuality: variation in premeiotic genome duplication in gynogenetic hybrids from Cobitis taenia complex. Int. J. Mol. Sci. 2021;22:12117. doi: 10.3390/ijms222212117. PubMed DOI PMC

Reifová R, et al. Mechanisms of intrinsic postzygotic isolation: from traditional genic and chromosomal views to genomic and epigenetic perspectives. Cold Spring Harb. Perspect. Biol. 2023;15:a041607. doi: 10.1101/cshperspect.a041607. PubMed DOI PMC

Alves MJ, Coelho MM, Collares-Pereira MJ. Evolution in action through hybridisation and polyploidy in an Iberian freshwater fish: a genetic review. Genetica. 2001;111:375–385. doi: 10.1023/A:1013783029921. PubMed DOI

Bi K, Bogart JP. Time and time again: unisexual salamanders (genus Ambystoma) are the oldest unisexual vertebrates. BMC Evol. Biol. 2010;10:238. doi: 10.1186/1471-2148-10-238. PubMed DOI PMC

Gu Q, et al. Phylogeographic relationships and the evolutionary history of the Carassius auratus complex with a newly born homodiploid raw fish (2nNCRC) BMC Genomics. 2022;23:242. doi: 10.1186/s12864-022-08468-x. PubMed DOI PMC

Majtánová Z, et al. Asexual reproduction does not apparently increase the rate of chromosomal evolution: Karyotype stability in diploid and triploid clonal hybrid fish (Cobitis, Cypriniformes, Teleostei) PLoS ONE. 2016;11:e0146872. doi: 10.1371/journal.pone.0146872. PubMed DOI PMC

Morishima K, et al. Cryptic clonal lineages and genetic diversity in the loach Misgurnus anguillicaudatus (Teleostei: Cobitidae) inferred from nuclear and mitochondrial DNA analyses. Genetica. 2008;132:159–171. doi: 10.1007/s10709-007-9158-1. PubMed DOI

Alves MJ, Coelho MM, Collares-Pereira MJ. Diversity in the reproductive modes of females of the Rutilus alburnoides complex (Teleostei, Cyprinidae): a way to avoid the genetic constraints of uniparentalism. Mol. Biol. Evol. 1998;15:1233. doi: 10.1093/oxfordjournals.molbev.a025852. DOI

Lamatsch, D. K. & Stöck, M. Sperm-dependent parthenogenesis and hybridogenesis in Teleost Fishes. in Lost Sex: The Evolutionary Biology of Parthenogenesis (eds. Schön, I., Martens, K. & Dijk, P.) 399–432 (Springer Netherlands, 2009).

Zhang J, et al. Meiosis completion and various sperm responses lead to unisexual and sexual reproduction modes in one clone of polyploid Carassius gibelio. Sci. Rep. 2015;5:10898. doi: 10.1038/srep10898. PubMed DOI PMC

Cuellar O. Reproduction and the mechanism of meiotic restitution in the parthenogenetic lizard Cnemidophorus uniparens. J. Morphol. 1971;133:139–165. doi: 10.1002/jmor.1051330203. PubMed DOI

Cimino MC. Egg-production, polyploidization and evolution in a diploid all-female fish of the genus Poeciliopsis. Evolution. 1972;26:294–306. PubMed

Goddard K, Megwinoff O, Wessner L, Giaimo F. Confirmation of gynogenesis in Phoxinus eos-neogaeus (Pisces: Cyprinidae) J. Heredity. 1998;89:151–157. doi: 10.1093/jhered/89.2.151. DOI

Kim I, Lee J. Diploid-triploid complex of the spined loach Cobitis sinensis and C. longicorpus (Pisces, Cobitidae) Korean J. Ichthyol. 1990;2:203–210.

Saitoh K, Kim I-S, Lee E-H. Mitochondrial gene introgression between spined loaches via hybridogenesis. Zool. Sci. 2004;21:795–798. doi: 10.2108/zsj.21.795. PubMed DOI

Morishima K, Yoshikawa H, Arai K. Meiotic hybridogenesis in triploid Misgurnus loach derived from a clonal lineage. Heredity. 2008;100:581–586. doi: 10.1038/hdy.2008.17. PubMed DOI

Zhang Q, Arai K, Yamashita M. Cytogenetic mechanisms for triploid and haploid egg formation in the triploid loach Misgurnus anguillicaudatus. J. Exp. Zool. 1998;281:608–619. doi: 10.1002/(SICI)1097-010X(19980815)281:6<608::AID-JEZ9>3.0.CO;2-R. DOI

Ko, M.-H. Reproductive mechanisms of the unisexual diploid-triploid hybrid complex between the spined loach Cobitis hankugensis and Iksookimia longicorpa (Teleostei, Cobitidae) in Korea (Chonbuk National University, 2009).

Lee, J. H. A systematic study of the unisexual cobitid fish, Cobitis sinensis-longicorpus complex in the Naktong River, Korea (Chonbuk National University, 1992).

Lee, E.-H. A Study of reproductive mode of the unisexual cobitid fishes, Cobitis sinensis-longicorpus complex (Cobididae) by hybridization with its parental species (Chonbuk National University, 1995).

Kim S, Kim I, Jahng K, Chang M. Molecular phylogeny of Korean loaches inferred from mitochondrial DNA cytochrome b sequences. Korean J. Ichthyol. 2000;12:223–229.

Park J-Y, Kim I-S, Ko M-H. Characteristics of rare males in the cobitid unisexual complex, Cobitis hankugensis-Iksookimia longicorpa. Folia Zoologica. 2011;60:290–294. doi: 10.25225/fozo.v60.i4.a4.2011. DOI

Yun SW, Kim HT, Park JY. Sperm motility analysis of Cobitis hankugensis, Iksookimia longicorpa (Teleostei, Cypriniformes, Cobitidae) and their unisexual natural hybrids. J. Exp. Zool. Part A: Ecol. Integr. Physiol. 2021;335:587–594. doi: 10.1002/jez.2498. PubMed DOI

Marta A, Dedukh D, Bartoš O, Majtánová Z, Janko K. Cytogenetic characterization of seven novel satDNA markers in two species of spined loaches (Cobitis) and their clonal hybrids. Genes. 2020;11:617. doi: 10.3390/genes11060617. PubMed DOI PMC

Marta A, et al. Genetic and karyotype divergence between parents affect clonality and sterility in hybrids. eLife. 2023;12:RP88366. doi: 10.7554/eLife.88366.3. PubMed DOI PMC

Torgasheva AA, Borodin PM. Cytological basis of sterility in male and female hybrids between sibling species of grey voles Microtus arvalis and M. levis. Sci. Rep. 2016;6:36564. doi: 10.1038/srep36564. PubMed DOI PMC

Bhattacharyya T, et al. Mechanistic basis of infertility of mouse intersubspecific hybrids. Proc. Natl Acad. Sci. USA. 2013;110:E468–E477. doi: 10.1073/pnas.1219126110. PubMed DOI PMC

Kuroda M, Fujimoto T, Murakami M, Yamaha E, Arai K. Aberrant meiotic configurations cause sterility in clone-origin triploid and inter-group hybrid males of the dojo loach, Misgurnus anguillicaudatus. Cytogenetic Genome Res. 2019;158:46–54. doi: 10.1159/000500303. PubMed DOI

Dedukh D, et al. Optional endoreplication and selective elimination of parental genomes during oogenesis in diploid and triploid hybrid European water frogs. PLoS ONE. 2015;10:e0123304. doi: 10.1371/journal.pone.0123304. PubMed DOI PMC

Majtánová Z, et al. Uniparental genome elimination in Australian carp gudgeons. Genome Biol. Evol. 2021;13:evab030. doi: 10.1093/gbe/evab030. PubMed DOI PMC

Graf, J.-D. & Polls-Pelaz, M. Evolutionary genetics of the Rana esculenta complex. in Evolution and Ecology of Unisexual Vertebrates (eds. Dawley, R. M. & Bogart, J. P.) 289–302 (1989).

Stöck M, et al. Simultaneous Mendelian and clonal genome transmission in a sexually reproducing, all-triploid vertebrate. Proc. R. Soc. B: Biol. Sci. 2012;279:1293–1299. doi: 10.1098/rspb.2011.1738. PubMed DOI PMC

Dedukh D, et al. Micronuclei in germ cells of hybrid frogs from Pelophylax esculentus complex contain gradually eliminated chromosomes. Sci. Rep. 2020;10:8720. doi: 10.1038/s41598-020-64977-3. PubMed DOI PMC

Kwan Y-S, Ko M-H, Jeon Y-S, Kim H-J, Won Y-J. Bidirectional mitochondrial introgression between Korean cobitid fish mediated by hybridogenetic hybrids. Ecol. Evol. 2019;9:1244–1254. doi: 10.1002/ece3.4830. PubMed DOI PMC

Nabais C, Pereira C, Cuñado N, Collares-Pereira MJ. Synaptonemal complexes in the hybridogenetic Squalius alburnoides fish complex: new insights on the gametogenesis of allopolyploids. Cytogenetic Genome Res. 2012;138:31–35. doi: 10.1159/000339522. PubMed DOI

Goddard KA, Schultz RJ. Aclonal reproduction by polyploid members of the clonal hybrid species Phoxinus eos-neogaeus (Cyprinidae) Copeia. 1993;1993:650–660. doi: 10.2307/1447226. DOI

Newton AA, et al. Widespread failure to complete meiosis does not impair fecundity in parthenogenetic whiptail lizards. Development. 2016;143:4486–4494. PubMed PMC

Shimizu Y, Shibata N, Sakaizumi M, Yamashita M. Production of diploid eggs through premeiotic endomitosis in the hybrid medaka between Oryzias latipes and O. curvinotus. Zool. Sci. 2000;17:951–958. doi: 10.2108/zsj.17.951. DOI

Chmielewska M, et al. The programmed DNA elimination and formation of micronuclei in germ line cells of the natural hybridogenetic water frog Pelophylax esculentus. Sci. Rep. 2018;8:7870. doi: 10.1038/s41598-018-26168-z. PubMed DOI PMC

Tunner HG. Demonstration of the hybrid origin of the common green frog Rana esculenta L. Naturwissenschaften. 1973;60:481–482. doi: 10.1007/BF00592872. PubMed DOI

Tunner HG, Heppich S. Premeiotic genome exclusion during oogenesis in the common edible frog, Rana esculenta. Die. Naturwissenschaften. 1981;68:207. doi: 10.1007/BF01047207. PubMed DOI

Gernand D, et al. Uniparental chromosome elimination at mitosis and interphase in wheat and earl millet crosses involves micronucleus formation, progressive heterochromatinization, and DNA fragmentation. Plant Cell. 2005;17:2431–2438. doi: 10.1105/tpc.105.034249. PubMed DOI PMC

Perondini ALP, Ribeiro AF. Chromosome elimination in germ cells of Sciara embryos: involvement of the nuclear envelope. Invertebr. Reprod. Dev. 1997;32:131–141. doi: 10.1080/07924259.1997.9672614. DOI

Sanei M, Pickering R, Kumke K, Nasuda S, Houben A. Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc. Natl Acad. Sci. USA. 2011;108:E498–E505. doi: 10.1073/pnas.1103190108. PubMed DOI PMC

Esteban MR, Campos MC, Perondini AL, Goday C. Role of microtubules and microtubule organizing centers on meiotic chromosome elimination in Sciara ocellaris. J. Cell Sci. 1997;110:721–730. doi: 10.1242/jcs.110.6.721. PubMed DOI

Prantera G, Bongiorni S. Mealybug chromosome cycle as a paradigm of epigenetics. Genet. Res. Int. 2012;2012:867390. PubMed PMC

Tichopád T, et al. Clonal gametogenesis is triggered by intrinsic stimuli in the hybrid’s germ cells but is dependent on sex differentiation. Biol. Reprod. 2022;107:446–457. doi: 10.1093/biolre/ioac074. PubMed DOI

Yoshikawa H, Morishima K, Kusuda S, Yamaha E, Arai K. Diploid sperm produced by artificially sex-reversed Clone loaches. J. Exp. Zool. Part A: Ecol. Genet. Physiol. 2007;307A:75–83. doi: 10.1002/jez.a.337. PubMed DOI

Moritz C, Donnellan S, Adams M, Baverstock PR. The origin and evolution of parthenogenesis in Heteronotia binoei (Gekkonidae): extensive genotypic diversity among parthenogens. Evolution. 1989;43:994–1003. doi: 10.2307/2409580. PubMed DOI

Savidan, Y., Carman, J. G. & Dresselhaus, T. The Flowering of Apomixis: from Mechanisms to Genetic Engineering (CIMMYT, 2001).

Cole CJ, Hardy LM, Dessauer HC, Taylor HL, Townsend CR. Laboratory hybridization among North American whiptail lizards, including Aspidoscelis inornata arizonae x A. tigris marmorata (Squamata, Teiidae), ancestors of unisexual clones in nature. (American Museum novitates, no. 3698) Am. Mus. Novit. 2010;3698:1–43. doi: 10.1206/3698.2. DOI

Dedukh D, et al. Variation in hybridogenetic hybrid emergence between populations of water frogs from the Pelophylax esculentus complex. PLoS ONE. 2019;14:e0224759. doi: 10.1371/journal.pone.0224759. PubMed DOI PMC

Beukeboom LW, Vrijenhoek RC. Evolutionary genetics and ecology of sperm-dependent parthenogenesis. J. Evol. Biol. 1998;11:755–782.

Saat TV. Reproduction of the diploid and polyploid spinous loaches (Cobitis, Teleostei): oocyte maturation and fertilization in the triploid form. Ontogenez. 1991;22:533–541.

Plötner J, et al. Widespread unidirectional transfer of mitochondrial DNA: a case in western Palaearctic water frogs. J. Evol. Biol. 2008;21:668–681. doi: 10.1111/j.1420-9101.2008.01527.x. PubMed DOI PMC

Sousa-Santos C, Collares-Pereira MJ, Almada VC. Evidence of extensive mitochondrial introgression with nearly complete substitution of the typical Squalius pyrenaicus-like mtDNA of the Squalius alburnoides complex (Cyprinidae) in an independent Iberian drainage. J. Fish. Biol. 2006;68:292–301. doi: 10.1111/j.0022-1112.2006.01081.x. DOI

Kwan Y-S, Kim D, Ko M-H, Lee W-O, Won Y-J. Multi-locus phylogenetic analyses support the monophyly and the Miocene diversification of Iksookimia (Teleostei: Cypriniformes: Cobitidae) Syst. Biodivers. 2018;16:81–88. doi: 10.1080/14772000.2017.1340912. DOI

Araya-Jaime C, et al. Surface-spreading technique of meiotic cells and immunodetection of synaptonemal complex proteins in teleostean fishes. Mol. Cytogenet. 2015;8:4. doi: 10.1186/s13039-015-0108-9. PubMed DOI PMC

Moens PB. Zebrafish: chiasmata and interference. Genome. 2006;49:205–208. doi: 10.1139/g06-021. PubMed DOI

Blokhina YP, Nguyen AD, Draper BW, Burgess SM. The telomere bouquet is a hub where meiotic double-strand breaks, synapsis, and stable homolog juxtaposition are coordinated in the zebrafish, Danio rerio. PLoS Genet. 2019;15:e1007730. doi: 10.1371/journal.pgen.1007730. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace