Premeiotic endoreplication is the mechanism of obligate parthenogenesis in rock lizards of the genus Darevskia
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Russian Science Foundation
Akademie Věd České Republiky
Univerzita Karlova v Praze
Grantová Agentura České Republiky
Science Committee of the Republic of Armenia
PubMed
39288813
PubMed Central
PMC11407861
DOI
10.1098/rsbl.2024.0182
Knihovny.cz E-zdroje
- Klíčová slova
- Lacertidae, asexuality, meiosis, obligatory parthenogenesis, reptiles, vertebrates,
- MeSH
- ještěři * fyziologie genetika MeSH
- meióza MeSH
- partenogeneze * MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Among vertebrates, obligate parthenogenesis occurs exclusively in squamate reptiles. Premeiotic endoreplication in a small subset of developing oocytes has been documented as the mechanism of production of unreduced eggs in minutely explored obligate parthenogenetic lineages, namely in teiids and geckos. The situation in the lacertid genus Darevskia has been discussed for decades. Certain observations suggested that the ploidy level is restored during egg formation through a fusion of egg and polar body nuclei in Darevskia unisexualis and D. armeniaca. In this study, we re-evaluated the fusion hypothesis by studying diplotene chromosomes in adult females of sexual species D. raddei nairensis and obligate parthenogens D. armeniaca, D. dahli and D. unisexualis. We revealed 19 bivalents in the sexual species and 38 bivalents in the diploid obligate parthenogens, which uncovers premeiotic endoreplication as the mechanism of the production of non-reduced eggs in parthenogenetic females. The earlier contradicting reports can likely be attributed to the difficulty in identifying mispairing of chromosomes in pachytene, and the fact that in parthenogenetic reptiles relying on premeiotic endoreplication only a small subset of developing oocytes undergo genome doubling and overcome the pachytene checkpoint. This study highlights co-option of premeiotic endoreplication for escape from sexual reproduction in all independent hybrid origins of obligate parthenogenesis in vertebrates studied to date.
Department of Ecology Faculty of Science Charles University Prague Viničná 7 128 44 Czech Republic
Research Institute of Biology Yerevan State University Yerevan 0025 Armenia
Zobrazit více v PubMed
Avise JC. 2008. Clonality: the genetics, ecology, and evolution of sexual abstinence in vertebrate animals. New York, NY: Oxford Academic. (10.1093/acprof:oso/9780195369670.001.0001) DOI
Bogart JP, Bartoszek J, Noble DWA, Bi K. 2009. Sex in unisexual salamanders: discovery of a new sperm donor with ancient affinities. Heredity 103 , 483–493. (10.1038/hdy.2009.83) PubMed DOI
Lamatsch DK, Stöck M. 2009. Sperm-dependent parthenogenesis and hybridogenesis in teleost fishes. In Lost sex, pp. 399–432. Dordrecht, The Netherlands: Springer. (10.1007/978-90-481-2770-2_19) DOI
Lavanchy G, Schwander T. 2019. Hybridogenesis. Curr. Biol. 29 , R9–R11. (10.1016/j.cub.2018.11.046) PubMed DOI
Stöck M, Dedukh D, Reifová R, Lamatsch DK, Starostová Z, Janko K. 2021. Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: along the 'extended speciation continuum'. Phil. Trans. R. Soc. B 376 , 20200103. (10.1098/rstb.2020.0103) PubMed DOI PMC
Stöck M, et al. . 2021. A brief review of vertebrate sex evolution with a pledge for integrative research: towards 'sexomics'. Phil. Trans. R. Soc. B 376 , 20200426. (10.1098/rstb.2020.0426) PubMed DOI PMC
Lampert KP. 2008. Facultative parthenogenesis in vertebrates: reproductive error or chance? Sex. Dev. 2 , 290–301. (10.1159/000195678) PubMed DOI
Kratochvíl L, Vukić J, Červenka J, Kubička L, Johnson Pokorná M, Kukačková D, Rovatsos M, Piálek L. 2020. Mixed-sex offspring produced via cryptic parthenogenesis in a lizard. Mol. Ecol. 29 , 4118–4127. (10.1111/mec.15617) PubMed DOI
Ho DV, et al. . 2024. Post-meiotic mechanism of facultative parthenogenesis in gonochoristic whiptail lizard species. eLife 13 , e97035. (10.7554/eLife.97035) PubMed DOI PMC
Booth W, Smith CF, Eskridge PH, Hoss SK, Mendelson JR, Schuett GW. 2012. Facultative parthenogenesis discovered in wild vertebrates. Biol. Lett. 8 , 983–985. (10.1098/rsbl.2012.0666) PubMed DOI PMC
Booth W, Schuett GW, Ridgway A, Buxton DW, Castoe TA, Bastone G, Bennett C, McMahan W. 2014. New insights on facultative parthenogenesis in pythons. Biol. J. Linn. Soc. 112 , 461–468. (10.1111/bij.12286) DOI
Booth W, Schuett GW. 2016. The emerging phylogenetic pattern of parthenogenesis in snakes. Biol. J. Linn. Soc. 118 , 172–186. (10.1111/bij.12744) DOI
Booth W, Levine BA, Corush JB, Davis MA, Dwyer Q, De Plecker R, Schuett GW. 2023. Discovery of facultative parthenogenesis in a new world crocodile. Biol. Lett. 19 , 20230129. (10.1098/rsbl.2023.0129) PubMed DOI PMC
Card DC, Vonk FJ, Smalbrugge S, Casewell NR, Wüster W, Castoe TA, Schuett GW, Booth W. 2021. Genome-wide data implicate terminal fusion automixis in king cobra facultative parthenogenesis. Sci. Rep. 11 , 7271. (10.1038/s41598-021-86373-1) PubMed DOI PMC
Engelstädter J. 2017. Asexual but not clonal: evolutionary processes in automictic populations. Genetics 206 , 993–1009. (10.1534/genetics.116.196873) PubMed DOI PMC
Sinclair EA, Pramuk JB, Bezy RL, Crandall KA, Sites JW. 2010. DNA evidence for nonhybrid origins of parthenogenesis in natural populations of vertebrates. Evolution 64 , 1346–1357. (10.1111/j.1558-5646.2009.00893.x) PubMed DOI
Wynn AH, Cole CJ, Gardner AL. 1987. Apparent triploidy in the unisexual brahminy blind snake, Ramphotyphlops braminus. Am. Mus. Novit. 2868 , 1–7.
Reeder TW, Cole CJ, Dessauer HC. 2002. Phylogenetic relationships of whiptail lizards of the genus Cnemidophorus (Squamata: Teiidae): a test of monophyly, reevaluation of karyotypic evolution, and review of hybrid origins. Am. Mus. Nov. 3365 , 1–61. (10.1206/0003-0082(2002)365<0001:PROWLO>2.0.CO;2) DOI
Adams M, Foster R, Hutchinson MN, Hutchinson RG, Donnellan SC. 2003. The Australian scincid lizard Menetia greyii: a new instance of widespread vertebrate parthenogenesis. Evolution 57 , 2619–2627. (10.1111/j.0014-3820.2003.tb01504.x) PubMed DOI
Brunes TO, da Silva AJ, Marques-Souza S, Rodrigues MT, Pellegrino KCM. 2019. Not always young: the first vertebrate ancient origin of true parthenogenesis found in an Amazon leaf litter lizard with evidence of mitochondrial haplotypes surfing on the wave of a range expansion. Mol. Phylogenet. Evol. 135 , 105–122. (10.1016/j.ympev.2019.01.023) PubMed DOI
Grismer JL, et al. . 2014. Multiple origins of parthenogenesis, and a revised species phylogeny for the Southeast Asian butterfly lizards, Leiolepis. Biol. J. Linn. Soc. 113 , 1080–1093. (10.1111/bij.12367) DOI
Abdala CS, Baldo D, Juárez RA, Espinoza RE. 2016. The first parthenogenetic pleurodont iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from Western Argentina. Copeia 104 , 487–497. (10.1643/CH-15-381) DOI
Barley AJ, Reeder TW, Nieto-Montes de Oca A, Cole CJ, Thomson RC. 2021. A new diploid parthenogenetic whiptail lizard from Sonora, Mexico, is the 'missing link' in the evolutionary transition to polyploidy. Am. Nat. 198 , 295–309. (10.1086/715056) PubMed DOI
Cuellar O. 1971. Reproduction and the mechanism of meiotic restitution in the parthenogenetic lizard Cnemidophorus uniparens. J. Morphol. 133 , 139–165. (10.1002/jmor.1051330203) PubMed DOI
Lutes AA, Neaves WB, Baumann DP, Wiegraebe W, Baumann P. 2010. Sister chromosome pairing maintains heterozygosity in parthenogenetic lizards. Nature 464 , 283–286. (10.1038/nature08818) PubMed DOI PMC
Newton AA, Schnittker RR, Yu Z, Munday SS, Baumann DP, Neaves WB, Baumann P. 2016. Widespread failure to complete meiosis does not impair fecundity in parthenogenetic whiptail lizards. Development 143 , 4486–4494. (10.1242/dev.141283) PubMed DOI PMC
Dedukh D, Altmanová M, Klíma J, Kratochvíl L. 2022. Premeiotic endoreplication is essential for obligate parthenogenesis in geckos. Development 149 , dev200345. (10.1242/dev.200345) PubMed DOI
Uzzell T. 1970. Meiotic mechanisms of naturally occurring unisexual vertebrates. Am. Nat. 104 , 433–445. (10.1086/282678) DOI
Darevsky IS, Kupriyanova LA, Uzzell T. 1985. Parthenogenesis in reptiles. In Biology of the Reptilia (eds Gans C, Billet F), pp. 412–526, vol. 15. New York, NY: John Wiley and Sons.
Darevsky IS. 1966. Natural parthenogenesis in a polymorphic group of Caucasian rock lizards related to Lacerta saxicola Eversmann. J. Ohio Herpetol. Soc. 5 , 115. (10.2307/1562588) DOI
Kupriyanova L. 2009. Cytogenetic and genetic trends in the evolution of unisexual lizards. Cytogenet. Genome Res. 127 , 273–279. (10.1159/000303325) PubMed DOI
Kupriyanova LA, Safronova LD, Sycheva VB, Danielyan FD, Petrosyan VG. 2021. Oogenesis (prophase 1 of meiosis) and mitotic chromosomes of parthenogenetic species Darevskia armeniaca (family Lacertidae). Biol. Bull. 48 , 274–280. (10.1134/S1062359021030080) DOI
Spangenberg V, et al. . 2020. Cytogenetic mechanisms of unisexuality in rock lizards. Sci. Rep. 10 , 8697. (10.1038/s41598-020-65686-7) PubMed DOI PMC
Spangenberg V, et al. . 2021. Meiotic synapsis of homeologous chromosomes and mismatch repair protein detection in the parthenogenetic rock lizard Darevskia unisexualis. Mol. Reprod. Dev. 88 , 119–127. (10.1002/mrd.23450) PubMed DOI
Spangenberg V, Arakelyan M, Simanovsky S, Dombrovskaya Y, Khachatryan E, Kolomiets O. 2024. Tendency towards clonality: deviations of meiosis in parthenogenetic Caucasian rock lizards. Research Square. (10.21203/rs.3.rs-3936576/v2) DOI
Vergun AA, Girnyk AE, Korchagin VI, Semyenova SK, Arakelyan MS, Danielyan FD, Murphy RW, Ryskov AP. 2020. Origin, clonal diversity, and evolution of the parthenogenetic lizard Darevskia unisexualis. BMC Genomics 21 , 351. (10.1186/s12864-020-6759-x) PubMed DOI PMC
Tarkhnishvili D, et al. . 2020. Genotypic similarities among the parthenogenetic Darevskia rock lizards with different hybrid origins. BMC Evol. Biol. 20 , 122. (10.1186/s12862-020-01690-9) PubMed DOI PMC
Arakelyan M, Spangenberg V, Petrosyan V, Ryskov A, Kolomiets O, Galoyan E. 2023. Evolution of parthenogenetic reproduction in Caucasian rock lizards: a review. Curr. Zool. 69 , 128–135. (10.1093/cz/zoac036) PubMed DOI PMC
Yanchukov A, et al. . 2022. Precise paternal ancestry of hybrid unisexual ZW lizards (genus Darevskia: Lacertidae: Squamata) revealed by Z-linked genomic markers. Biol. J. Linn. Soc. 136 , 293–305. (10.1093/biolinnean/blac023) DOI
Murphy RW, Fu J, Macculloch RD, Darevsky IS, Kupriyanova LA. 2000. A fine line between sex and unisexuality: the phylogenetic constraints on parthenogenesis in lacertid lizards. Zool. J. Linn. Soc. 130 , 527–549. (10.1111/j.1096-3642.2000.tb02200.x) DOI
Freitas SN, Harris DJ, Sillero N, Arakelyan M, Butlin RK, Carretero MA. 2019. The role of hybridisation in the origin and evolutionary persistence of vertebrate parthenogens: a case study of Darevskia lizards. Heredity 123 , 795–808. (10.1038/s41437-019-0256-5) PubMed DOI PMC
Altmanová M, et al. . 2023. Karyotype stasis but species-specific repetitive DNA patterns in Anguis lizards (Squamata: Anguidae), in the evolutionary framework of Anguiformes. Zool. J. Linn. Soc. zlad153 . (10.1093/zoolinnean/zlad153) DOI
Poignet M, Johnson Pokorná M, Altmanová M, Majtánová Z, Dedukh D, Albrecht T, Reif J, Osiejuk TS, Reifová R. 2021. Comparison of karyotypes in two hybridizing passerine species: conserved chromosomal structure but divergence in centromeric repeats. Front. Genet. 12 , 768987. (10.3389/fgene.2021.768987) PubMed DOI PMC
Gall JG, Murphy C, Callan HG, Wu ZA. 1991. Lampbrush chromosomes. Meth. Cell Biol. 36 , 149–166. (10.1016/S0091-679X(08)60276-9) PubMed DOI
Cole CJ, Dessauer HC, Paulissen MA, Walker JM. 2020. Hybridization between whiptail lizards in texas: Aspidoscelis laredoensis and A. gularis, with notes on reproduction of a hybrid. Am. Mus. Nov. 2020 , 1. (10.1206/3947.1) DOI
Barateli N, Tarkhnishvili D, Iankoshvili G, Kokiashvili L. 2022. Reproductive effort of unisexual and bisexual rock lizards (genus Darevskia). Zool. Anz. 301 , 196–204. (10.1016/j.jcz.2022.11.002) DOI
Janko K, Bartoš O, Kočí J, Roslein J, Drdová EJ, Kotusz J, Eisner J, Mokrejš M, Štefková-Kašparová E. 2021. Genome fractionation and loss of heterozygosity in hybrids and polyploids: mechanisms, consequences for selection, and link to gene function. Mol. Biol. Evol. 38 , 5255–5274. (10.1093/molbev/msab249) PubMed DOI PMC
Freitas S, Westram AM, Schwander T, Arakelyan M, Ilgaz Ç, Kumlutas Y, Harris DJ, Carretero MA, Butlin RK. 2022. Parthenogenesis in Darevskia lizards: a rare outcome of common hybridization, not a common outcome of rare hybridization. Evolution 76 , 899–914. (10.1111/evo.14462) PubMed DOI PMC
Cole CJ, Taylor HL, Neaves WB, Baumann DP, Newton A, Schnittker R, Baumann P. 2017. The second known tetraploid species of parthenogenetic tetrapod (Reptilia: Squamata: Teiidae): description, reproduction, comparisons with ancestral taxa, and origins of multiple clones. Bull. Mus. Comp. Zool. 161 , 285–321. (10.3099/MCZ37.1) DOI
Alves MJ, Coelho MM, Collares-Pereira MJ. 2001. Evolution in action through hybridisation and polyploidy in an Iberian freshwater fish: a genetic review. Genetica 111 , 375–385. (10.1023/a:1013783029921) PubMed DOI
Goddard KA, Megwinoff O, Wessner LL, Giaimo F. 1998. Confirmation of gynogenesis in Phoxinus eos-neogaeus (Pisces: Cyprinidae). J. Hered. 89 , 151–157. (10.1093/jhered/89.2.151) DOI
Dedukh D, Marta A, Myung RYet al. . 2024. A cyclical switch of gametogenic pathways in hybrids depends on the ploidy level. Commun. Biol. 7–424. (10.1038/s42003-024-05948-6) PubMed DOI PMC
Arakelyan M, Danielyan F, Stepanyan I. 2008. Hybrids of Darevskia valentini, D. armeniaca and D. unisexualis from a sympatric population in Armenia. Amphib. Reptil. 29 , 487–504. (10.1163/156853808786230424) DOI
Dedukh D, Altmanova M, Petrosyan R, Arakelyan M, Galoyan EA, Kratochvil L. 2024. Supplementary material from: Premeiotic endoreplication is the mechanism of obligate parthenogenesis in rock lizards of the genus Darevskia. Figshare (10.6084/m9.figshare.c.7449497) PubMed DOI