Diffusion kurtosis imaging detects the time-dependent progress of pathological changes in the oral rotenone mouse model of Parkinson's disease
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34107061
DOI
10.1111/jnc.15449
Knihovny.cz E-zdroje
- Klíčová slova
- MRI, Parkinson, alpha synuclein, diffusion kurtosis imaging, rotenone, s disease, tract-based spatial statistics,
- MeSH
- aplikace orální MeSH
- bludiště - učení účinky léků fyziologie MeSH
- časové faktory MeSH
- dopaminergní neurony účinky léků patologie MeSH
- insekticidy toxicita MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- parkinsonské poruchy chemicky indukované diagnostické zobrazování patologie MeSH
- progrese nemoci * MeSH
- rotenon aplikace a dávkování toxicita MeSH
- zobrazování difuzních tenzorů metody MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- insekticidy MeSH
- rotenon MeSH
Clinical diagnosis of Parkinson's disease (PD) occurs typically when a substantial proportion of dopaminergic neurons in the substantia nigra (SN) already died, and the first motor symptoms appear. Therefore, tools enabling the early diagnosis of PD are essential to identify early-stage PD patients in which neuroprotective treatments could have a significant impact. Here, we test the utility and sensitivity of the diffusion kurtosis imaging (DKI) in detecting progressive microstructural changes in several brain regions of mice exposed to chronic intragastric administration of rotenone, a mouse model that mimics the spatiotemporal progression of PD-like pathology from the ENS to the SN as described by Braak's staging. Our results show that DKI, especially kurtosis, can detect the progression of pathology-associated changes throughout the CNS. Increases in mean kurtosis were first observed in the dorsal motor nucleus of the vagus (DMV) after 2 months of exposure to rotenone and before the loss of dopaminergic neurons in the SN occurred. Remarkably, we also show that limited exposure to rotenone for 2 months is enough to trigger the progression of the disease in the absence of the environmental toxin, thus suggesting that once the first pathological changes in one region appear, they can self-perpetuate and progress within the CNS. Overall, our results show that DKI can be a useful radiological marker for the early detection and monitoring of PD pathology progression in patients with the potential to improve the clinical diagnosis and the development of neuroprotective treatments.
Department of Neurology University Hospital LMU Munich Munich Germany
Department of Pharmacology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Psychiatry and Psychotherapy University Hospital LMU Munich Munich Germany
Faculty of Medicine Masaryk University Brno Czech Republic
Institute of Scientific Instruments of the Czech Academy of Sciences Brno Czech Republic
Zobrazit více v PubMed
Alexander, A. L., Hasan, K., Kindlmann, G., Parker, D. L., & Tsuruda, J. S. (2000). A geometric analysis of diffusion tensor measurements of the human brain. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 44, 283-291. https://doi.org/10.1002/1522-2594(200008)44:2<283:AID-MRM16>3.0.CO;2-V
Alexander, A. L., Lee, J. E., Lazar, M., & Field, A. S. (2007). Diffusion tensor imaging of the brain. Neurotherapeutics: the Journal of the American Society for Experimental NeuroTherapeutics, 4, 316-329. https://doi.org/10.1016/j.nurt.2007.05.011
Arab, A., Ruda-Kucerova, J., Minsterova, A., Drazanova, E., Szabó, N., Starcuk, Z., Rektorova, I., & Khairnar, A. (2019). Diffusion kurtosis imaging detects microstructural changes in a methamphetamine-induced mouse model of Parkinson’s disease. Neurotoxicity Research, 36, 724-735. https://doi.org/10.1007/s12640-019-00068-0
Arab, A., Wojna-Pelczar, A., Khairnar, A., Szabó, N., & Ruda-Kucerova, J. (2018). Principles of diffusion kurtosis imaging and its role in early diagnosis of neurodegenerative disorders. Brain Research Bulletin, 139, 91-98. https://doi.org/10.1016/j.brainresbull.2018.01.015
Armstrong, M. J., & Okun, M. S. (2020). Diagnosis and treatment of Parkinson disease: A review. JAMA, 323, 548-560. https://doi.org/10.1001/jama.2019.22360
Braak, H., Del Tredici, K., Rüb, U., De Vos, R. A., Steur, E. N. J., & Braak, E. (2003). Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging, 24, 197-211. https://doi.org/10.1016/S0197-4580(02)00065-9
Braeckman, K., Descamps, B., Pieters, L., Vral, A., Caeyenberghs, K., & Vanhove, C. (2019). Dynamic changes in hippocampal diffusion and kurtosis metrics following experimental mTBI correlate with glial reactivity. NeuroImage: Clinical, 2s1, 101669. https://doi.org/10.1016/j.nicl.2019.101669
Chesselet, M.-F., Richter, F., Zhu, C., Magen, I., Watson, M. B., & Subramaniam, S. R. (2012). A progressive mouse model of Parkinson’s disease: The Thy1-aSyn (“Line 61”) mice. Neurotherapeutics: the Journal of the American Society for Experimental NeuroTherapeutics, 9, 297-314. https://doi.org/10.1007/s13311-012-0104-2
Chuhutin, A., Hansen, B., & Jespersen, S. N. (2017b). Precision and accuracy of diffusion kurtosis estimation and the influence of b-value selection. NMR in Biomedicine, 30, e3777. https://doi.org/10.1002/nbm.3777
Cochrane, C. J., & Ebmeier, K. P. (2013). Diffusion tensor imaging in parkinsonian syndromes: A systematic review and meta-analysis. Neurology, 80, 857-864. https://doi.org/10.1212/WNL.0b013e318284070c
Coutu, J.-P., Chen, J. J., Rosas, H. D., & Salat, D. H. (2014). Non-Gaussian water diffusion in aging white matter. Neurobiology of Aging, 35, 1412-1421. https://doi.org/10.1016/j.neurobiolaging.2013.12.001
DeMaagd, G., & Philip, A. (2015). Parkinson’s disease and its management: Part 1: Disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. Pharmacy and Therapeutics, 40, 504.
Fleming, S. M., Salcedo, J., Fernagut, P.-O., Rockenstein, E., Masliah, E., Levine, M. S., & Chesselet, M.-F. (2004). Early and progressive sensorimotor anomalies in mice overexpressing wild-type human α-synuclein. Journal of Neuroscience, 24, 9434-9440.
Fleming, S., Salcedo, J., Hutson, C., Rockenstein, E., Masliah, E., Levine, M., & Chesselet, M.-F. (2006). Behavioral effects of dopaminergic agonists in transgenic mice overexpressing human wildtype α-synuclein. Neuroscience, 142, 1245-1253. https://doi.org/10.1016/j.neuroscience.2006.07.005
Franklin, K. B. J., & Paxinos, G. (2013) Paxinos and Franklin's The mouse brain in stereotaxic coordinates.
Giannelli, M., Toschi, N., Passamonti, L., Mascalchi, M., Diciotti, S., & Tessa, C. (2012). Diffusion kurtosis and diffusion-tensor MR imaging in Parkinson disease. Radiology, 265, 645-646. author reply 646. https://doi.org/10.1148/radiol.12121036
Guan, J., Ma, X., Geng, Y., Qi, D., Shen, Y., Shen, Z., Chen, Y., Wu, E., & Wu, R. (2019). Diffusion kurtosis imaging for detection of early brain changes in Parkinson's disease. Frontiers in Neurology, 10, 1285. https://doi.org/10.3389/fneur.2019.01285
Guglielmetti, C., Veraart, J., Roelant, E., Mai, Z., Daans, J., Van Audekerke, J., Naeyaert, M., Vanhoutte, G., Delgado y Palacios, R., Praet, J., Fieremans, E., Ponsaerts, P., Sijbers, J., Van der Linden, A., & Verhoye, M. (2016). Diffusion kurtosis imaging probes cortical alterations and white matter pathology following cuprizone induced demyelination and spontaneous remyelination. NeuroImage, 125, 363-377. https://doi.org/10.1016/j.neuroimage.2015.10.052
Hansen, B., Khan, A. R., Shemesh, N., Lund, T. E., Sangill, R., Eskildsen, S. F., Østergaard, L., & Jespersen, S. N. (2017). White matter biomarkers from fast protocols using axially symmetric diffusion kurtosis imaging. NMR in Biomedicine, 30, e3741. https://doi.org/10.1002/nbm.3741
Heinzel, S., Berg, D., Gasser, T., Chen, H., Yao, C., Postuma, R. B., & MDS Task Force on the Definition of Parkinson's Disease. (2019). Update of the MDS research criteria for prodromal Parkinson's disease. Movement Disorders, 34, 1464-1470. https://doi.org/10.1002/mds.27802
Ito, K., Sasaki, M., Ohtsuka, C., Yokosawa, S., Harada, T., Uwano, I., Yamashita, F., Higuchi, S., & Terayama, Y. (2015). Differentiation among parkinsonisms using quantitative diffusion kurtosis imaging. NeuroReport, 26, 267-272. https://doi.org/10.1097/WNR.0000000000000341
Jenkinson, M., & Smith, S. (2001). A global optimisation method for robust affine registration of brain images. Medical Image Analysis, 5, 143-156. https://doi.org/10.1016/S1361-8415(01)00036-6
Jensen, J. H., & Helpern, J. A. (2010). MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR in Biomedicine, 23, 698-710.
Jensen, J. H., Helpern, J. A., Ramani, A., Lu, H., & Kaczynski, K. (2005). Diffusional kurtosis imaging: The quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 53, 1432-1440.
Kalia, L. V., Kalia, S. K., & Lang, A. E. (2015). Disease-modifying strategies for Parkinson's disease. Movement Disorders, 30, 1442-1450.
Kamagata, K., Tomiyama, H., Hatano, T., Motoi, Y., Abe, O., Shimoji, K., Kamiya, K., Suzuki, M., Hori, M., Yoshida, M., Hattori, N., & Aoki, S. (2014). A preliminary diffusional kurtosis imaging study of Parkinson disease: Comparison with conventional diffusion tensor imaging. Neuroradiology, 56, 251-258. https://doi.org/10.1007/s00234-014-1327-1
Kamagata, K., Zalesky, A., Hatano, T., Ueda, R., Di Biase, M. A., Okuzumi, A., Shimoji, K., Hori, M., Caeyenberghs, K., Pantelis, C., & Hattori, N. (2017). Gray matter abnormalities in idiopathic P arkinson's disease: Evaluation by diffusional kurtosis imaging and neurite orientation dispersion and density imaging. Human Brain Mapping, 38, 3704-3722.
Khairnar, A., Latta, P., Drazanova, E., Ruda-Kucerova, J., Szabó, N., Arab, A., Hutter-Paier, B., Havas, D., Windisch, M., Sulcova, A., Starcuk, Z., & Rektorova, I. (2015). Diffusion kurtosis imaging detects microstructural alterations in brain of α-synuclein overexpressing transgenic mouse model of Parkinson’s disease: A pilot study. Neurotoxicity Research, 28, 281-289. https://doi.org/10.1007/s12640-015-9537-9
Khairnar, A., Ruda-Kucerova, J., Drazanova, E., Szabó, N., Latta, P., Arab, A., Hutter-Paier, B., Havas, D., Windisch, M., Sulcova, A., Starcuk, Z., Király, A., & Rektorova, I. (2016). Late-stage α-synuclein accumulation in TNWT-61 mouse model of Parkinson's disease detected by diffusion kurtosis imaging. Journal of Neurochemistry, 136, 1259-1269. https://doi.org/10.1111/jnc.13500
Khairnar, A., Ruda-Kucerova, J., Szabó, N., Drazanova, E., Arab, A., Hutter-Paier, B., Neddens, J., Latta, P., Starcuk, Z., & Rektorova, I. (2017). Early and progressive microstructural brain changes in mice overexpressing human α-Synuclein detected by diffusion kurtosis imaging. Brain, Behavior, and Immunity, 61, 197-208. https://doi.org/10.1016/j.bbi.2016.11.027
Kim, S. T., Son, H. J., Choi, J. H., Ji, I. J., & Hwang, O. (2010). Vertical grid test and modified horizontal grid test are sensitive methods for evaluating motor dysfunctions in the MPTP mouse model of Parkinson's disease. Brain Research, 1306, 176-183. https://doi.org/10.1016/j.brainres.2009.09.103
Krajcovicova, L., Klobusiakova, P., & Rektorova, I. (2019). Gray matter changes in Parkinson’s and Alzheimer’s disease and relation to cognition. Current Neurology and Neuroscience Reports, 19, 1-9. https://doi.org/10.1007/s11910-019-1006-z
Kunst, J., Marecek, R., Klobusiakova, P., Balazova, Z., Anderkova, L., Nemcova-Elfmarkova, N., & Rektorova, I. (2019). Patterns of grey matter atrophy at different stages of Parkinson’s and Alzheimer’s diseases and relation to cognition. Brain Topography, 32, 142-160. https://doi.org/10.1007/s10548-018-0675-2
Langley, J., Huddleston, D. E., Merritt, M., Chen, X., McMurray, R., Silver, M., Factor, S. A., & Hu, X. (2016). Diffusion tensor imaging of the substantia nigra in Parkinson's disease revisited. Human Brain Mapping, 37, 2547-2556. https://doi.org/10.1002/hbm.23192
Leemans, A., Jeurissen, B., Sijbers, J., & Jones, D. K. (2009). ExploreDTI: A graphical toolbox for processing, analyzing, and visualizing diffusion MR data. In 17th Annual Meeting of Intl Soc Mag Reson Med, Hawaii, USA.
Li, J.-Y., Englund, E., Holton, J. L., Soulet, D., Hagell, P., Lees, A. J., Lashley, T., Quinn, N. P., Rehncrona, S., Björklund, A., Widner, H., Revesz, T., Lindvall, O., & Brundin, P. (2008). Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nature Medicine, 14, 501-503. https://doi.org/10.1038/nm1746
Loane, C., Politis, M., Kefalopoulou, Z., Valle-Guzman, N., Paul, G., Widner, H., Foltynie, T., Barker, R. A., & Piccini, P. (2016). Aberrant nigral diffusion in Parkinson's disease: A longitudinal diffusion tensor imaging study. Movement Disorders, 31, 1020-1026. https://doi.org/10.1002/mds.26606
Oertel, W. H. (2017). Recent advances in treating Parkinson’s disease. F1000Research, 6, 260. https://doi.org/10.12688/f1000research.10100.1
Pan-Montojo, F., Anichtchik, O., Dening, Y., Knells, L., Pursche, S., Jung, R., Jackson, S., Gille, G., Spillantini, M. G., Reichmann, H., & Funk, R. (2010). Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice. PloS One, 5(1), e8762.. https://doi.org/10.1371/journal.pone.0008762
Pan-Montojo, F., Schwarz, M., Winkler, C., Arnhold, M., O'Sullivan, G. A., Pal, A., Said, J., Marsico, G., Verbavatz, J.-M., Rodrigo-Angulo, M., Gille, G., Funk, R. H. W., & Reichmann, H. (2012). Environmental toxins trigger PD-like progression via increased alpha-synuclein release from enteric neurons in mice. Scientific Reports, 2, 1-12. https://doi.org/10.1038/srep00898
Postuma, R. B., Berg, D., Stern, M., Poewe, W., Olanow, C. W., Oertel, W., Obeso, J., Marek, K., Litvan, I., Lang, A. E., Halliday, G., Goetz, C. G., Gasser, T., Dubois, B., Chan, P., Bloem, B. R., Adler, C. H., & Deuschl, G. (2015). MDS clinical diagnostic criteria for Parkinson's disease. Movement Disorders, 30, 1591-1601. https://doi.org/10.1002/mds.26424
Praet, J., Manyakov, N. V., Muchene, L., Mai, Z., Terzopoulos, V., de Backer, S., Torremans, A. N., Guns, P.-J., Van De Casteele, T., Bottelbergs, A., Van Broeck, B., Sijbers, J., Smeets, D., Shkedy, Z., Bijnens, L., Pemberton, D. J., Schmidt, M. E., Van der Linden, A., & Verhoye, M. (2018). Diffusion kurtosis imaging allows the early detection and longitudinal follow-up of amyloid-β-induced pathology. Alzheimer's Research & Therapy, 10, 1-16. https://doi.org/10.1186/s13195-017-0329-8
Rey, N. L., Petit, G. H., Bousset, L., Melki, R., & Brundin, P. (2013). Transfer of human α-synuclein from the olfactory bulb to interconnected brain regions in mice. Acta Neuropathologica, 126, 555-573. https://doi.org/10.1007/s00401-013-1160-3
Rosenfeld, C. S., & Ferguson, S. A. (2014). Barnes maze testing strategies with small and large rodent models. Journal of Visualized Experiments, 84, e51194. https://doi.org/10.3791/51194
Ruda-Kucerova, J., Amchova, P., Machalova, A., Pistovcakova, J., & Sulcova, A. (2018). Prenatal exposure to modafinil alters locomotor behaviour and leucocyte phagocytosis in mice. Psychiatria Danubina, 30, 356-366. https://doi.org/10.24869/psyd.2018.356
Ruda-Kucerova, J., Babinska, Z., Amchova, P., Stark, T., Drago, F., Sulcova, A., & Micale, V. (2017). Reactivity to addictive drugs in the methylazoxymethanol (MAM) model of schizophrenia in male and female rats. The World Journal of Biological Psychiatry, 18, 129-142. https://doi.org/10.1080/15622975.2016.1190032
Ruda-Kucerova, J., Pistovcakova, J., Amchova, P., Sulcova, A., & Machalova, A. (2018). Prenatal exposure to modafinil alters behavioural response to methamphetamine in adult male mice. International Journal of Developmental Neuroscience, 67, 37-45. https://doi.org/10.1016/j.ijdevneu.2018.03.005
Rudrapatna, S. U., Wieloch, T., Beirup, K., Ruscher, K., Mol, W., Yanev, P., Leemans, A., van der Toorn, A., & Dijkhuizen, R. M. (2014). Can diffusion kurtosis imaging improve the sensitivity and specificity of detecting microstructural alterations in brain tissue chronically after experimental stroke? Comparisons with diffusion tensor imaging and histology. NeuroImage, 97, 363-373. https://doi.org/10.1016/j.neuroimage.2014.04.013
Saeed, U., Compagnone, J., Aviv, R. I., Strafella, A. P., Black, S. E., Lang, A. E., & Masellis, M. (2017). Imaging biomarkers in Parkinson’s disease and Parkinsonian syndromes: Current and emerging concepts. Translational Neurodegeneration, 6, 1-25. https://doi.org/10.1186/s40035-017-0076-6
Schintu, N., Frau, L., Ibba, M., Garau, A., Carboni, E., & Carta, A. R. (2009). Progressive dopaminergic degeneration in the chronic MPTPp mouse model of Parkinson’s disease. Neurotoxicity Research, 16, 127-139. https://doi.org/10.1007/s12640-009-9061-x
Segura-Aguilar, J., Paris, I., Muñoz, P., Ferrari, E., Zecca, L., & Zucca, F. A. (2014). Protective and toxic roles of dopamine in Parkinson's disease. Journal of Neurochemistry, 129, 898-915. https://doi.org/10.1111/jnc.12686
Sejnoha Minsterova, A., Klobusiakova, P., Pies, A., Galaz, Z., Mekyska, J., Novakova, L., Elfmarkova, N. N., & Rektorova, I. (2020). Patterns of diffusion kurtosis changes in Parkinson's disease subtypes. Parkinsonism & Related Disorders, 81, 96-102. https://doi.org/10.1016/j.parkreldis.2020.10.032
Sierra, A., Laitinen, T., Lehtimäki, K., Rieppo, L., Pitkänen, A., & Gröhn, O. (2011). Diffusion tensor MRI with tract-based spatial statistics and histology reveals undiscovered lesioned areas in kainate model of epilepsy in rat. Brain Structure and Function, 216, 123-135. https://doi.org/10.1007/s00429-010-0299-0
Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17, 143-155. https://doi.org/10.1002/hbm.10062
Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., Watkins, K. E., Ciccarelli, O., Cader, M. Z., Matthews, P. M., & Behrens, T. E. J. (2006). Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. NeuroImage, 31, 1487-1505. https://doi.org/10.1016/j.neuroimage.2006.02.024
Spillantini, M. G., Schmidt, M. L., Lee, V.-M.-Y., Trojanowski, J. Q., Jakes, R., & Goedert, M. (1997). α-Synuclein in Lewy bodies. Nature, 388, 839-840. https://doi.org/10.1038/42166
Suidan, G. L., Duerschmied, D., Dillon, G. M., Vanderhorst, V., Hampton, T. G., Wong, S. L., Voorhees, J. R., & Wagner, D. D. (2013). Lack of tryptophan hydroxylase-1 in mice results in gait abnormalities. PLoS One, 8, e59032. https://doi.org/10.1371/journal.pone.0059032
Sunyer, B., Patil, S., Höger, H., & Lubec, G. (2007). Barnes maze, a useful task to assess spatial reference memory in the mice. Protocol Exchange. Retrieved June 19, 2016 from http://www.nature.com/protocolexchange/protocols/349
Surova, Y., Nilsson, M., Lampinen, B., Lätt, J., Hall, S., Widner, H., van Westen, D., & Hansson, O. (2018). Alteration of putaminal fractional anisotropy in Parkinson’s disease: A longitudinal diffusion kurtosis imaging study. Neuroradiology, 60, 247-254. https://doi.org/10.1007/s00234-017-1971-3
Vaillancourt, D., Spraker, M., Prodoehl, J., Abraham, I., Corcos, D., Zhou, X., Comella, C., & Little, D. (2009). High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology, 72, 1378-1384. https://doi.org/10.1212/01.wnl.0000340982.01727.6e
van Rumund, A., Green, A. J., Fairfoul, G., Esselink, R. A., Bloem, B. R., & Verbeek, M. M. (2019). α-Synuclein real-time quaking-induced conversion in the cerebrospinal fluid of uncertain cases of parkinsonism. Annals of Neurology, 85, 777-781. https://doi.org/10.1002/ana.25447
Vanhoutte, G., Pereson, S., Delgado y Palacios, R., Guns, P.-J., Asselbergh, B., Veraart, J., Sijbers, J., Verhoye, M., Van Broeckhoven, C., & Van der Linden, A. (2013). Diffusion kurtosis imaging to detect amyloidosis in an APP/PS1 mouse model for Alzheimer's disease. Magnetic Resonance in Medicine, 69, 1115-1121. https://doi.org/10.1002/mrm.24680
Wang, J.-J., Lin, W.-Y., Lu, C.-S., Weng, Y.-H., Ng, S.-H., Wang, C.-H., Liu, H.-L., Hsieh, R.-H., Wan, Y.-L., & Wai, Y.-Y. (2011). Parkinson disease: Diagnostic utility of diffusion kurtosis imaging. Radiology, 261, 210-217. https://doi.org/10.1148/radiol.11102277
Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., & Nichols, T. E. (2014). Permutation inference for the general linear model. NeuroImage, 92, 381-397. https://doi.org/10.1016/j.neuroimage.2014.01.060
Yang, Y., Tang, B.-S., & Guo, J.-F. (2016). Parkinson’s disease and cognitive impairment. Parkinson's Disease, 2016, 1-8.
Zhang, G., Zhang, C., Zhang, Y., Wang, Y., Nie, K., Zhang, B., Xie, H., Lu, J., & Wang, L. (2017). The effects of striatal silent lacunar infarction on the substantia nigra and movement disorders in Parkinson's disease: A follow-up study. Parkinsonism & Related Disorders, 43, 33-37. https://doi.org/10.1016/j.parkreldis.2017.06.020
Zhang, G., Zhang, Y., Zhang, C., Wang, Y., Ma, G., Nie, K., Xie, H., Liu, J., & Wang, L. (2015). Diffusion kurtosis imaging of substantia nigra is a sensitive method for early diagnosis and disease evaluation in Parkinson’s disease. Parkinson's Disease, 2015, 1-5.
Toxicity of extracellular alpha-synuclein is independent of intracellular alpha-synuclein