A brief review of vertebrate sex evolution with a pledge for integrative research: towards 'sexomics'
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S., přehledy
PubMed
34247497
PubMed Central
PMC8293304
DOI
10.1098/rstb.2020.0426
Knihovny.cz E-zdroje
- Klíčová slova
- evolution, genomics, reproduction, sex chromosomes, sex determination, vertebrates,
- MeSH
- biologická evoluce * MeSH
- délka genomu * MeSH
- molekulární evoluce MeSH
- obratlovci genetika MeSH
- ovarium růst a vývoj MeSH
- pohlavní chromozomy genetika MeSH
- procesy určující pohlaví * MeSH
- sexuální diferenciace genetika MeSH
- testis růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Triggers and biological processes controlling male or female gonadal differentiation vary in vertebrates, with sex determination (SD) governed by environmental factors or simple to complex genetic mechanisms that evolved repeatedly and independently in various groups. Here, we review sex evolution across major clades of vertebrates with information on SD, sexual development and reproductive modes. We offer an up-to-date review of divergence times, species diversity, genomic resources, genome size, occurrence and nature of polyploids, SD systems, sex chromosomes, SD genes, dosage compensation and sex-biased gene expression. Advances in sequencing technologies now enable us to study the evolution of SD at broader evolutionary scales, and we now hope to pursue a sexomics integrative research initiative across vertebrates. The vertebrate sexome comprises interdisciplinary and integrated information on sexual differentiation, development and reproduction at all biological levels, from genomes, transcriptomes and proteomes, to the organs involved in sexual and sex-specific processes, including gonads, secondary sex organs and those with transcriptional sex-bias. The sexome also includes ontogenetic and behavioural aspects of sexual differentiation, including malfunction and impairment of SD, sexual differentiation and fertility. Starting from data generated by high-throughput approaches, we encourage others to contribute expertise to building understanding of the sexomes of many key vertebrate species. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Amphibian Research Center Hiroshima University Higashi Hiroshima 739 8526 Japan
Department of Biological Sciences Marquette University Milwaukee WI 53201 USA
Department of Cell Biology Duke University Medical Center Durham NC 27710 USA
Department of Ecology Evolution and Organismal Biology Iowa State University Ames IA 50011 USA
Department of Ecology Faculty of Science Charles University Viničná 7 12844 Prague Czech Republic
Department of Neuroscience and Developmental Biology University of Vienna A 1090 Vienna Austria
Developmental Biochemistry Biocenter University of Würzburg 97074 Würzburg Germany
INRAE LPGP 35000 Rennes France
Institut des Sciences de l'Evolution de Montpellier ISEM UMR 5554 Montpellier France
School of Biological Sciences University of East Anglia Norwich Research Park Norwich NR4 7TU UK
Zobrazit více v PubMed
Matson CK, Zarkower D. 2012. Sex and the singular DM domain: insights into sexual regulation, evolution and plasticity. Nat. Rev. Genet. 13, 163-174. (10.1038/nrg3161) PubMed DOI PMC
Bachtrog DKirkpatrick M, Mank JE, Mcdaniel SF, Pires JC, Rice W, Valenzuela N. 2014. Sex determination: why so many ways of doing it? PLoS Biol. 12, e1001899. (10.1016/j.tig.2011.05.005) PubMed DOI PMC
Herpin A, Schartl M. 2015. Plasticity of gene-regulatory networks controlling sex determination: of masters, slaves, usual suspects, newcomers, and usurpators. EMBO Rep. 16, 1260-1274. (10.15252/embr.201540667) PubMed DOI PMC
Pan Q, Anderson J, Bertho S, Herpin A, Wilson C, Postlethwait JH, Schartl M, Guiguen Y. 2016. Vertebrate sex-determining genes play musical chairs. C. R. Biol. 339, 258-262. (10.1016/j.crvi.2016.05.010) PubMed DOI PMC
Johnson Pokorná M, Kratochvíl L. 2016. What was the ancestral sex-determining mechanism in amniote vertebrates? Biol. Rev. 91, 1-12. (10.1111/brv.12156) PubMed DOI
Straková B, Rovatsos M, Kubička L, Kratochvíl L. 2020. Evolution of sex determination in amniotes: Did stress and sequential hermaphroditism produce environmental determination? BioEssays 42, e2000050. (10.1002/bies.202000050) PubMed DOI
Capel B. 2017. Vertebrate sex determination: evolutionary plasticity of a fundamental switch. Nat. Rev. Genet. 18, 675-689. (10.1038/nrg.2017.60) PubMed DOI
Schartl M. 2004. Sex chromosome evolution in non-mammalian vertebrates. Curr. Opin. Genet. Dev. 14, 634-641. (10.1016/j.gde.2004.09.005) PubMed DOI
Perrin N. 2009. Sex reversal: a fountain of youth for sex chromosomes? Evolution 63, 3043-3049. (10.1111/j.1558-5646.2009.00837.x) PubMed DOI
Cauret CMS, Gansauge M-T, Tupper AS, Furman BLS, Knytl M, Song XY, Greenbaum E, Meyer M, Evans BJ. 2020. Developmental systems drift and the drivers of sex chromosome evolution. Mol. Biol. Evol. 37, 799-810. (10.1093/molbev/msz268) PubMed DOI
Beukeboom LW, Perrin N. 2014. The evolution of sex determination. Oxford, UK: Oxford University Press.
van Doorn, GS, Kirkpatrick M. 2007. Turnover of sex chromosomes induced by sexual conflict. Nature 449, 909-912. (10.1038/nature06178) PubMed DOI
Ross JA, Urton JR, Boland J, Shapiro MD, Peichel CL. 2009. Turnover of sex chromosomes in the stickleback fishes (Gasterosteidae). PLoS Genet. 5, e1000391. (10.1371/journal.pgen.1000391) PubMed DOI PMC
O'Meally D, Ezaz T, Georges A, Sarre SD, Graves JAM. 2012. Are some chromosomes particularly good at sex? Insights from amniotes. Chromosome Res. 20, 7-19. (10.1007/s10577-011-9266-8) PubMed DOI
Jeffries DL, et al. 2018. A rapid rate of sex-chromosome turnover and nonrandom transitions in true frogs. Nat. Comm. 9, 4088. (10.1038/s41467-018-06517-2) PubMed DOI PMC
Montiel EE, Badenhorst D, Lee LS, Literman R, Trifonov V, Valenzuela N. 2016. Cytogenetic insights into the evolution of chromosomes and sex determination reveal striking homology of turtle sex chromosomes to amphibian autosomes. Cytogenet. Genome Res. 148, 292-304. (10.1159/000447478) PubMed DOI
Kratochvíl L, Gamble T, Rovatsos M. 2021. Sex chromosome evolution among amniotes: is the origin of sex chromosomes non-random? Phil. Trans. R. Soc. B 376, 20200108. (10.1098/rstb.2020.0108) PubMed DOI PMC
Pokorná M, Kratochvíl L. 2009. Phylogeny of sex-determining mechanisms in squamate reptiles: are sex chromosomes an evolutionary trap? Zool. J. Linn. Soc. 156, 168-183. (10.1111/j.1096-3642.2008.00481.x) DOI
Leonard J.L. 2018. The evolution of sexual systems in animals. In Transitions between sexual systems (ed. Leonard J), pp. 1-58. Cham, Switzerland: Springer.
Ponnikas S, Sigeman H, Abbott JK, Hansson B. 2018. Why do sex chromosomes stop recombining? Trends Genet. 34, 492-503. (10.1016/j.tig.2018.04.001) PubMed DOI
Meisel RP. 2020. Evolution of sex determination and sex chromosomes: a novel alternative paradigm. BioEssays 42, 1900212. (10.1002/bies.20200152) PubMed DOI
Lenormand T, Fyon F, Sun E, Roze D. 2020. Sex chromosome degeneration by regulatory evolution. Curr. Biol. 30, 3001– 3006. (10.1016/j.cub.2020.05.052) PubMed DOI
Charlesworth B, Charlesworth D. 2020. Evolution: a new idea about the degeneration of Y and W chromosomes. Curr. Biol. 30, R871-R896. (10.1016/j.cub.2020.06.008) PubMed DOI
Charnov EL, Bull J. 1977. When is sex environmentally determined? Nature 266, 828-830. (10.1038/266828a0). PubMed DOI
Warner D, Shine R. 2008. The adaptive significance of temperature-dependent sex determination in a reptile. Nature 451, 566-568. (10.1038/nature06519). PubMed DOI
Organ CL, Janes DE, Meade A, Pagel M. 2009. Genotypic sex determination enabled adaptive radiations of extinct marine reptiles. Nature 461, 389-392 (10.1038/nature08350) PubMed DOI
Geffroy B, Douhard M. 2019. The adaptive sex in stressful environments. Trends Ecol. Evol. 34, 628-640 (10.1016/j.tree.2019.02.012) PubMed DOI
Putnam N, et al. 2008. The amphioxus genome and the evolution of the chordate karyotype. Nature 453, 1064-1071. (10.1038/nature06967) PubMed DOI
Simakov O, et al. 2020. Deeply conserved synteny resolves early events in vertebrate evolution. Nat. Ecol. Evol. 4, 820-830 (10.1038/s41559-020-1156-z) PubMed DOI PMC
Satoh N, Rokhsar D, Nishikawa T.. 2014. Chordate evolution and the three-phylum system. Proc. R. Soc. B 281, 20141729. (10.1098/rspb.2014.1729) PubMed DOI PMC
Shi C, Wu X, Su L, Shang C, Li X, Wang Y, Li G. 2020. A ZZ/ZW sex chromosome system in cephalochordate amphioxus. Genetics 214, 617-622. (10.1534/genetics.120.303051) PubMed DOI PMC
Howell WM, Boschung HT. 1971. Chromosomes of the lancelet, Branchiostoma floridae (order amphioxi). Experientia 27, 1495-1496. (10.1007/BF02154315). PubMed DOI
Meyer A, Van de Peer Y.. 2005. From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). BioEssays 27, 937-945. (10.1002/bies.20293) PubMed DOI
Sacerdot C, Louis A, Bon C, Berthelot C, Crollius HR. 2018. Chromosome evolution at the origin of the ancestral vertebrate genome. Genome Biol. 19, 166. (10.1186/s13059-018-1559-1) PubMed DOI PMC
Sawada H, Shirae-Kurabayashi M.. 2020. Chapter 9. Self- and nonself-recognition of gametes in Ascidians. In Reproduction in aquatic animals (eds Yoshida M, Asturiano J), pp. 179-192. Singapore: Springer.
Holland LZ, Gorsky G, Fenaux R. 1988. Fertilization in Oikopleura dioica (Tunicata, Appendicularia): acrosome reaction, cortical reaction and sperm-egg fusion. Zoomorphology 108, 229-243. (10.1007/BF00312223). DOI
Navratilova P, Danks GB, Long A, Butcher S, Manak JR, Thompson EM. 2017. Sex-specific chromatin landscapes in an ultra-compact chordate genome. Epigenetics Chromatin 10, 3. (10.1186/s13072-016-0110-4) PubMed DOI PMC
Henschke N, Everett JD, Anthony J, Richardson AJ, Suthers IM. 2016. Rethinking the role of salps in the ocean. Trends Ecol. Evol. 31, 720-733. (10.1016/j.tree.2016.06.007) PubMed DOI
Holland LZ. 2016. Tunicates. Curr. Biol. 26, R146-R152. (10.1016/j.cub.2015.12.024) PubMed DOI
Smith JJ, et al. . 2013. Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nat. Genet. 45, 415-421. (10.1038/ng.2568) PubMed DOI PMC
Smith JJ, et al. . 2018. The sea lamprey germline genome provides insights into programmed genome rearrangement and vertebrate evolution. Nat. Genet. 50, 270-277 (10.1038/s41588-017-0036-1). PubMed DOI PMC
NCBI. 2020. www.ncbi.nlm.nih.gov (accessed December 2020).
Gregory TR. 2015. Animal genome size database. See http://www.genomesize.com.
Gorbman A. 1990. Sex differentiation in the hagfish Eptatretus stouti. Gen. Comp. Endocrinol. 77, 309-323. (10.1016/0016-6480(90)90315-D) PubMed DOI
Adolfi MC, Nakajima RT, N'Nobrega RH, Schartl M. 2019. Intersex, hermaphroditism, and gonadal plasticity in vertebrates: evolution of the Müllerian duct and Amh/Amhr2 signaling. Annu. Rev. Anim. Biosci. 7, 7.1-7.24. (10.1146/annurev-animal-020518-114955) PubMed DOI
Smith JJ, Timoshevskiy VA, Saraceno C. 2021. Programmed DNA elimination in vertebrates. Annu. Rev. Anim. Biosci. 9, 173-201. (10.1146/annurev-animal-061220-023220) PubMed DOI PMC
Hendon JM, Koester DM, Hoffmayer ER, Driggers WB III, Cicia AM. 2013. Occurrence of an intersexual blacktip shark in the northern Gulf of Mexico, with notes on the standardization of classifications for this condition in elasmobranchs. Mar. Coast. Fish. 5, 174-180. (10.1080/19425120.2013.799618) DOI
Mims SD, Shelton WL, Linhart O, Wang C. 1997. Induced meiotic gynogenesis of paddlefish Polyodon spathula. J. World Aquacult. Soc. 28, 334-343. (10.1111/j.1749-7345.1997.tb00280.x) DOI
Shelton WL, Mims SD. 2012. Evidence for female heterogametic sex determination in paddlefish Polyodon spathula based on gynogenesis. Aquaculture 356–357, 116-118. (10.1016/j.aquaculture.2012.05.029) DOI
Bogart JP. 2019. Unisexual salamanders in the genus Ambystoma. Herpetologica 75, 259-267 (10.1655/Herpetologica-D-19-00043.1) DOI
Macgregor HC, Uzzell TM. 1964. Gynogenesis in salamanders related to Ambystoma jeffersonianum. Science 143, 1043-1045. (10.1126/science.143.3610.1043) PubMed DOI
Olsen MW. 1975. Avian parthenogenesis. Agricultural Research Service USDA, ARS-NE 65, 1-82.
Ramachandran R, McDaniel CD. 2018. Parthenogenesis in birds: a review. Reproduction 155, R245-R257. (10.1530/REP-17-0728) PubMed DOI
Bickham JW, Hanks BG, Hale DW, Martin JE. 1993. Ploidy diversity and the production of balanced gametes in male twist-necked turtles (Platemys platycephala). Copeia 1993, 723 (10.2307/1447233) DOI
Jørgensen JM, Lomholt JP, Weber RE, Malte H. 1998. The biology of hagfishes. London, UK: Chapman & Hall.
Powell ML, Kavanaugh SI, Sower SA. 2005. Current knowledge of hagfish reproduction: implications for fisheries management. Integr. Comp. Biol. 45: 158-165. (10.1093/icb/45.1.158) PubMed DOI
Johnson NS, Swink WD, Brenden TO.. 2017. Field study suggests that sex determination in sea lamprey is directly influenced by larval growth rate. Proc. R. Soc. B 284, 20170262. (10.1098/rspb.2017.0262) PubMed DOI PMC
Docker MF, Beamish FWH, Yasmin T, Bryan MB, Khan A.. 2019. Chapter 1: the lamprey gonad. In Lampreys: biology, conservation and control (ed. Docker MF), pp. 1-186. Dordrecht, The Netherlands: Springer.
Irisarri I, et al. 2017. Phylotranscriptomic consolidation of the jawed vertebrate timetree. Nat. Ecol. Evol. 1, 1370-1378. (10.1038/s41559-017-0240-5) PubMed DOI PMC
Hara Y, et al. . 2018. Shark genomes provide insights into elasmobranch evolution and the origin of vertebrates. Nat. Ecol. Evol. 2, 1761-1771. (10.1038/s41559-018-0673-5) PubMed DOI
King BL, Gillis JA, Carlisle HR, Dahn RD. 2011. A natural deletion of the HoxC cluster in elasmobranch fishes. Science 334, 1517. (10.1126/science.1210912) PubMed DOI PMC
Venkatesh B, et al. . 2014. Elephant shark genome provides unique insights into gnathostome evolution. Nature 505, 174-179. (10.1038/nature12826) PubMed DOI PMC
Musick JA, Ellis J. 2005. Reproductive evolution of chondrichthyans. In Reproductive biology and phylogeny of chondrichthyans (ed. Hamlett WC), pp. 45-79. Enfield, NH: Scientific Publication.
Dudgeon CL, Coulton L, Bone R, Ovenden JR, Thomas S. 2017. Switch from sexual to parthenogenetic reproduction in a zebra shark. Sci. Rep. 7, 40537. (10.1038/srep40537) PubMed DOI PMC
Maddock MB, Schwartz FJ. 1996. Elasmobranch cytogenetics: methods and sex chromosomes. Bull. Mar. Sci. 58, 147-155.
Donahue WHA. 1974. A karyotypic study of three species of rajiformes (Chondrichthyes, Pisces). Can. J. Genet. Cytol. 16, 203-211. (10.1139/g74-020) PubMed DOI
da Cruz VP, Shimabukuro-Dias CK, Oliveira C, Fausto Foresti F.. 2011. Karyotype description and evidence of multiple sex chromosome system X1X1X2X2/X1X2Y in Potamotrygon aff. motoro and P. falkneri (Chondrichthyes: Potamotrygonidae) in the upper Paraná River basin, Brazil. Neotrop. Ichthyol. 9, 201-208. (10.1590/S1679-62252011000100020) DOI
Valentim FCS, Porto JIR, Bertollo LAC, Gross MC, Feldberg E. 2013. XX/X0, a rare sex chromosome system in Potamotrygon freshwater stingray from the Amazon Basin, Brazil. Genetica 141, 381-387. (10.1007/s10709-013-9737-2) PubMed DOI
O'Shaughnessy KL, Dahn RD, Cohn MJ. 2015. Molecular development of chondrichthyan claspers and the evolution of copulatory organs. Nat. Comm. 6, 6698. (10.1038/ncomms7698) PubMed DOI PMC
Braasch I, Postlethwait JH.. 2012. Polyploidy in fish and the teleost genome duplication. In Polyploidy and genome evolution (eds Soltis P, Soltis D), pp. 341-383. Berlin, Germany: Springer.
Hughes LC, et al. . 2018. Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. Proc. Natl Acad. Sci. USA 24, 6249-6254. (10.1073/pnas.1719358115) PubMed DOI PMC
Raincrow JD, Dewar K, Stocsits C, Prohaska SJ, Amemiya CT, Stadler PF, Chiu CH. 2011. Hox clusters of the bichir (Actinopterygii, Polypterus senegalus) highlight unique patterns of sequence evolution in gnathostome phylogeny. J. Exp. Zool. (Mol. Dev. Evol.) 316, 451-464. (10.1002/jez.b.21420) PubMed DOI
Morescalchi MA, Stingoa V, Capriglione T. 2011. Cytogenetic analysis in Polypterus ornatipinnis (Actinopterygii, Cladistia, Polypteridae) and 5S rDNA. Mar. Genomics 4, 25-31. (10.1016/j.margen.2010.12.002) PubMed DOI
Morescalchi MA, Liguori I, Rocco L, Archimandritis A, Stingo V. 2008. Karyotypic characterization and genomic organization of the 5S rDNA in Polypterus senegalus (Osteichthyes, Polypteridae). Genetica 132, 179-186. (10.1007/s10709-007-9160-7) PubMed DOI
Morescalchi MA, Liguori I, Rocco L, Stingo V. 2007. Karyotypic characterization and genomic organization of the 5S rDNA in Erpetoichthys calabaricus (Osteichthyes, Polypteridae). Genetica 131, 209-216. (10.1007/s10709-006-9119-0) PubMed DOI
Hochleithner M, Gessner J. 2001. The sturgeons and paddlefishes of the world — biology and aquaculture. Aquatech. Publ. 106, 81-82.
Du K, et al. . 2020. The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization. Nat. Ecol. Evol. 4, 841-852. (10.1038/s41559-020-1166-x) PubMed DOI PMC
Havelka M, Hulák M, Bailie D, Prodöhl P, Flajšhans M. 2013. Extensive genome duplications in sturgeons: new evidence from microsatellite data. J. Appl. Ichthyol. 29, 704-708. (10.1111/jai.12224) DOI
Cheng P, et al. . 2020. The American paddlefish genome provides novel insights into chromosomal evolution and bone mineralization in early vertebrates. Mol. Biol. Evol. 38, 1595-1607. (10.1093/molbev/msaa326) PubMed DOI PMC
Romanenko SA, et al. 2019. Segmental paleotetraploidy revealed in sterlet (Acipenser ruthenus) genome by chromosome painting. Mol. Cytogenet. 8, 90. (10.1186/s13039-015-0194-8) PubMed DOI PMC
Saito T, Pšenička M, Goto R, Adachi S, Inoue K, Arai K, Yamaha E. 2014. The origin and migration of primordial germ cells in sturgeons. PLoS ONE 9, e86861. (10.1371/journal.pone.0086861) PubMed DOI PMC
Keyvanshokooh S, Gharaei A. 2010. A review of sex determination and searches for sex-specific markers in sturgeon. Aquacult. Res. 41, e1-e7. (10.1111/j.1365-2109.2009.02463.x) DOI
Fopp-Bayat D, Kolman R, Woznicki P. 2007. Induction of meiotic gynogenesis in sterlet (Acipenser ruthenus) using UV-irradiated bester sperm. Aquaculture 264, 54-58. (10.1016/j.aquaculture.2006.12.006) DOI
Kuhl H, et al. . 2021. A 180 Myr-old female-specific genome region in sturgeon reveals the oldest known vertebrate sex determining system with undifferentiated sex chromosomes. Phil. Trans. R. Soc. B 376, 20200089. (10.1098/rstb.2020.0089) PubMed DOI PMC
Majtánová Z, Symonová R, Arias-Rodriguez L, Sallan L, Ráb P. 2017. ‘Holostei versus halecostomi’ problem: insight from cytogenetics of ancient nonteleost actinopterygian fish, bowfin Amia calva. J. Exp. Zool. (Mol. Dev. Evol.) 328B, 620-628. (10.1002/jez.b.22720) PubMed DOI
Nelson JS, Grande TC, Wilson MVH. 2016. Fishes of the world, 5th edn. New York, NY: John Wiley and Sons.
Braasch I, et al. . 2016. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat. Genet. 48, 427-437. (10.1038/ng.3526) PubMed DOI PMC
Thompson A, et al. 2020. The genome of the bowfin (Amia calva) illuminates the developmental evolution of ray-finned fish. Preprint. (10.21203/rs.3.rs-92055/v1) DOI
Herrington SJ, Hettiger KN, Heist EJ, Keeney DB. 2008. Hybridization between longnose and alligator gars in captivity, with comments on possible gar hybridization in nature. Transact. Am. Fish. Soc. 137, 158-164. (10.1577/T07-044.1) DOI
McGinn Daniels KL. 1993. Reproductive biology of the bowfin, Amia calva Linnaeus, from the green bottom wildlife management area, Cabell County, West Virginia. Theses, Dissertations Capstones 309. (https://mds.marshall.edu/etd/309)
Froese R, Pauly D (eds). 2019. FishBase World Wide Web electronic publication. See www.fishbase.org.
Hasley A, Chavez S, Danilchik M, Wühr M, Pelegri F.. 2017. Vertebrate embryonic cleavage pattern determination. In Vertebrate development. Advances in experimental medicine and biology, vol. 953 (eds Pelegri F, Danilchik M, Sutherland A), pp. 117-171. Cham, Switzerland: Springer. PubMed PMC
Smith C, Wootton RJ. 2016. The remarkable diversity of teleost fishes. Fish Fish. 17, 1208-1215. (10.1111/faf.12116) DOI
Avise JC. 2008. Clonality. The genetics, ecology and evolution of sexual abstinence in vertebrate animals, pp. 1-237, New York, NY: Oxford University Press.
Warren W, et al. 2018. Clonal polymorphism and high heterozygosity in the celibate genome of the Amazon molly. Nat. Ecol. Evol. 2, 669-679. (10.1038/s41559-018-0473-y) PubMed DOI PMC
Avise JC, Mank JE. 2009. Evolutionary perspectives on hermaphroditism in fishes. Sex. Dev. 3, 152-163. (10.1159/000223079) PubMed DOI
Fricke H, Fricke S. 1977. Monogamy and sex change by aggressive dominance in coral reef fish. Nature 266, 830-832. (10.1038/266830a0) PubMed DOI
Todd EV, et al. . 2019. Stress, novel sex genes, and epigenetic reprogramming orchestrate socially controlled sex change. Sci. Adv. 5, eaaw7006. (10.1126/sciadv.aaw7006) PubMed DOI PMC
Erisman BE, Petersen CW, Hastings PA, Warner RR. 2013. Phylogenetic perspectives on the evolution of functional hermaphroditism in teleost fishes. Integ. Comp. Biol. 53, 736-754. (10.1093/icb/ict077) PubMed DOI
Hart MK, Kratter AW, Crowley PH. 2016. Partner fidelity and reciprocal investments in the mating system of a simultaneous hermaphrodite. Behav. Ecol. 27, 1471-1479. (10.1093/beheco/arw065) DOI
Kanamori A, Sugita Y, Yuasa Y, Suzuki T, Kawamura K. 2016. A Genetic map for the only self-fertilizing vertebrate. G3: Genes Genom. Genet. 4, 1095-1106. (10.1534/g3.115.022699) PubMed DOI PMC
Liu H, Todd E, Lokman M, Laamm MS, Godwin JR, Gemmell NJ. 2017. Sexual plasticity: a fishy tale. Mol. Reprod. Dev. 84, 171-194. (10.1002/mrd.22691) PubMed DOI
Baroiller JF, D'Cotta H. 2016. The reversible sex of gonochoristic fish: insights and consequences. Sex. Dev. 10, 242-266. (10.1159/000452362) PubMed DOI
Martyniuk CJ, Feswick A, Munkittrick KR, Dreier DA, Denslow ND. 2020. Twenty years of transcriptomics, 17alpha-ethinylestradiol, and fish. Gen. Comp. Endocrinol. 286, 113325. (10.1016/j.ygcen.2019.113325) PubMed DOI PMC
Nishimura T, Tanaka M. 2016. The mechanism of germline sex determination in vertebrates. Biol. Reprod. 95, 30. (10.1095/biolreprod.115.138271) PubMed DOI
Nakamura S, Watakabe I, Nishimura T, Picard J-Y, Toyoda A, Taniguchi Y, Di Clemente N, Tanaka M. 2012. Hyperproliferation of mitotically active germ cells due to defective anti-Müllerian hormone signaling mediates sex reversal in medaka. Development 139, 2283-2287. (10.1242/dev.076307) PubMed DOI
Penman DJ, Piferrer F. 2008. Fish gonadogenesis. Part I: genetic and environmental mechanisms of sex determination. Rev. Fisher. Sci. 16(Suppl. 1), 16-34. (10.1080/10641260802324610) DOI
Ser JR, Roberts RB, Kocher T. 2010. Multiple interacting loci control sex determination in lake Malawi cichlids. Evolution 64, 486-501. (10.1111/j.1558-5646.2009.00871.x) PubMed DOI PMC
Moore EC, Roberts RB. 2013. Polygenic sex determination. Curr. Biol. 23, R510-R513. (10.1016/j.cub.2013.04.004) PubMed DOI
Sember A, Nguyen P, Perez MF, Altmanová M, Ráb P, Cioffi M de B. 2021. Multiple sex chromosomes in teleost fishes from a cytogenetic perspective: state of the art and future challenges. Phil. Trans. R. Soc. B 376, 20200098. (10.1098/rstb.2020.0098) PubMed DOI PMC
Yamamoto Y, Zhang Y, Sarida M, Hattori RS, Strüssmann CA. 2014. Coexistence of genotypic and temperature-dependent sex determination in pejerrey Odontesthes bonariensis. PLoS ONE 9, e102574. (10.1371/journal.pone.0102574) PubMed DOI PMC
Guiguen Y, Fostier A, Herpin A. 2019. Sex determination and differentiation in fish. In Sex control in aquaculture. vol. 1 (eds Wang H-P, Pifferrer F, Chen S-L, Shen Z-G), pp. 35-63. Hoboken, NJ: John Wiley & Sons.
Yano A, et al. 2012. An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss. Curr. Biol. 22, 1423-1428. (10.1016/j.cub.2012.05.045) PubMed DOI
Rafati N, et al. . 2020. Reconstruction of the birth of a male sex chromosome present in Atlantic herring. Proc. Natl Acad. Sci. USA 117, 24 359-24 368. (10.1073/pnas.2009925117) PubMed DOI PMC
Kamiya T, et al. 2012. A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (fugu). PLoS Genet. 8, e1002798. (10.1371/journal.pgen.1002798) PubMed DOI PMC
Lamatsch DK, Stöck M.. 2009. Sperm-dependent parthenogenesis and hybridogenesis in teleost fishes. Chapter 19. In Lost sex – the evolutionary biology of parthenogenesis (eds Schoen I, Martens K, van Dijk P), pp. 399-432. Berlin, Germany: Springer.
Biscotti M, Gerdol M, Canapa A, Forconi M, Olmo E, Pallavicini A, Barucca M, Schartl M. 2016. The lungfish transcriptome: a glimpse into molecular evolution events at the transition from water to land. Sci. Rep. 6, 21571. (10.1038/srep21571) PubMed DOI PMC
Pouyaud L, Wirjoatmodjo S, Rachmatika I, Tjakrawidjaja A, Hadiaty R, Hadie W. 1999. Une nouvelle espèce de coelacanthe. Preuves génétiques et morphologiques. C. R. Acad. Sci. 322, 261-267. (10.1016/S0764-4469(99)80061-4) PubMed DOI
Smith CL, Rand CS, Schaeffer B, Atz JW. 1975. Latimeria, the living coelacanth, is ovoviviparous. Science 190, 1105-1106. (10.1126/science.190.4219.1105) DOI
Wourms JP, Atz JW, Stribling MD.. 1991. Viviparity and the maternal-embryonic relationship in the coelacanth Latimeria chalumnae. In The biology of Latimeria chalumnae and evolution of coelacanths. Developments in environmental biology of fishes, vol. 12 (eds Musick JA, Bruton MN, Balon EK), pp. 225-248. Dordrecht, The Netherlands: Springer.
Amemiya CT, et al. . 2013. The African coelacanth genome provides insights into tetrapod evolution. Nature 496, 311-316. (10.1038/nature12027) PubMed DOI PMC
Forconi M, et al. 2013. Characterization of sex determination and sex differentiation genes in Latimeria. PLoS ONE 8, e56006. (10.1371/journal.pone.0056006) PubMed DOI PMC
Biscotti MA, Adolfi MC, Barucca M, Forconi M, Pallavicini A, Gerdol M, Canapa A, Costantini M. 2018. A comparative view on sex differentiation and gametogenesis genes in lungfish and coelacanths. Genome Biol. Evol. 10, 1430-1444. (10.1093/gbe/evy101) PubMed DOI PMC
Brinkmann H, Venkatesh B, Brenner S, Meyer A. 2004. Nuclear protein-coding genes support lungfish and not the coelacanth as the closest living relatives of land vertebrates. Proc. Natl Acad. Sci. USA 101, 4900-4905. (10.1073/pnas.0400609101) PubMed DOI PMC
Kershaw F, Joss GH, Joss JMP. 2009. Early development in sarcopterygian fishes. In Development of non-teleost fishes (eds Kunz YW, Luer CA, Kapoor BG), pp. 275-289. Enfield, NJ: Scientific Publication.
Meyer A, et al. . 2021. Giant lungfish genome elucidates the conquest of land by vertebrates. Nature 590, 284-299. (10.1038/s41586-021-03198-8). PubMed DOI PMC
Wang K, et al. . 2021. African lungfish genome sheds light on the vertebrate water-to-land transition. Cell 184, 1362-1376. (10.1016/j.cell.2021.01.047) PubMed DOI
Betancur RR, et al. 2013. The tree of life and a new classification of bony fishes. PLoS Curr. Tree Life 1. (10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288) PubMed DOI PMC
Pyron A. 2011. Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. Syst. Biol. 60, 4466-4481. (10.1093/sysbio/syr047) PubMed DOI
Bossuyt F, Roelants K. 2009. Anura. In The timetree of life (eds Hedges SB, Kumar S), pp. 357-364. New York, NY: Oxford University Press.
Pyron RA, Wiens JJ. 2011. A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol. Phylogenet. Evol. 61, 543-583. (10.1016/j.ympev.2011.06.012) PubMed DOI
Feng Y-J, Blackburn DC, Liang D, Hillis DM, Wake DB, Cannatella DC, Zhang P. 2017. Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous–Paleogene boundary. Proc. Natl Acad. Sci. USA 114, E5864-E5870. (10.1073/pnas.1704632114) PubMed DOI PMC
San Mauro D, Gower DJ, Müller H, Loader SP, Zardoya R, Nussbaum RA, Wilkinson M. 2014. Life-history evolution and mitogenomic phylogeny of caecilian amphibians. Mol. Phylogenet. Evol. 73, 177-189. (10.1016/j.ympev.2014.01.009) PubMed DOI
Dünker N, Wake MH, Olson WM. 2000. Embryonic and larval development in the caecilian Ichthyophis kohtaoensis (Amphibia, Gymnophiona) a staging table. J. Morph. 243, 3-34. (10.1002/(SICI)1097-4687(200001)243:1<3::AID-JMOR2>3.0.CO;2-D) PubMed DOI
AmphibiaWeb. See www.amphibiaweb.org (accessed December 2020).
Burgin CJ, Colella JP, Kahn PL, Upham NS. 2018. How many species of mammals are there? J. Mammal. 99, 1-11. (10.1093/jmammal/gyz052) DOI
Mammal Diversity Database. 2020. Mammal Diversity Database (Version 1.2) (Dataset). Zenodo. Accessed December 2020. (10.5281/zenodo.4139818) DOI
Liedtke HC, Gower DJ, Wilkinson M, Gomez-Mestre I. 2018. Macroevolutionary shift in the size of amphibian genomes and the role of life history and climate. Nat. Ecol. Evol. 2, 1792-1799. (10.1038/s41559-018-0674-4) PubMed DOI
Li J, Yu H, Wang W, Fu C, Zhang W, Han F, Wu H. 2019. Genomic and transcriptomic insights into molecular basis of sexually dimorphic nuptial spines in Leptobrachium leishanense. Nat. Comm. 10, 5551. (10.1038/s41467-019-13531-5) PubMed DOI PMC
Gomez-Mestre I, Pyron RA, Wiens JJ. 2011. Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs. Evolution 66, 3687-3700. (10.1111/j.1558-5646.2012.01715.x) PubMed DOI
Buckley D, Alcobendas M, Garcia-Paris M, Wake MH. 2007. Heterochrony, cannibalism, and the evolution of viviparity in Salamandra salamandra. Evol. Dev. 9, 105-115. (10.1111/j.1525-142X.2006.00141.x) PubMed DOI
Wake MH. 1977. The reproductive biology of caecilians. An evolutionary perspective. In The reproductive biology of amphibians (eds Taylor DH, Guttman SI), pp. 73-100. Oxford, OH: Miami University.
Exbrayat J-M. 2009. Oogenesis and female reproductive system in Gymnophiona. In Reproduction in amphibians (ed. Ogielska M), pp. 305-342. Enfield, NH: Scientific Publication.
Wake MH. 1989. Phylogenesis of direct development and viviparity in vertebrates. In Complex organismal functions: integration and evolution in vertebrates (eds Wake D, Roth G), pp. 235-250. New York, NY: John Wiley & Sons Ltd.
Hoffman A, et al. . 2015. Genetic diversity and distribution patterns of diploid and polyploid hybrid water frog populations (Pelophylax esculentus complex) across Europe. Mol. Ecol. 24, 4371-4391. (10.1111/mec.13325) PubMed DOI
Schmid M, Evans BJ, Bogart JP. 2015. Polyploidy in amphibia. Cytogenet. Genome Res. 145, 315-330. (10.1159/000431388) PubMed DOI
Grafe TU, Linsenmair KE. 1989. Protogynous sex change in the reed frog (Hyperolius viridiflavus). Copeia 1989, 1024-1029. (10.2307/1445989) DOI
Schmid M, Nanda I, Steinlein C, Kausch K, Epplen JT, Haaf T. 1991. Sex-determining mechanisms and sex chromosomes in amphibia. In Amphibian cytogenetics and evolution (eds Green DM, Sessions SK), pp. 393-430. San Diego, CA: Academic Press.
Eggert C. 2004. Sex determination: the amphibian models. Reprod. Nutr. Dev. 44, 539-549. (10.1051/rnd:2004062) PubMed DOI
Hillis DM, Green DM. 1990. Evolutionary changes of heterogametic sex in the phylogenetic history of amphibians. J. Evol. Biol. 3, 49-64. (10.1046/j.1420-9101.1990.3010049.x) DOI
Ito M. 2018. Sex determination and differentiation in frogs. Reproductive and developmental strategies. Diversity and commonality in animals (eds Kobayashi K, Kitano T, Iwao Y, Kondo M), pp. 349-366. Tokyo, Japan: Springer.
Nakamura M. 2010. The mechanism of sex determination in vertebrates: are sex steroids the key-factor? J. Exp. Zool . 313A, 381-398. (10.1002/jez.616) PubMed DOI
Green DM. 1988. Cytogenetics of the endemic New Zealand frog, Leiopelma hochstetteri: extraordinary supernumerary chromosome variation and a unique sex-chromosome system. Chromosoma 97, 55-77. (10.1007/BF00331795) PubMed DOI
Roco AS, Olmstead AW, Degitz SJ, Amano T, Zimmerman LB, Bullejos M. 2015. Coexistence of Y, W, and Z sex chromosomes in Xenopus tropicalis. Proc. Natl Acad. Sci. USA 112, E4752-E4761. (10.1073/pnas.1505291112) PubMed DOI PMC
Gazoni T, Haddad CFB, Narimatsu H, Cabral-de-Mello DC, Lyra ML, Parise-Maltempi PP. 2018. More sex chromosomes than autosomes in the Amazonian frog Leptodactylus pentadactylus. Chromosoma 127, 269-278. (10.1007/s00412-018-0663-z) PubMed DOI
Schmid M, Steinlein C. 2001. Sex chromosomes, sex-linked genes, and sex determination in the vertebrate class Amphibia. In Genes and mechanisms in vertebrate sex determination (eds Scherer G, Schmid M), pp. 143-176. Basel, Switzerland: Birkhäuser Verlag, PubMed
Sessions SK, Bizjak Malib L, Green DM, Trifonov V, Ferguson-Smith M. 2016. Evidence for sex chromosome turnover in proteid salamanders. Cytogenet. Genome Res. 148, 305-313. (10.1159/000446882) PubMed DOI
Denton RD, Kudra RS, Malcom JW, Du Preez L, Malone JH.. 2018. The African bullfrog (Pyxicephalus adspersus) genome unites the two ancestral ingredients for making vertebrate sex chromosomes. BioRxiv (10.1101/329847) DOI
Furman BLS, Cauret CMS, Knytl M, Song X-Y, Premachandra T, Ofori-Boateng C, Jordan DC, Horb ME, Evans BJ. 2020. A frog with three sex chromosomes that co-mingle together in nature: Xenopus tropicalis has a degenerate W and a Y that evolved from a Z chromosome. PLoS Genet. 16, e1009121. (10.1371/journal.pgen.1009121) PubMed DOI PMC
Schmid M, Steinlein C. 2018. Chromosome banding in Amphibia. XXXVII. Y-Autosome translocations in Anura. Cytogenet. Genome Res. 154, 153-180. (10.1159/000487907) PubMed DOI
Wallace H. 1994. The balanced lethal system of crested newts. Heredity 73, 41-46. (10.1038/hdy.1994.96) DOI
Sessions SK, Macgregor HC, Schmid M, Haaf T. 1988. Cytology, embryology and evolution of the developmental arrest syndrome in newts of the genus Triturus (Caudata: Salamandridae). J. Exp. Zool. 248, 321-334. (10.1002/jez.1402480311) PubMed DOI
Green DM, Sessions SK (eds). 1991. Amphibian cytogenetics and evolution. San Diego, CA: Academic Press.
Keinath, MC, Timoshevskaya N, Timoshevskiy VA, Voss R, Smith JJ. 2018. Miniscule differences between sex chromosomes in the giant genome of a salamander. Sci. Rep. 8, 17882. (10.1038/s41598-018-36209-2) PubMed DOI PMC
Smith JJ, Voss SR. 2009. Amphibian sex determination: segregation and linkage analysis using members of the tiger salamander species complex (Ambystoma mexicanum and A. t. tigrinum). Heredity 102, 542– 548. (10.1038/hdy.2009.15). PubMed DOI PMC
Hu Q, Chang C, Wang Q, Tian H, Qiao Z, Wang L, Meng Y, Xu C, Xiao H. 2019. Genome-wide RAD sequencing to identify a sex-specific marker in Chinese giant salamander Andrias davidianus . BMC Genomics 20, 415. (10.1186/s12864-019-5771-5) PubMed DOI PMC
Hime PM, Briggler JT, Reece JS, Weisrock DW. 2019. Genomic data reveal conserved female heterogamety in giant salamanders with gigantic nuclear genomes. G3: Genes Genom. Genet. 9, 3467-3476. (10.1534/g3.119.400556) PubMed DOI PMC
Stöck M, et al. 2019. Shedding light on a secretive Tertiary urodelean relict: Hynobiid salamanders (Paradactylodon persicus s.l.) from Iran, illuminated by phylogeographic, developmental, and transcriptomic data. Genes 10, 306 (10.3390/genes10040306) PubMed DOI PMC
Biscotti MA, Carducci F, Barucca M, Gerdol M, Pallavicini A, Schartl M, Canapa A, Adolfi MC. 2020. The transcriptome of the newt Cynops orientalis provides new insights into evolution and function of sexual gene networks in sarcopterygians. Sci. Rep. 10, 5445. (10.1038/s41598-020-62408-x) PubMed DOI PMC
Venu G, Venkatachalaiah G. 2005. Karyology of two species of caecilians (Caeciliidae: Gymnophiona): evolution through tandem fusion and sex chromosome dimorphism. Caryologia 58, 140-151. (10.1080/00087114.2005.10589444) DOI
Evans BJ, Pyron RA, Wiens JJ. 2012. Polyploidization and sex chromosome evolution in amphibians. In Polyploidy and genome evolution (eds Soltis PS, Soltis DE), pp. 385-410. Berlin, Germany: Springer.
Stöck M, et al. 2011. Ever-young sex chromosomes in European tree frogs. PLoS Biol. 9, e1001062. (10.1371/journal.pbio.1001062) PubMed DOI PMC
Rodrigues N, Studer T, Dufresnes C, Perrin N. 2018. Sex-chromosome recombination in common frogs brings water to the fountain-of-youth. Mol. Biol. Evol. 35, 942-948. (10.1093/molbev/msy057) PubMed DOI
Stöck M, Savary R, Betto-Colliard C, Biollay S, Jourdan-Pineau H, Perrin N. 2013. Low rates of X-Y recombination, not turnovers, account for homomorphic sex chromosomes in several diploid species of Palearctic green toads (Bufo viridis subgroup). J. Evol. Biol. 3, 674-682. PubMed
Tamschick S, Rozenblut-Kościsty B, Ogielska M, Lehmann A, Lymberakis P, Hoffmann F, Lutz I, Kloas W, Stöck M. 2016. Sex reversal assessments reveal different vulnerability to endocrine disruption between deeply diverged anuran lineages. Sci. Rep. 6, 23825. (10.1038/srep23825) PubMed DOI PMC
Ponse K. 1941. La proportion sexuelle dans la descendance issue des œufs produits par l'organe de Bidder des crapauds femelles. Rev. Suisse Zool. 48, 541-544.
Ponse K. 1949. La différentiation du sexe et l'intersexualité chez les vértebrés. Lausanne, Switzerland: F. Rouge.
Olmstead AW, Lindberg-Livingston A, Degitz SJ. 2010. Genotyping sex in the amphibian, Xenopus (Silurana) tropicalis, for endocrine disruptor bioassays. Aquatic Toxicol. 98, 60-66. (10.1016/j.aquatox.2010.01.012) PubMed DOI
Bewick AJ, Anderson DW, Evans BJ. 2013. A large pseudoautosomal region on the sex chromosomes of the frog Silurana tropicalis. Genome Biol. Evol. 5, 1087-1098. (10.1093/gbe/evt073) PubMed DOI PMC
Mitros T, et al. . 2019. A chromosome-scale genome assembly and dense genetic map for Xenopus tropicalis. Dev. Biol. 452, 8-20. (10.1016/j.ydbio.2019.03.015) PubMed DOI
Yoshimoto S, et al. . 2008. A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proc. Natl Acad. Sci. USA 105, 2469-2474. (10.1073/pnas.0712244105) PubMed DOI PMC
Bewick AJ, Anderson DW, Evans BJ. 2011. Evolution of the closely related, sex-related genes dm-w and Dmrt1 in African clawed frogs (Xenopus). Evolution 65, 698-712. (10.1111/j.1558-5646.2010.01163.x) PubMed DOI
Furman BLS, Evans BJ. 2016. Sequential turnovers of sex chromosomes in African clawed frogs (Xenopus) suggest some genomic regions are good at sex determination. G3: Genes Genom. Genet. 6, 3625-3633. (10.1534/g3.116.033423) PubMed DOI PMC
Mawaribuchi S, et al. 2017. Sex chromosome differentiation and the W- and Z-specific loci in Xenopus laevis. Dev. Biol. 426, 393-400. (10.1016/j.ydbio.2016.06.015) PubMed DOI
Brelsford A, et al. 2013. Homologous sex chromosomes in three deeply divergent anuran species. Evolution 67, 2434-2440. (10.1111/evo.12151) PubMed DOI
Brelsford A, Dufresnes C, Perrin N. 2016. Trans-species variation in Dmrt1 is associated with sex determination in four European tree-frog species. Evolution 70, 840-847. (10.1111/evo.12891) PubMed DOI
Ogita Y, et al. . 2020. Parallel evolution of two dmrt1-derived genes, dmy and dm-W, for vertebrate sex determination. iScience 23, 100757. (10.1016/j.isci.2019.100757) PubMed DOI PMC
Miura I. 2008. An evolutionary witness: the frog Rana rugosa underwent change of heterogametic sex from XY male to ZW female. Sex. Dev. 1, 323-331. (10.1159/000111764) PubMed DOI
Uno Y, Nishida C, Oshima Y, Yokoyama S, Miura I. 2008. Comparative chromosome mapping of sex-linked genes and identification of sex chromosomal rearrangements in the Japanese wrinkled frog (Rana rugosa, Ranidae) with ZW and XY sex chromosome systems. Chromosome Res. 16, 637-647. (10.1007/s10577-008-1217-7) PubMed DOI
Miura I. 2017. Sex determination and sex chromosomes in Amphibia. Sex. Dev. 11, 298-306. (10.1159/000485270) PubMed DOI
Gemmell NJ, et al. . 2020. The tuatara genome: insights into vertebrate evolution from the sole survivor of an ancient reptilian order. Nature 584, 403-409. (10.1038/s41586-020-2561-9) PubMed DOI PMC
Janes DE, et al. 2014. Molecular evolution of Dmrt1 accompanies change of sex-determining mechanisms in reptilia. Biol. Lett. 10, 20140809. (10.1098/rsbl.2014.0809) PubMed DOI PMC
Cree A, Thompson MB, Daugherty CH. 1995. Tuatara sex determination. Nature 375, 543. (10.1038/375543a0) PubMed DOI
Uetz P (ed.) 2020. The Reptile Database. See http://www.reptile-database.org (accessed December 2020).
Zheng Y, Wiens JJ. 2016. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol. Phylogenet. Evol. 94, 537-547. (10.1016/j.ympev.2015.10.009) PubMed DOI
Organ CL, Moreno GR, Edwards SV. 2008. Three tiers of genome evolution in reptiles. Integr. Comp. Biol. 48, 494-504. (10.1093/icb/icn046) PubMed DOI PMC
Shine R. 1983. Reptilian reproductive modes: the oviparity-viviparity continuum. Herpetologica 39, 1-8.
Darevsky IS. 1958. Natural parthenogenesis in certain subspecies of rock lizards (Lacerta saxicola Eversmann). Dokl. Akad. Nauk SSSR Biol. Sci. 122, 730-732.
Kearney M, Fujita MK, Ridenour J. 2009. Lost sex in the reptiles: constraints and correlations. In Lost sex: the evolutionary biology of parthenogenesis (eds Schön I, Martens K, van Dijk P), pp. 447-474. Dordrecht, The Netherlands: Springer.
Fujita MK, Moritz C. 2009. Origin and evolution of parthenogenetic genomes in lizards: current state and future directions. Cytogenet. Genome Res. 127, 261-272. (10.1159/000295177) PubMed DOI
Lutes AA, Baumann DP, Neaves WB, Baumann P.. 2011. Laboratory synthesis of an independently reproducing vertebrate species. Proc. Natl Acad. Sci. USA 108, 9910-9915. (10.1073/pnas.1102811108) PubMed DOI PMC
Moritz C, Bi K.. 2011. Spontaneous speciation by ploidy elevation: laboratory synthesis of a new clonal vertebrate. Proc. Natl Acad. Sci. USA 108, 9733-9734. (10.1073/pnas.1106455108) PubMed DOI PMC
Ezaz T, Sarre SD, O'Meally D, Graves JAM, Georges A. 2009. Sex chromosome evolution in lizards: independent origins and rapid transitions. Cytogenet. Genome Res. 127, 249-260. (10.1159/000300507) PubMed DOI
Valenzuela N. 2018. Causes and consequences of evolutionary transitions in the level of phenotypic plasticity of reptilian sex determination. In Transitions between sexual systems, (ed. Leonard J), pp. 345-363. Cham, Switzerland: Springer.
Gamble T, Coryell J, Ezaz T, Lynch J, Scantlebury DP, Zarkower D. 2015. Restriction site-associated DNA sequencing (RAD-seq) reveals an extraordinary number of transitions among gecko sex-determining systems. Mol. Biol. Evol. 32, 1296-1309. (10.1093/molbev/msv023) PubMed DOI
Kostmann A, Kratochvíl L, Rovatsos M.. 2021. Poorly differentiated XX/XY sex chromosomes are widely shared across skink radiation. Proc. R. Soc. B 288, 20202139. (10.1098/rspb.2020.2139) PubMed DOI PMC
Pokorná M, Altmanová M, Kratochvíl L. 2014. Multiple sex chromosomes in the light of female meiotic drive in amniote vertebrate. Chromosome Res. 22, 35-44. (10.1007/s10577-014-9403-2) PubMed DOI
Pennell MW, Kirkpatrick M, Otto SP, Vamosi JC, Peichel CL, Valenzuela N, Kitano J. 2015. Y Fuse? Sex chromosome fusions in fishes and reptiles. PLoS Genet. 11, e1005237. (10.1371/journal.pgen.1005237) PubMed DOI PMC
Leonard JL. 2013. Williams' paradox and the role of phenotypic plasticity in sexual systems. Integr. Comp. Biol. 53, 671-688. (10.1093/icb/ict088) PubMed DOI
Booth W, Schuett GW. 2016. The emerging phylogenetic pattern of parthenogenesis in snakes. Biol. J. Linn. Soc. Lond. 118, 172-186. (10.1111/bij.12744) DOI
Kratochvíl L, Vukić J, Červenka J, Kubička L, Johnson Pokorná M, Kukačková D, Rovatsos M, Piálek L. 2020. Mixed-sex offspring produced via cryptic parthenogenesis in a lizard. Mol. Ecol. 9, 4118-4127 (10.1111/mec.15617) PubMed DOI
Rovatsos M, Pokorná M, Altmanová M, Kratochvíl L. 2014. Cretaceous park of sex determination: sex chromosomes are conserved across iguanas. Biol. Lett. 10, 20131093. (10.1098/rsbl.2013.1093) PubMed DOI PMC
Rovatsos M, Vukić J, Altmanová M, Johnson Pokorná M, Moravec J, Kratochvíl L. 2016. Conservation of sex chromosomes in lacertid lizards. Mol. Ecol. 25, 3120-3126. PubMed
Augstenová B, Johnson Pokorná M, Altmanová M, Frynta D, Rovatsos M, Kratochvíl L. et al. 2018. ZW, XY, and yet ZW: sex chromosome evolution in snakes even more complicated. Evolution 72, 1701-1707. (10.1111/evo.13543) PubMed DOI
Rovatsos M, Rehák I, Velenský P, Kratochvíl L. 2019. Shared ancient sex chromosomes in varanids, beaded lizards, and alligator lizards. Mol. Biol. Evol. 36, 1113-1120. (10.1093/molbev/msz024) PubMed DOI
Iannucci A, et al. . 2019. Conserved sex chromosomes and karyotype evolution in monitor lizards (Varanidae). Heredity 123, 215-227. (10.1038/s41437-018-0179-6) PubMed DOI PMC
Nielsen SV, Banks JL, Diaz RE Jr, Trainor PA, Gamble T. 2018. Dynamic sex chromosomes in Old World chameleons (Squamata: Chamaeleonidae). J. Evol. Biol. 31, 484-490. (10.1111/jeb.13242) PubMed DOI
Gamble T. 2010. A review of sex determining mechanisms in geckos (Gekkota: Squamata). Sex. Dev. 4, 88-103. (10.1159/000289578) PubMed DOI PMC
Gamble T, Castoe TA, Nielsen SV, Banks JL, Card DC, Schield DR, Schuett GW, Booth W. 2017. The discovery of XY sex chromosomes in a Boa and Python. Curr. Biol. 27, 2148-2153. (10.1016/j.cub.2017.06.010) PubMed DOI
Vicoso B, Emerson JJ, Zektser Y, Mahajan S, Bachtrog D. 2013. Comparative sex chromosome genomics in snakes: differentiation, evolutionary strata, and lack of global dosage compensation. PLoS Biol. 11, e1001643. (10.1371/journal.pbio.1001643) PubMed DOI PMC
Lind AL, et al. . 2019. Genome of the Komodo dragon reveals adaptations in the cardiovascular and chemosensory systems of monitor lizards. Nat. Ecol. Evol. 3, 1241-1252. (10.1038/s41559-019-0945-8) PubMed DOI PMC
Rupp SM, Webster TH, Olney KC, Hutchins ED, Kusumi K, Wilson Sayres MA. 2017. Evolution of dosage compensation in Anolis carolinensis, a reptile with XX/XY chromosomal sex determination. Genome Biol. Evol. 9, 231-240. (10.1093/gbe/evw263) PubMed DOI PMC
Marin R, et al. 2017. Convergent origination of a Drosophila-like dosage compensation mechanism in a reptile lineage. Genome Res. 27, 1974-1987. (10.1101/gr.223727.117) PubMed DOI PMC
Acosta A, et al. 2019. Corytophanids replaced the pleurodont XY system with a new pair of XY chromosomes. Genome Biol. Evol. 9, 666-2677. (10.1093/gbe/evz196) PubMed DOI PMC
Rovatsos M, Gamble T, Nielsen SV, Georges A, Ezaz T, Kratochvíl L. 2021. Do male and female heterogamety really differ in expression regulation? Lack of global dosage balance in pygopodid geckos. Phil. Trans. R. Soc. B 376, 20200102. (10.1098/rstb.2020.0102) PubMed DOI PMC
Nielsen SV, Guzmán-Méndez IA, Gamble T, Blumer M, Pinto BJ, Kratochvíl L, Rovatsos M. 2015. Escaping the evolutionary trap? Sex chromosome turnover in basilisks and related lizards (Corytophanidae: Squamata). Biol. Lett. 15, 20190498. (10.1098/rsbl.2019.0498) PubMed DOI PMC
Wang Z, et al. 2013. The draft genomes of softshell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat. Gen. 45, 701-708. (10.1038/ng.2615) PubMed DOI PMC
Shaffer B, McCartney-Melstad E, Near TJ, Mountac GG, Spinks PQ. 2017. Phylogenomic analyses of 539 highly informative loci dates a fully resolved time tree for the major clades of living turtles (Testudines). Mol. Phylogenet. Evol. 115, 7-15. (10.1016/j.ympev.2017.07.006) PubMed DOI
Kasai F, O'Brien PCM, Ferguson-Smith MA. 2012. Reassessment of genome size in turtle and crocodile based on chromosome measurement by flow karyotyping: close similarity to chicken. Biol. Lett. 8, 631-635. (10.1098/rsbl.2012.0141) PubMed DOI PMC
Kawagoshi T, Nishida C, Matsuda Y. 2012. The origin and differentiation process of X and Y chromosomes of the black marsh turtle (Siebenrockiella crassicollis, Geoemydidae, Testudines). Chromosome Res. 20, 95-110. (10.1007/s10577-011-9267-7) PubMed DOI
Kawagoshi T, Uno Y, Matsubara K, Matsuda Y, Nishida C. 2009. The ZW micro-sex chromosomes of the Chinese soft-shelled turtle (Pelodiscus sinensis, Trionychidae, Testudines) have the same origin as chicken chromosome 15. Cytogenet. Genome Res. 125, 125-131. (10.1159/000227837) PubMed DOI
Badenhorst D, Stanyon R, Engstrom T, Valenzuela N. 2013. A ZZ/ZW microchromosome system in the spiny softshell turtle, Apalone spinifera, reveals an intriguing sex chromosome conservation in Trionychidae. Chromosome Res. 21, 137-147. (10.1007/s10577-013-9343-2) PubMed DOI
Bista B, Valenzuela N. 2020. Turtle insights into the evolution of the reptilian karyotype and the genomic architecture of sex determination. Genes 11, 416 (10.3390/genes11040416) PubMed DOI PMC
Mazzoleni S, et al. . 2020. Sex is determined by XX/XY sex chromosomes in Australasian side-necked turtles (Testudines: Chelidae). Sci. Rep. 10, 4276. (10.1038/s41598-020-61116-w) PubMed DOI PMC
Rovatsos M, Praschag P, Fritz U, Kratochvil L. 2017. Stable Cretaceous sex chromosomes enable molecular sexing in softshell turtles (Testudines: Trionychidae). Sci. Rep. 7, 42150. (10.1038/srep42150) PubMed DOI PMC
Lee LS, Montiel EE, Valenzuela N. 2019. Discovery of putative XX/XY male heterogamety in Emydura subglobosa turtles exposes a novel trajectory of sex chromosome evolution in Emydura. Cytogenet. Genome Res. 158, 160-169. (10.1159/000501891) PubMed DOI
Rovatsos M, Kratochvil L. 2021. Evolution of dosage compensation does not depend on genomic background. Mol. Ecol. 30, 1836-1845. (10.1101/2020.08.14.251801) PubMed DOI
Bista B, Wu Z, Literman R, Valenzuela N. 2021. Thermosensitive sex chromosome dosage compensation in ZZ/ZW softshell turtles, Apalone spinifera. Phil. Trans. R. Soc. B 376, 20200101. (10.1098/rstb.2015.2020.0101) PubMed DOI PMC
Radhakrishnan S, Valenzuela N. 2017. Chromosomal context affects the molecular evolution of sex-linked genes and their autosomal counterparts in turtles and other vertebrates. J. Hered. 108, 720-730. PubMed
Literman R, Burret A, Bista B, Valenzuela N. 2018. Putative independent evolutionary reversals from genotypic to temperature-dependent sex determination are associated with accelerated evolution of sex-determining genes in turtles. J. Mol. Evol. 86, 11-26. PubMed
Eggers S, Ohnesorg T, Sinclair A. 2014. Genetic regulation of mammalian gonad development. Nat. Rev. Endocrinol. 10, 673-683. (10.1038/nrendo.2014.163) PubMed DOI
Smith CA. 2010. Sex determination in birds: a review. Emu 110, 364-377.
Lee LS, Montiel Jiménez EE, Navarro-Domínguez BM, Valenzuela N. 2019. Chromosomal rearrangements during turtle evolution altered the synteny of genes involved in vertebrate sex determination. Cytogenet. Genome Res. 157, 77-88. (10.1159/000497302). PubMed DOI
Czerwinski M, Natarajan A, Barske L, Looger LL, Capel B. 2016. A timecourse analysis of systemic and gonadal effects of temperature on sexual development of the red-eared slider turtle Trachemys scripta elegans. Dev. Biol. 420, 166-177. (10.1016/j.ydbio.2016.09.018) PubMed DOI
Radhakrishnan S, Literman R, Neuwald J, Severin A, Valenzuela N. 2017. Transcriptomic responses to environmental temperature by turtles with temperature-dependent and genotypic sex determination assessed by RNAseq inform the genetic architecture of embryonic gonadal development. PLoS ONE 12, e0172044. (10.1371/journal.pone.0172044) PubMed DOI PMC
Radhakrishnan S, Literman R, Neuwald JL, Valenzuela N. 2018. Thermal response of epigenetic genes informs turtle sex determination with and without sex chromosomes. Sex. Dev. 12, 308-319. (10.1159/000492188) PubMed DOI
Radhakrishnan S, Literman R, Mizoguchi BA, Valenzuela N. 2017. MeDIPseq and nCpG analyses illuminate sexually dimorphic methylation of gonadal development genes with high historic methylation in turtle hatchlings with temperature-dependent sex determination. Epigenetics Chromatin 10, 1-16. (10.1186/s13072-017-0136-2) PubMed DOI PMC
Ge C, Ye J, Weber C, Sun W, Zhang H, Zhou Y, Cai C, Qian G, Capel B. 2018. The histone demethylase Kdm6b regulates temperature-dependent sex determination in a turtle species. Science 360, 645-648. (10.1126/science.aap8328) PubMed DOI
Weber C, Capel B. 2021. Sex determination without sex chromosomes. Phil. Trans. R. Soc. B 376, 20200109. (10.1098/rstb.2020.0109) PubMed DOI PMC
Chiari Y, Cahais V, Galtier N, Delsuc F. 2012. Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biol. 10, 1-14. (10.1186/1741-7007-10-65) PubMed DOI PMC
Green RE, Braun EL, Armstrong J, Earl D, Nguyen N. 2014. Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science 346, 1254449. (10.1126/science.1254449) PubMed DOI PMC
Brochu CA. 2003. Phylogenetic approaches toward crocodylian history. Annu. Rev. Earth Planet. Sci. 31, 357-397. (10.1146/annurev.earth.31.100901.141308) DOI
Wan Q-H, et al. 2013. Genome analysis and signature discovery for diving and sensory properties of the endangered Chinese alligator. Cell Res. 23, 1091-1105. (10.1038/cr.2013.104) PubMed DOI PMC
Lewis JL, FitzSimmons NN, Jamerlan ML, Buchan JC, Grigg GC. 2013. Mating systems and multiple paternity in the estuarine crocodile (Crocodylus porosus). J. Herpetol. 47, 24-33. (10.1670/10-303) DOI
González EJ, Martínez-López M, Morales-Garduza MA, García-Morales R, Charruau P, Gallardo-Cruz JA. 2019. The sex-determination pattern in crocodilians: a systematic review of three decades of research. J. Anim. Ecol. 88, 1417-1427. (10.1111/1365-2656.13037) PubMed DOI
Smith CA, Joss JMP. 1994. Steroidogenic enzyme activity and ovarian differentiation in the saltwater crocodile, Crocodylus porosus. Gen. Comp. Endocrinol. 93, 232-245. (10.1006/gcen.1994.1027) PubMed DOI
Smith CA, Elf PK, Lang JW, Joss JMP. 1995. Aromatase enzyme activity during gonadal sex differentiation in alligator embryos. Differentiation 58, 281-290. (10.1046/j.1432-0436.1995.5840281.x) DOI
Yatsu R, et al. 2016. RNA-seq analysis of the gonadal transcriptome during Alligator mississippiensis temperature-dependent sex determination and differentiation. BMC Genomics 17, 1. (10.1186/s12864-016-2396-9) PubMed DOI PMC
Deveson IW, Holleley CE, Blackburn J, Graves JAM, Mattick JS, Waters PD, Georges A. 2017. Differential intron retention in Jumonji chromatin modifier genes is implicated in reptile temperature-dependent sex determination. Sci. Adv. 3, e1700731. (10.1126/sciadv.1700731) PubMed DOI PMC
Lin JQ, Zhou Q, Yang HQ, Fang LM, Tang K-Y, Sun L, Wan Q-H, Fang S-G. 2018. Molecular mechanism of temperature-dependent sex determination and differentiation in Chinese alligator revealed by developmental transcriptome profiling. Sci. Bull. 63, 209-212. (10.1016/j.scib.2018.01.004) PubMed DOI
AVIBASE. 2020. See https://avibase.bsc-eoc.org/avibase.jsp?lang=EN.
Zhang G. 2018. The bird's-eye view on chromosome evolution. Genome Biol. 19, 201. (10.1186/s13059-018-1585-z) PubMed DOI PMC
Feng S, et al. . 2020. Dense sampling of bird diversity increases power of comparative genomics. Nature 587, 252-257. (10.1038/s41586-020-2873-9) PubMed DOI PMC
Fridolfsson AK, et al. . 1998. Evolution of the avian sex chromosomes from an ancestral pair of autosomes. Proc. Natl Acad. Sci. USA 95, 8147-8152. (10.1073/pnas.95.14.8147) PubMed DOI PMC
Hirst CE, Major AT, Ayes KL, Brown RJ, Mariette M, Sackton TB, Smith CA. 2017. Sex reversal and comparative data undermine the W chromosome and support Z-linked Dmrt1 as the regulator of gonadal sex differentiation in birds. Endocrinology 158, 2970-2987. (10.1210/en.2017-00316) PubMed DOI
Estermann MA, Williams S, Hirst CE, Roly, ZY, Serralbo O, Adhikari D, Powell D, Major AT, Smith CA. 2020. Insights into gonadal sex differentiation provided by single-cell transcriptomics in the chicken embryo. Cell Rep. 31, 107491. (10.1016/j.celrep.2020.03.055) PubMed DOI
Smith CA, Roeszler KN, Ohnesorg T, Cummins DM, Farlie FG, Doran TJ, Sinclair AH. 2009. The avian Z-linked gene Dmrt1 is required for male sex determination in the chicken. Nature 461, 267-271. (10.1038/nature08298) PubMed DOI
Zhou Q, Zhang J, Bachtrog D, An N, Huang Q, Jarvis ED, Gilbert MTP, Zhang G. 2014. Complex evolutionary trajectories of sex chromosomes across bird taxa. Science 346, 1246338. (10.1126/science.1246338) PubMed DOI PMC
Shetty S, Kirby P, Zarkower D, Graves JAM. 2002. Dmrt1 in a ratite bird: evidence for a role in sex determination and discovery of a putative regulatory element. Cytogenet. Genome Res. 99, 245-251. (10.1159/000071600) PubMed DOI
Yazdi HP, Ellegren H. 2019. A genetic map of ostrich Z chromosome and the role of inversions in avian sex chromosome evolution. Genome Biol. Evol. 10, 2049-2060. (10.1093/gbe/evy163) PubMed DOI PMC
Vicoso B, Kaiser VB, Bachtrog D. 2013. Sex-biased gene expression at homomorphic sex chromosomes in emus and its implication for sex chromosome evolution. Proc. Natl Acad. Sci. USA 110, 6453-6458. (10.1073/pnas.1217027110) PubMed DOI PMC
Ioannidis J, et al. 2020. Primary sex determination in birds depends on DMRT1 dosage, but gonadal sex does not determine secondary sexual characteristics. Proc. Natl Acad. Sci. USA 118, e2020909118. (10.1073/pnas.2020909118) DOI
Zhao D, McBride D, Nandi S, McQueen HA, McGrew MJ. 2010. Somatic sex identity is cell autonomous in the chicken. Nature 464, 237-242. (10.1038/nature08852) PubMed DOI PMC
Lin M, Thorne MH, Martin IC, Sheldon BL, Jones RC. 1995. Development of the gonads in the triploid (ZZW and ZZZ) fowl, Gallus domesticus, and comparison with normal diploid males (ZZ) and females (ZW). Reprod. Fertility Dev. 7, 1185-1197. (10.1071/RD9951185) PubMed DOI
Graves JAM. 2003. Sex and death in birds: a model of dosage compensation that predicts lethality of sex chromosome an-euploids. Cytogenet. Genome Res. 101, 278-282. (10.1159/000074349) PubMed DOI
Kuroiwa A. 2017. Sex-determining mechanism in avians. In Avian reproduction. Advances in experimental medicine and biology, vol. 1001 (ed. Sasanami T), pp. 19-31. Singapore: Springer. PubMed
Clinton M. 1998. Sex determination and gonadal development: a bird's eye view. J. Exp. Zool. 281, 457-465. PubMed
Bloom SE. 1972. Chromosome abnormalities in chicken (Gallus domesticus) embryos: types, frequencies and phenotypic effects. Chromosoma 37, 309-326. (10.1007/bf00319873) PubMed DOI
Otto SP, Whitton J. 2000. Polyploidy: incidence and evolution. Annu. Rev. Genet. 34, 401-437. (10.1146/annurev.genet.34.1.401) PubMed DOI
Gunski RJ, Cañedo AD, Garnero ADV, Ledesma MA, Coria N, Montalti D, Degrandi TM. 2017. Multiple sex chromosome system in penguins (Pygoscelis, Spheniscidae). Comp. Cytogenet. 11, 541-552. (10.3897/CompCytogen.v11i3.13795) PubMed DOI PMC
Pala I, Naurin S, Stervander M, Hasselquist D, Bensch S, Hansson B. 2012. Evidence of a neo-sex chromosome in birds. Heredity 108, 264-272. (10.1038/hdy.2011.70) PubMed DOI PMC
Pala I, Hasselquist D, Bensch S, Hansson B. 2012. Patterns of molecular evolution of an avian neo-sex chromosome. Mol. Biol. Evol. 12, 3741-3754. (10.1093/molbev/mss177) PubMed DOI
Sigeman H, Ponnikas S, Chauhan P, Dierickx E, Brooke MD, Hansson B. 2019. Repeated sex chromosome evolution in vertebrates supported by expanded avian sex chromosomes. Proc. R. Soc. B 286, 20192051. (10.1098/rspb.2019.2051) PubMed DOI PMC
Gan HM, Falk S, Morales HE, Austin CM, Sunnucks P, Pavlova A. 2019. Genomic evidence of neo-sex chromosomes in the eastern yellow robin. GigaScience 8, giz111. (10.1093/gigascience/giz111) PubMed DOI PMC
Graves JAM. 2016. Evolution of vertebrate sex chromosomes and dosage compensation. Nat. Rev. Gen. 17, 33-46. (10.1038/nrg.2015.2) PubMed DOI
Yazdi HP, Silva WTAF, Suh A. 2020. Why do some sex chromosomes degenerate more slowly than others? The odd case of ratite sex chromosomes. Genes 11, 1153. (10.3390/genes11101153) PubMed DOI PMC
Bellott D, et al. 2017. Avian W and mammalian Y chromosomes convergently retained dosage-sensitive regulators. Nat. Genet. 49, 387-394. (10.1038/ng.3778) PubMed DOI PMC
Xu L, Zhou Q. 2020. The female-specific W chromosomes of birds have conserved gene contents but are not feminized. Genes 11, 1126. (10.3390/genes11101126) PubMed DOI PMC
Uebbing S, Künstner A, Makinen H, Ellegren H. 2013. Transcriptome sequencing reveals the character of incomplete dosage compensation across multiple tissues in flycatchers. Genome Biol. Evol. 5, 1555-1566. (10.1093/gbe/evt114) PubMed DOI PMC
Itoh Y, et al. 2007. Dosage compensation is less effective in birds than in mammals. J. Biol. 6, 2. (10.1186/jbiol53) PubMed DOI PMC
Irwin DE. 2018. Sex chromosomes and speciation in birds and other ZW systems. Mol. Ecol. 27, 3831-3851. (10.1111/mec.14537) PubMed DOI
Warnefors M, Mossinger K, Halbert J, Studer T, VandeBerg JL. 2017. Sex-biased microRNA expression in mammals and birds reveals underlying regulatory mechanisms and a role in dosage compensation. Genome Res. 27, 1961-1973. (10.1101/gr.225391.117) PubMed DOI PMC
Graves JAM. 2014. Avian sex, sex chromosomes, and dosage compensation in the age of genomics. Chromosome Res. 22, 45-57. (10.1007/s10577-014-9409-9) PubMed DOI
Xu L, Wa Sin SY, Grayson P, Edwards SV, Sackton TB. 2019. Evolutionary dynamics of sex chromosomes of paleognathous birds. Genome Biol. Evol. 11, 2376-2390. (10.1093/gbe/evz154) PubMed DOI PMC
Kapusta A, Suh A. 2016. Evolution of bird genomes - a transposon's-eye view. Annu. NY Acad. Sci. 1389, 164-185. (10.1111/nyas.13295) PubMed DOI
Peona V, et al. 2021. The avian W chromosome is a refugium for endogenous retroviruses with likely effects on female-biased mutational load and genetic incompatibilities. Phil. Trans. R. Soc. B 376, 20200186. (10.1098/rstb.2020.0186) PubMed DOI PMC
Pigozzi MI, Solari AJ. 1998. Germ cell restriction and regular transmission of an accessory chromosome that mimics a sex body in the zebra finch, Taeniopygia guttata. Chromosome Res. 6, 105-113 (10.1023/A:1009234912307) PubMed DOI
Itoh Y, Kampf K, Pigozzi MI, Arnold AP. 2009. Molecular cloning and characterization of the germline-restricted chromosome sequence in the zebra finch. Chromosoma 118, 527-536. (10.1007/s00412-009-0216-6) PubMed DOI PMC
Malinovskaya LP, et al. . 2020. Germline-restricted chromosome (GRC) in the sand martin and the pale martin (Hirundinidae, Aves): synapsis, recombination and copy number variation. Sci. Rep. 10, 1058. (10.1038/s41598-020-58032-4) PubMed DOI PMC
Biederman MK, Nelson MM, Asalone KC, Pedersen AL, Saldanha CJ, Bracht JR. 2018. Discovery of the first germline-restricted gene by subtractive transcriptomic analysis in the zebra finch, Taeniopygia guttata. Curr. Biol. 28, 1620-1627. (10.1016/j.cub.2018.03.067) PubMed DOI PMC
Kinsella CM, et al. 2019. Programmed DNA elimination of germline development genes in songbirds. Nat. Comm. 10, 5468. (10.1038/s41467-019-13427-4) PubMed DOI PMC
Torgasheva AA, et al. . 2019. Germline-restricted chromosome (GRC) is widespread among songbirds. Proc. Natl Acad. Sci. USA 116, 11 845-11 850. (10.1073/pnas.1817373116) PubMed DOI PMC
Pei Y, et al. 2021. Occasional paternal inheritance of the germline-restricted chromosome in songbirds. BioRxiv. See https://www.biorxiv.org/content/10.1101/2021.01.28.428604v1. (10.1101/2021.01.28.428604) DOI
Cortez D, Marin R, Toledo-Flores D, Froidevaux L, Liechti A, Waters PD, Grützner F, Kaessmann H. 2014. Origins and functional evolution of Y chromosomes across mammals. Nature 508, 488-493. (10.1038/nature13151) PubMed DOI
Warren WC, et al. 2008. Genome analysis of the platypus reveals unique signatures of evolution. Nature 453, 175-183. (10.1038/nature06936) PubMed DOI PMC
Zhou Y, et al. . 2021. Platypus and echidna genomes reveal mammalian biology and evolution. Nature 592, 756-762. (10.1038/s41586-020-03039-0) PubMed DOI PMC
Rens W, et al. . 2007. The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z. Genome Biol. 8, R243. (10.1186/gb-2007-8-11-r243) PubMed DOI PMC
Grützner F, Rens W, Tsend-Ayush E, El-Mogharbel N, O'Brien PCM, Jones RC, Ferguson-Smith MA, Graves JAM. 2004. In the platypus a meiotic chain of ten sex chromosomes shares genes with the bird Z and mammal X chromosomes. Nature 432, 913-917. (10.1038/nature03021) PubMed DOI
Veyrunes F, et al. . 2008. Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes. Genome Res. 18, 965-973. (10.1101/gr.7101908) PubMed DOI PMC
El-Mogharbel N, Wakefield M, Deakin JE, Tsend-Ayush E, Grützner F, Alsop A, Ezaz T, Marshall Graves JA. 2007. Dmrt gene cluster analysis in the platypus: new insights into genomic organization and regulatory regions. Genomics 89, 10-21. (10.1016/j.ygeno.2006.07.017) PubMed DOI
Deakin JE. 2017. Implications of monotreme and marsupial chromosome evolution on sex determination and differentiation. Gen. Comp. Endocrinol. 244, 130-138. (10.1016/j.ygcen.2015.09.029) PubMed DOI
Deakin JE, Hore TA, Koina E, Graves JAM. 2008. The status of dosage compensation in the multiple X chromosomes of the platypus. PLoS Genet. 4, e1000140. (10.1371/journal.pgen.1000140) PubMed DOI PMC
Julien P, Brawand D, Soumillon M, Necsulea A, Liechti A, Schütz F, Daish T, Grützner F, Kaessmann H. 2012. Mechanisms and evolutionary patterns of mammalian and avian dosage compensation. PLoS Biol. 10, e1001328. (10.1371/journal.pbio.1001328) PubMed DOI PMC
Whitworth DJ, Pask AJ. 2016. The X factor: X chromosome dosage compensation in the evolutionarily divergent monotremes and marsupials. Semin. Cell Dev. Biol. 56, 117-121. (10.1016/j.semcdb.2016.01.006) PubMed DOI
Redia CA, Capanna E. 2012. Genome size evolution: sizing mammalian genomes. Cytogenet. Genome Res. 137, 97-112. (10.1159/000338820) PubMed DOI
Deakin JE, O'Neill RJ. 2020. Evolution of marsupial genomes. Annu. Rev. Anim. Biosci. 8, 25-45. (10.1146/annurev-animal-021419-083555) PubMed DOI
Frankenberg S. 2018. Pre-gastrula development of non-eutherian mammals. Curr. Top. Dev. Biol. 128, 237-265. (10.1016/bs.ctdb.2017.10.013) PubMed DOI
Hayman D. 1989. Marsupial cytogenetics. Aust. J. Zool. 37, 331-349. (10.1071/ZO9890331) DOI
Deakin JE. 2018. Chromosome evolution in marsupials. Genes 9, 72. (10.3390/genes9020072) PubMed DOI PMC
Grant J, et al. 2012. Rsx is a metatherian RNA with Xist-like properties in X-chromosome inactivation. Nature 487, 254-258. (10.1038/nature11171) PubMed DOI PMC
Deakin JE. 2013. Marsupial X chromosome inactivation: past, present and future. Aust. J. Zool. 61, 13-23.
Rens W, Wallduck MS, Lovell FL, Ferguson-Smith MA, Ferguson-Smith AC. 2010. Epigenetic modifications on X chromosomes in marsupial and monotreme mammals and implications for evolution of dosage compensation. Proc. Natl Acad. Sci. USA 107, 17 657-17 662. (10.1073/pnas.0910322107) PubMed DOI PMC
Johnson PG, Watson CM, Adams M, Paull DJ. 2002. Sex chromosome elimination, X chromosome inactivation and reactivation in the southern brown bandicoot Isoodon obesulus (Marsupialia: Peramelidae). Cytogenet. Genome Res. 99, 119-124. (10.1159/000071583) PubMed DOI
Sharp P. 1982. Sex chromosome pairing during male meiosis in marsupials. Chromosoma 86, 27-47. (10.1007/BF00330728) PubMed DOI
Page J, Berrios S, Parra MT, Viera A, Suja JA, Prieto I, Barbero JL, Rufas JS, Fernández-Donoso R. 2005. The program of sex chromosome pairing in meiosis is highly conserved across marsupial species: implications for sex chromosome evolution. Genetics 170, 793-799. (10.1534/genetics.104.039073) PubMed DOI PMC
Foster JW, et al. 1992. Evolution of sex determination and the Y chromosome: SRY-related sequences in marsupials. Nature 359, 531-533. (10.1038/359531a0) PubMed DOI
Evans BJ, Upham NS, Golding GB, Ojeda RA, Ojeda AA. 2017. Evolution of the largest mammalian genome. Genome Biol. Evol. 9, 1711-1724. (10.1093/gbe/evx113) PubMed DOI PMC
Georgiades P, Watkins M, Burton GJ, Ferguson-Smith AC. 2001. Roles for genomic imprinting and the zygotic genome in placental development. Proc. Natl Acad. Sci. USA 98, 4522-4527. (10.1073/pnas.081540898) PubMed DOI PMC
Svartman MT, Stone G, Stanyon R. 2005. Molecular cytogenetics discards polyploidy in mammals. Genomics 85, 425-430. (10.1016/j.ygeno.2004.12.004) PubMed DOI
Bachtrog D. 2013. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat. Rev. Genet. 14, 113-124. (10.1038/nrg3366) PubMed DOI PMC
De la Fuente R, Parra MT, Viera A, Calvente A, Gomez R, Suja J, Rufas JS, Page J. 2007. Meiotic pairing and segregation of achiasmate sex chromosomes in eutherian mammals: the role of SYCP3 protein. PLoS Genet. 3, e198. (10.1371/journal.pgen.0030198) PubMed DOI PMC
Tasman Daish T, Grützner F. 2019. Evolution and meiotic organization of heteromorphic sex chromosomes. Curr. Topics Dev. Biol. 134, 1-48. (10.1016/bs.ctdb.2019.009) PubMed DOI
Gil-Fernandez G-F, et al. 2020. Meiosis reveals the early steps in the evolution of a neo-XY sex chromosome pair in the African pygmy mouse Mus minutoides. PLoS Genet. 16, e1008959. (10.1371/journal.pgen.1008959) PubMed DOI PMC
Wutz A, Rasmussen TP, Jaenisch R. 2002. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat. Genet. 30, 167-174. (10.1038/ng820) PubMed DOI
Jégu T, Aeby E, Lee JT. 2017. The X chromosome in space. Nat. Rev. Genet. 18, 377-389. PubMed
Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R. 1991. Male development of chromosomally female mice transgenic for Sry. Nature 351, 117-121. PubMed
Miyawaki S, Kuroki S, Maeda R, Okashita N, Koopman P, Tichibana M. 2020. The mouse Sry locus harbors a cryptic exon that is essential for male sex determination. Science 370, 121-124. PubMed
Parma P, Veyrunes F, Pailhoux E. 2016. Sex reversal in non-human placental mammals. Sex. Dev. 10, 326-344. (10.1159/000448361) PubMed DOI
Kuroiwa A, Ishiguchi Y, Yamada F, Shintaro A, Matsuda Y. 2010. The process of a Y-loss event in an XO/XO mammal, the Ryukyu spiny rat. Chromosoma 119, 519-526. PubMed
Just W, Baumstark A, Süss A, Graphodatsky A, Rens W, Schäfer N, Bakloushinskaya I, Hameister H, Vogel W. 2007. Ellobius lutescens: sex determination and sex chromosome. Sex. Dev. 1, 211-221. (10.1159/000104771) PubMed DOI
Veyrunes F, Chevret P, Catalan J, Castiglia R, Watson J, Dobigny G, Robinson TJ, Britton-Davidian J. 2010. A novel sex determination system in a close relative of the house mouse. Proc. R. Soc. B 277, 1049-1056. (10.1098/rspb.2009.1925) PubMed DOI PMC
Real FM, et al. 2020. The mole genome reveals regulatory rearrangements associated with adaptive intersexuality. Science 370, 208-214. (10.1126/science.aaz2582) PubMed DOI PMC
Uhlenhaut NH, et al. . 2009. Somatic sex reprogramming of adult ovaries to testes by foxl2 ablation. Cell 139, 1130-1142. PubMed
Matson CK, Murphy MW, Sarver AL, Griswold MD, Bardwell VJ, Zarkower D. 2011. Dmrt1 prevents female reprogramming in the postnatal mammalian testis. Nature 476, 101-104. (10.1038/nature10239) PubMed DOI PMC
Naqvi S, Godfrey AK, Hughes, JF, Goodheart ML, Mitchell RN, Page DC. 2019. Conservation, acquisition, and functional impact of sex-biased gene expression in mammals. Science 365, eaaw7317. (10.1126/science.aaw7317) PubMed DOI PMC
Davis EJ, Lobach I, Dubal DB. 2019: Female XX sex chromosomes increase survival and extend lifespan in aging mice. Aging Cell 18, e12871. (10.1111/acel.12871) PubMed DOI PMC
VGP. 2020. See https://vertebrategenomesproject.org.
EBG. 2020. See https://www.earthbiogenome.org/.
Fish1 k. 2020. See https://db.cngb.org/fisht1k.
Birds10 K. 2020. See https://b10k.genomics.cn.
Skaletsky H, et al. . 2003. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423, 825-837. (10.1038/nature01722). PubMed DOI
Carvalho AB, Clark AG. 2013. Efficient identification of Y chromosome sequences in the human and Drosophila genomes. Genome Res. 23, 1894-1907. (10.1101/gr.156034.113) PubMed DOI PMC
Clark AG. 2014. The vital Y chromosome. Nature 508, 463-465. (10.1038/508463a) PubMed DOI
Rhie A, et al. 2021. Towards complete and error-free genome assemblies of all vertebrate species. Nature 592, 737-746. (10.1038/s41586-021-03451-0) PubMed DOI PMC
Koepfli K-P, Paten B, Antunes A, Belov K, Bustamante Cet al. . 2015. The genome 10 K project: a way forward. Ann. Rev. Anim. Biosci. 3, 57-111. (10.1146/annurev-animal-090414-014900) PubMed DOI PMC
Pennell MW, Mank JE, Peichel CL. 2018. Transitions in sex determination and sex chromosomes across vertebrate species. Mol. Ecol. 2, 3950-3963. (10.1111/mec.14540) PubMed DOI PMC
Payseur BA, Presgraves DC, Filatov DA. 2018. Sex chromosomes and speciation. Mol. Ecol. 27, 3745-3748. (10.1111/mec.14828) PubMed DOI PMC
Runemark A, Eroukhmanoff F, Nava-Bolaños A, Hermansen JS, Meier JI. 2018. Hybridization, sex-specific genomic architecture and local adaptation. Phil. Trans. R. Soc. B 373, 20170419. (10.1098/rstb.2017.0419) PubMed DOI PMC
Capel B (ed). 2019. Sex determination in vertebrates. Current topics in developmental biology, vol. 104, pp. 1-376. New York, NY: Academic Press.
Kopp A. 2012. Dmrt genes in the development and evolution of sexual dimorphism. Trends Genet. 28, 175-184. (10.1016/j.tig.2012.02.002) PubMed DOI PMC
Darbre PD. 2019. The history of endocrine-disrupting chemicals. Curr. Opin. Endocrinol. Metab. Res. 7, 26-33. (10.1016/j.coemr.2019.06.007) DOI
Kloas W, et al. 2009. Endocrine disruption in aquatic vertebrates. Ann. NY Acad. Sci. 1163, 187-200. (10.1111/j.1749-6632.2009.04453.x) PubMed DOI
Wang H, Piferrer F, Chen S (eds). 2019. Sex control in aquaculture, vol. 1. New York, NY: John Wiley & Sons.
Mendelian nightmares: the germline-restricted chromosome of songbirds
figshare
10.6084/m9.figshare.c.5438942