A brief review of vertebrate sex evolution with a pledge for integrative research: towards 'sexomics'

. 2021 Aug 30 ; 376 (1832) : 20200426. [epub] 20210712

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S., přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34247497

Triggers and biological processes controlling male or female gonadal differentiation vary in vertebrates, with sex determination (SD) governed by environmental factors or simple to complex genetic mechanisms that evolved repeatedly and independently in various groups. Here, we review sex evolution across major clades of vertebrates with information on SD, sexual development and reproductive modes. We offer an up-to-date review of divergence times, species diversity, genomic resources, genome size, occurrence and nature of polyploids, SD systems, sex chromosomes, SD genes, dosage compensation and sex-biased gene expression. Advances in sequencing technologies now enable us to study the evolution of SD at broader evolutionary scales, and we now hope to pursue a sexomics integrative research initiative across vertebrates. The vertebrate sexome comprises interdisciplinary and integrated information on sexual differentiation, development and reproduction at all biological levels, from genomes, transcriptomes and proteomes, to the organs involved in sexual and sex-specific processes, including gonads, secondary sex organs and those with transcriptional sex-bias. The sexome also includes ontogenetic and behavioural aspects of sexual differentiation, including malfunction and impairment of SD, sexual differentiation and fertility. Starting from data generated by high-throughput approaches, we encourage others to contribute expertise to building understanding of the sexomes of many key vertebrate species. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.

Amphibian Research Center Hiroshima University Higashi Hiroshima 739 8526 Japan

Department of Biological Sciences Marquette University Milwaukee WI 53201 USA

Department of Biology McMaster University Life Sciences Building Room 328 1280 Main Street West Hamilton Ontario Canada L8S 4K1

Department of Cell Biology Duke University Medical Center Durham NC 27710 USA

Department of Ecology Evolution and Organismal Biology Iowa State University Ames IA 50011 USA

Department of Ecology Faculty of Science Charles University Viničná 7 12844 Prague Czech Republic

Department of Neuroscience and Developmental Biology University of Vienna A 1090 Vienna Austria

Department of Organismal Biology Systematic Biology Evolutionary Biology Centre Science for Life Laboratory Uppsala University Norbyvägen 18D 75236 Uppsala Sweden

Developmental Biochemistry Biocenter University of Würzburg 97074 Würzburg Germany

INRAE LPGP 35000 Rennes France

Institut des Sciences de l'Evolution de Montpellier ISEM UMR 5554 Montpellier France

Leibniz Institute of Freshwater Ecology and Inland Fisheries IGB Müggelseedamm 301 12587 Berlin Germany

MOE Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology Life Sciences Institute Zhejiang University Hangzhou Zhejiang 310058 People's Republic of China

School of Biological Sciences University of East Anglia Norwich Research Park Norwich NR4 7TU UK

The Xiphophorus Genetic Stock Center Department of Chemistry and Biochemistry Texas State University San Marcos TX 78666 USA

Zobrazit více v PubMed

Matson CK, Zarkower D. 2012. Sex and the singular DM domain: insights into sexual regulation, evolution and plasticity. Nat. Rev. Genet. 13, 163-174. (10.1038/nrg3161) PubMed DOI PMC

Bachtrog DKirkpatrick M, Mank JE, Mcdaniel SF, Pires JC, Rice W, Valenzuela N. 2014. Sex determination: why so many ways of doing it? PLoS Biol. 12, e1001899. (10.1016/j.tig.2011.05.005) PubMed DOI PMC

Herpin A, Schartl M. 2015. Plasticity of gene-regulatory networks controlling sex determination: of masters, slaves, usual suspects, newcomers, and usurpators. EMBO Rep. 16, 1260-1274. (10.15252/embr.201540667) PubMed DOI PMC

Pan Q, Anderson J, Bertho S, Herpin A, Wilson C, Postlethwait JH, Schartl M, Guiguen Y. 2016. Vertebrate sex-determining genes play musical chairs. C. R. Biol. 339, 258-262. (10.1016/j.crvi.2016.05.010) PubMed DOI PMC

Johnson Pokorná M, Kratochvíl L. 2016. What was the ancestral sex-determining mechanism in amniote vertebrates? Biol. Rev. 91, 1-12. (10.1111/brv.12156) PubMed DOI

Straková B, Rovatsos M, Kubička L, Kratochvíl L. 2020. Evolution of sex determination in amniotes: Did stress and sequential hermaphroditism produce environmental determination? BioEssays 42, e2000050. (10.1002/bies.202000050) PubMed DOI

Capel B. 2017. Vertebrate sex determination: evolutionary plasticity of a fundamental switch. Nat. Rev. Genet. 18, 675-689. (10.1038/nrg.2017.60) PubMed DOI

Schartl M. 2004. Sex chromosome evolution in non-mammalian vertebrates. Curr. Opin. Genet. Dev. 14, 634-641. (10.1016/j.gde.2004.09.005) PubMed DOI

Perrin N. 2009. Sex reversal: a fountain of youth for sex chromosomes? Evolution 63, 3043-3049. (10.1111/j.1558-5646.2009.00837.x) PubMed DOI

Cauret CMS, Gansauge M-T, Tupper AS, Furman BLS, Knytl M, Song XY, Greenbaum E, Meyer M, Evans BJ. 2020. Developmental systems drift and the drivers of sex chromosome evolution. Mol. Biol. Evol. 37, 799-810. (10.1093/molbev/msz268) PubMed DOI

Beukeboom LW, Perrin N. 2014. The evolution of sex determination. Oxford, UK: Oxford University Press.

van Doorn, GS, Kirkpatrick M. 2007. Turnover of sex chromosomes induced by sexual conflict. Nature 449, 909-912. (10.1038/nature06178) PubMed DOI

Ross JA, Urton JR, Boland J, Shapiro MD, Peichel CL. 2009. Turnover of sex chromosomes in the stickleback fishes (Gasterosteidae). PLoS Genet. 5, e1000391. (10.1371/journal.pgen.1000391) PubMed DOI PMC

O'Meally D, Ezaz T, Georges A, Sarre SD, Graves JAM. 2012. Are some chromosomes particularly good at sex? Insights from amniotes. Chromosome Res. 20, 7-19. (10.1007/s10577-011-9266-8) PubMed DOI

Jeffries DL, et al. 2018. A rapid rate of sex-chromosome turnover and nonrandom transitions in true frogs. Nat. Comm. 9, 4088. (10.1038/s41467-018-06517-2) PubMed DOI PMC

Montiel EE, Badenhorst D, Lee LS, Literman R, Trifonov V, Valenzuela N. 2016. Cytogenetic insights into the evolution of chromosomes and sex determination reveal striking homology of turtle sex chromosomes to amphibian autosomes. Cytogenet. Genome Res. 148, 292-304. (10.1159/000447478) PubMed DOI

Kratochvíl L, Gamble T, Rovatsos M. 2021. Sex chromosome evolution among amniotes: is the origin of sex chromosomes non-random? Phil. Trans. R. Soc. B 376, 20200108. (10.1098/rstb.2020.0108) PubMed DOI PMC

Pokorná M, Kratochvíl L. 2009. Phylogeny of sex-determining mechanisms in squamate reptiles: are sex chromosomes an evolutionary trap? Zool. J. Linn. Soc. 156, 168-183. (10.1111/j.1096-3642.2008.00481.x) DOI

Leonard J.L. 2018. The evolution of sexual systems in animals. In Transitions between sexual systems (ed. Leonard J), pp. 1-58. Cham, Switzerland: Springer.

Ponnikas S, Sigeman H, Abbott JK, Hansson B. 2018. Why do sex chromosomes stop recombining? Trends Genet. 34, 492-503. (10.1016/j.tig.2018.04.001) PubMed DOI

Meisel RP. 2020. Evolution of sex determination and sex chromosomes: a novel alternative paradigm. BioEssays 42, 1900212. (10.1002/bies.20200152) PubMed DOI

Lenormand T, Fyon F, Sun E, Roze D. 2020. Sex chromosome degeneration by regulatory evolution. Curr. Biol. 30, 3001– 3006. (10.1016/j.cub.2020.05.052) PubMed DOI

Charlesworth B, Charlesworth D. 2020. Evolution: a new idea about the degeneration of Y and W chromosomes. Curr. Biol. 30, R871-R896. (10.1016/j.cub.2020.06.008) PubMed DOI

Charnov EL, Bull J. 1977. When is sex environmentally determined? Nature 266, 828-830. (10.1038/266828a0). PubMed DOI

Warner D, Shine R. 2008. The adaptive significance of temperature-dependent sex determination in a reptile. Nature 451, 566-568. (10.1038/nature06519). PubMed DOI

Organ CL, Janes DE, Meade A, Pagel M. 2009. Genotypic sex determination enabled adaptive radiations of extinct marine reptiles. Nature 461, 389-392 (10.1038/nature08350) PubMed DOI

Geffroy B, Douhard M. 2019. The adaptive sex in stressful environments. Trends Ecol. Evol. 34, 628-640 (10.1016/j.tree.2019.02.012) PubMed DOI

Putnam N, et al. 2008. The amphioxus genome and the evolution of the chordate karyotype. Nature 453, 1064-1071. (10.1038/nature06967) PubMed DOI

Simakov O, et al. 2020. Deeply conserved synteny resolves early events in vertebrate evolution. Nat. Ecol. Evol. 4, 820-830 (10.1038/s41559-020-1156-z) PubMed DOI PMC

Satoh N, Rokhsar D, Nishikawa T.. 2014. Chordate evolution and the three-phylum system. Proc. R. Soc. B 281, 20141729. (10.1098/rspb.2014.1729) PubMed DOI PMC

Shi C, Wu X, Su L, Shang C, Li X, Wang Y, Li G. 2020. A ZZ/ZW sex chromosome system in cephalochordate amphioxus. Genetics 214, 617-622. (10.1534/genetics.120.303051) PubMed DOI PMC

Howell WM, Boschung HT. 1971. Chromosomes of the lancelet, Branchiostoma floridae (order amphioxi). Experientia 27, 1495-1496. (10.1007/BF02154315). PubMed DOI

Meyer A, Van de Peer Y.. 2005. From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). BioEssays 27, 937-945. (10.1002/bies.20293) PubMed DOI

Sacerdot C, Louis A, Bon C, Berthelot C, Crollius HR. 2018. Chromosome evolution at the origin of the ancestral vertebrate genome. Genome Biol. 19, 166. (10.1186/s13059-018-1559-1) PubMed DOI PMC

Sawada H, Shirae-Kurabayashi M.. 2020. Chapter 9. Self- and nonself-recognition of gametes in Ascidians. In Reproduction in aquatic animals (eds Yoshida M, Asturiano J), pp. 179-192. Singapore: Springer.

Holland LZ, Gorsky G, Fenaux R. 1988. Fertilization in Oikopleura dioica (Tunicata, Appendicularia): acrosome reaction, cortical reaction and sperm-egg fusion. Zoomorphology 108, 229-243. (10.1007/BF00312223). DOI

Navratilova P, Danks GB, Long A, Butcher S, Manak JR, Thompson EM. 2017. Sex-specific chromatin landscapes in an ultra-compact chordate genome. Epigenetics Chromatin 10, 3. (10.1186/s13072-016-0110-4) PubMed DOI PMC

Henschke N, Everett JD, Anthony J, Richardson AJ, Suthers IM. 2016. Rethinking the role of salps in the ocean. Trends Ecol. Evol. 31, 720-733. (10.1016/j.tree.2016.06.007) PubMed DOI

Holland LZ. 2016. Tunicates. Curr. Biol. 26, R146-R152. (10.1016/j.cub.2015.12.024) PubMed DOI

Smith JJ, et al. . 2013. Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nat. Genet. 45, 415-421. (10.1038/ng.2568) PubMed DOI PMC

Smith JJ, et al. . 2018. The sea lamprey germline genome provides insights into programmed genome rearrangement and vertebrate evolution. Nat. Genet. 50, 270-277 (10.1038/s41588-017-0036-1). PubMed DOI PMC

NCBI. 2020. www.ncbi.nlm.nih.gov (accessed December 2020).

Gregory TR. 2015. Animal genome size database. See http://www.genomesize.com.

Gorbman A. 1990. Sex differentiation in the hagfish Eptatretus stouti. Gen. Comp. Endocrinol. 77, 309-323. (10.1016/0016-6480(90)90315-D) PubMed DOI

Adolfi MC, Nakajima RT, N'Nobrega RH, Schartl M. 2019. Intersex, hermaphroditism, and gonadal plasticity in vertebrates: evolution of the Müllerian duct and Amh/Amhr2 signaling. Annu. Rev. Anim. Biosci. 7, 7.1-7.24. (10.1146/annurev-animal-020518-114955) PubMed DOI

Smith JJ, Timoshevskiy VA, Saraceno C. 2021. Programmed DNA elimination in vertebrates. Annu. Rev. Anim. Biosci. 9, 173-201. (10.1146/annurev-animal-061220-023220) PubMed DOI PMC

Hendon JM, Koester DM, Hoffmayer ER, Driggers WB III, Cicia AM. 2013. Occurrence of an intersexual blacktip shark in the northern Gulf of Mexico, with notes on the standardization of classifications for this condition in elasmobranchs. Mar. Coast. Fish. 5, 174-180. (10.1080/19425120.2013.799618) DOI

Mims SD, Shelton WL, Linhart O, Wang C. 1997. Induced meiotic gynogenesis of paddlefish Polyodon spathula. J. World Aquacult. Soc. 28, 334-343. (10.1111/j.1749-7345.1997.tb00280.x) DOI

Shelton WL, Mims SD. 2012. Evidence for female heterogametic sex determination in paddlefish Polyodon spathula based on gynogenesis. Aquaculture 356–357, 116-118. (10.1016/j.aquaculture.2012.05.029) DOI

Bogart JP. 2019. Unisexual salamanders in the genus Ambystoma. Herpetologica 75, 259-267 (10.1655/Herpetologica-D-19-00043.1) DOI

Macgregor HC, Uzzell TM. 1964. Gynogenesis in salamanders related to Ambystoma jeffersonianum. Science 143, 1043-1045. (10.1126/science.143.3610.1043) PubMed DOI

Olsen MW. 1975. Avian parthenogenesis. Agricultural Research Service USDA, ARS-NE 65, 1-82.

Ramachandran R, McDaniel CD. 2018. Parthenogenesis in birds: a review. Reproduction 155, R245-R257. (10.1530/REP-17-0728) PubMed DOI

Bickham JW, Hanks BG, Hale DW, Martin JE. 1993. Ploidy diversity and the production of balanced gametes in male twist-necked turtles (Platemys platycephala). Copeia 1993, 723 (10.2307/1447233) DOI

Jørgensen JM, Lomholt JP, Weber RE, Malte H. 1998. The biology of hagfishes. London, UK: Chapman & Hall.

Powell ML, Kavanaugh SI, Sower SA. 2005. Current knowledge of hagfish reproduction: implications for fisheries management. Integr. Comp. Biol. 45: 158-165. (10.1093/icb/45.1.158) PubMed DOI

Johnson NS, Swink WD, Brenden TO.. 2017. Field study suggests that sex determination in sea lamprey is directly influenced by larval growth rate. Proc. R. Soc. B 284, 20170262. (10.1098/rspb.2017.0262) PubMed DOI PMC

Docker MF, Beamish FWH, Yasmin T, Bryan MB, Khan A.. 2019. Chapter 1: the lamprey gonad. In Lampreys: biology, conservation and control (ed. Docker MF), pp. 1-186. Dordrecht, The Netherlands: Springer.

Irisarri I, et al. 2017. Phylotranscriptomic consolidation of the jawed vertebrate timetree. Nat. Ecol. Evol. 1, 1370-1378. (10.1038/s41559-017-0240-5) PubMed DOI PMC

Hara Y, et al. . 2018. Shark genomes provide insights into elasmobranch evolution and the origin of vertebrates. Nat. Ecol. Evol. 2, 1761-1771. (10.1038/s41559-018-0673-5) PubMed DOI

King BL, Gillis JA, Carlisle HR, Dahn RD. 2011. A natural deletion of the HoxC cluster in elasmobranch fishes. Science 334, 1517. (10.1126/science.1210912) PubMed DOI PMC

Venkatesh B, et al. . 2014. Elephant shark genome provides unique insights into gnathostome evolution. Nature 505, 174-179. (10.1038/nature12826) PubMed DOI PMC

Musick JA, Ellis J. 2005. Reproductive evolution of chondrichthyans. In Reproductive biology and phylogeny of chondrichthyans (ed. Hamlett WC), pp. 45-79. Enfield, NH: Scientific Publication.

Dudgeon CL, Coulton L, Bone R, Ovenden JR, Thomas S. 2017. Switch from sexual to parthenogenetic reproduction in a zebra shark. Sci. Rep. 7, 40537. (10.1038/srep40537) PubMed DOI PMC

Maddock MB, Schwartz FJ. 1996. Elasmobranch cytogenetics: methods and sex chromosomes. Bull. Mar. Sci. 58, 147-155.

Donahue WHA. 1974. A karyotypic study of three species of rajiformes (Chondrichthyes, Pisces). Can. J. Genet. Cytol. 16, 203-211. (10.1139/g74-020) PubMed DOI

da Cruz VP, Shimabukuro-Dias CK, Oliveira C, Fausto Foresti F.. 2011. Karyotype description and evidence of multiple sex chromosome system X1X1X2X2/X1X2Y in Potamotrygon aff. motoro and P. falkneri (Chondrichthyes: Potamotrygonidae) in the upper Paraná River basin, Brazil. Neotrop. Ichthyol. 9, 201-208. (10.1590/S1679-62252011000100020) DOI

Valentim FCS, Porto JIR, Bertollo LAC, Gross MC, Feldberg E. 2013. XX/X0, a rare sex chromosome system in Potamotrygon freshwater stingray from the Amazon Basin, Brazil. Genetica 141, 381-387. (10.1007/s10709-013-9737-2) PubMed DOI

O'Shaughnessy KL, Dahn RD, Cohn MJ. 2015. Molecular development of chondrichthyan claspers and the evolution of copulatory organs. Nat. Comm. 6, 6698. (10.1038/ncomms7698) PubMed DOI PMC

Braasch I, Postlethwait JH.. 2012. Polyploidy in fish and the teleost genome duplication. In Polyploidy and genome evolution (eds Soltis P, Soltis D), pp. 341-383. Berlin, Germany: Springer.

Hughes LC, et al. . 2018. Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data. Proc. Natl Acad. Sci. USA 24, 6249-6254. (10.1073/pnas.1719358115) PubMed DOI PMC

Raincrow JD, Dewar K, Stocsits C, Prohaska SJ, Amemiya CT, Stadler PF, Chiu CH. 2011. Hox clusters of the bichir (Actinopterygii, Polypterus senegalus) highlight unique patterns of sequence evolution in gnathostome phylogeny. J. Exp. Zool. (Mol. Dev. Evol.) 316, 451-464. (10.1002/jez.b.21420) PubMed DOI

Morescalchi MA, Stingoa V, Capriglione T. 2011. Cytogenetic analysis in Polypterus ornatipinnis (Actinopterygii, Cladistia, Polypteridae) and 5S rDNA. Mar. Genomics 4, 25-31. (10.1016/j.margen.2010.12.002) PubMed DOI

Morescalchi MA, Liguori I, Rocco L, Archimandritis A, Stingo V. 2008. Karyotypic characterization and genomic organization of the 5S rDNA in Polypterus senegalus (Osteichthyes, Polypteridae). Genetica 132, 179-186. (10.1007/s10709-007-9160-7) PubMed DOI

Morescalchi MA, Liguori I, Rocco L, Stingo V. 2007. Karyotypic characterization and genomic organization of the 5S rDNA in Erpetoichthys calabaricus (Osteichthyes, Polypteridae). Genetica 131, 209-216. (10.1007/s10709-006-9119-0) PubMed DOI

Hochleithner M, Gessner J. 2001. The sturgeons and paddlefishes of the world — biology and aquaculture. Aquatech. Publ. 106, 81-82.

Du K, et al. . 2020. The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization. Nat. Ecol. Evol. 4, 841-852. (10.1038/s41559-020-1166-x) PubMed DOI PMC

Havelka M, Hulák M, Bailie D, Prodöhl P, Flajšhans M. 2013. Extensive genome duplications in sturgeons: new evidence from microsatellite data. J. Appl. Ichthyol. 29, 704-708. (10.1111/jai.12224) DOI

Cheng P, et al. . 2020. The American paddlefish genome provides novel insights into chromosomal evolution and bone mineralization in early vertebrates. Mol. Biol. Evol. 38, 1595-1607. (10.1093/molbev/msaa326) PubMed DOI PMC

Romanenko SA, et al. 2019. Segmental paleotetraploidy revealed in sterlet (Acipenser ruthenus) genome by chromosome painting. Mol. Cytogenet. 8, 90. (10.1186/s13039-015-0194-8) PubMed DOI PMC

Saito T, Pšenička M, Goto R, Adachi S, Inoue K, Arai K, Yamaha E. 2014. The origin and migration of primordial germ cells in sturgeons. PLoS ONE 9, e86861. (10.1371/journal.pone.0086861) PubMed DOI PMC

Keyvanshokooh S, Gharaei A. 2010. A review of sex determination and searches for sex-specific markers in sturgeon. Aquacult. Res. 41, e1-e7. (10.1111/j.1365-2109.2009.02463.x) DOI

Fopp-Bayat D, Kolman R, Woznicki P. 2007. Induction of meiotic gynogenesis in sterlet (Acipenser ruthenus) using UV-irradiated bester sperm. Aquaculture 264, 54-58. (10.1016/j.aquaculture.2006.12.006) DOI

Kuhl H, et al. . 2021. A 180 Myr-old female-specific genome region in sturgeon reveals the oldest known vertebrate sex determining system with undifferentiated sex chromosomes. Phil. Trans. R. Soc. B 376, 20200089. (10.1098/rstb.2020.0089) PubMed DOI PMC

Majtánová Z, Symonová R, Arias-Rodriguez L, Sallan L, Ráb P. 2017. ‘Holostei versus halecostomi’ problem: insight from cytogenetics of ancient nonteleost actinopterygian fish, bowfin Amia calva. J. Exp. Zool. (Mol. Dev. Evol.) 328B, 620-628. (10.1002/jez.b.22720) PubMed DOI

Nelson JS, Grande TC, Wilson MVH. 2016. Fishes of the world, 5th edn. New York, NY: John Wiley and Sons.

Braasch I, et al. . 2016. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat. Genet. 48, 427-437. (10.1038/ng.3526) PubMed DOI PMC

Thompson A, et al. 2020. The genome of the bowfin (Amia calva) illuminates the developmental evolution of ray-finned fish. Preprint. (10.21203/rs.3.rs-92055/v1) DOI

Herrington SJ, Hettiger KN, Heist EJ, Keeney DB. 2008. Hybridization between longnose and alligator gars in captivity, with comments on possible gar hybridization in nature. Transact. Am. Fish. Soc. 137, 158-164. (10.1577/T07-044.1) DOI

McGinn Daniels KL. 1993. Reproductive biology of the bowfin, Amia calva Linnaeus, from the green bottom wildlife management area, Cabell County, West Virginia. Theses, Dissertations Capstones 309. (https://mds.marshall.edu/etd/309)

Froese R, Pauly D (eds). 2019. FishBase World Wide Web electronic publication. See www.fishbase.org.

Hasley A, Chavez S, Danilchik M, Wühr M, Pelegri F.. 2017. Vertebrate embryonic cleavage pattern determination. In Vertebrate development. Advances in experimental medicine and biology, vol. 953 (eds Pelegri F, Danilchik M, Sutherland A), pp. 117-171. Cham, Switzerland: Springer. PubMed PMC

Smith C, Wootton RJ. 2016. The remarkable diversity of teleost fishes. Fish Fish. 17, 1208-1215. (10.1111/faf.12116) DOI

Avise JC. 2008. Clonality. The genetics, ecology and evolution of sexual abstinence in vertebrate animals, pp. 1-237, New York, NY: Oxford University Press.

Warren W, et al. 2018. Clonal polymorphism and high heterozygosity in the celibate genome of the Amazon molly. Nat. Ecol. Evol. 2, 669-679. (10.1038/s41559-018-0473-y) PubMed DOI PMC

Avise JC, Mank JE. 2009. Evolutionary perspectives on hermaphroditism in fishes. Sex. Dev. 3, 152-163. (10.1159/000223079) PubMed DOI

Fricke H, Fricke S. 1977. Monogamy and sex change by aggressive dominance in coral reef fish. Nature 266, 830-832. (10.1038/266830a0) PubMed DOI

Todd EV, et al. . 2019. Stress, novel sex genes, and epigenetic reprogramming orchestrate socially controlled sex change. Sci. Adv. 5, eaaw7006. (10.1126/sciadv.aaw7006) PubMed DOI PMC

Erisman BE, Petersen CW, Hastings PA, Warner RR. 2013. Phylogenetic perspectives on the evolution of functional hermaphroditism in teleost fishes. Integ. Comp. Biol. 53, 736-754. (10.1093/icb/ict077) PubMed DOI

Hart MK, Kratter AW, Crowley PH. 2016. Partner fidelity and reciprocal investments in the mating system of a simultaneous hermaphrodite. Behav. Ecol. 27, 1471-1479. (10.1093/beheco/arw065) DOI

Kanamori A, Sugita Y, Yuasa Y, Suzuki T, Kawamura K. 2016. A Genetic map for the only self-fertilizing vertebrate. G3: Genes Genom. Genet. 4, 1095-1106. (10.1534/g3.115.022699) PubMed DOI PMC

Liu H, Todd E, Lokman M, Laamm MS, Godwin JR, Gemmell NJ. 2017. Sexual plasticity: a fishy tale. Mol. Reprod. Dev. 84, 171-194. (10.1002/mrd.22691) PubMed DOI

Baroiller JF, D'Cotta H. 2016. The reversible sex of gonochoristic fish: insights and consequences. Sex. Dev. 10, 242-266. (10.1159/000452362) PubMed DOI

Martyniuk CJ, Feswick A, Munkittrick KR, Dreier DA, Denslow ND. 2020. Twenty years of transcriptomics, 17alpha-ethinylestradiol, and fish. Gen. Comp. Endocrinol. 286, 113325. (10.1016/j.ygcen.2019.113325) PubMed DOI PMC

Nishimura T, Tanaka M. 2016. The mechanism of germline sex determination in vertebrates. Biol. Reprod. 95, 30. (10.1095/biolreprod.115.138271) PubMed DOI

Nakamura S, Watakabe I, Nishimura T, Picard J-Y, Toyoda A, Taniguchi Y, Di Clemente N, Tanaka M. 2012. Hyperproliferation of mitotically active germ cells due to defective anti-Müllerian hormone signaling mediates sex reversal in medaka. Development 139, 2283-2287. (10.1242/dev.076307) PubMed DOI

Penman DJ, Piferrer F. 2008. Fish gonadogenesis. Part I: genetic and environmental mechanisms of sex determination. Rev. Fisher. Sci. 16(Suppl. 1), 16-34. (10.1080/10641260802324610) DOI

Ser JR, Roberts RB, Kocher T. 2010. Multiple interacting loci control sex determination in lake Malawi cichlids. Evolution 64, 486-501. (10.1111/j.1558-5646.2009.00871.x) PubMed DOI PMC

Moore EC, Roberts RB. 2013. Polygenic sex determination. Curr. Biol. 23, R510-R513. (10.1016/j.cub.2013.04.004) PubMed DOI

Sember A, Nguyen P, Perez MF, Altmanová M, Ráb P, Cioffi M de B. 2021. Multiple sex chromosomes in teleost fishes from a cytogenetic perspective: state of the art and future challenges. Phil. Trans. R. Soc. B 376, 20200098. (10.1098/rstb.2020.0098) PubMed DOI PMC

Yamamoto Y, Zhang Y, Sarida M, Hattori RS, Strüssmann CA. 2014. Coexistence of genotypic and temperature-dependent sex determination in pejerrey Odontesthes bonariensis. PLoS ONE 9, e102574. (10.1371/journal.pone.0102574) PubMed DOI PMC

Guiguen Y, Fostier A, Herpin A. 2019. Sex determination and differentiation in fish. In Sex control in aquaculture. vol. 1 (eds Wang H-P, Pifferrer F, Chen S-L, Shen Z-G), pp. 35-63. Hoboken, NJ: John Wiley & Sons.

Yano A, et al. 2012. An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss. Curr. Biol. 22, 1423-1428. (10.1016/j.cub.2012.05.045) PubMed DOI

Rafati N, et al. . 2020. Reconstruction of the birth of a male sex chromosome present in Atlantic herring. Proc. Natl Acad. Sci. USA 117, 24 359-24 368. (10.1073/pnas.2009925117) PubMed DOI PMC

Kamiya T, et al. 2012. A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (fugu). PLoS Genet. 8, e1002798. (10.1371/journal.pgen.1002798) PubMed DOI PMC

Lamatsch DK, Stöck M.. 2009. Sperm-dependent parthenogenesis and hybridogenesis in teleost fishes. Chapter 19. In Lost sex – the evolutionary biology of parthenogenesis (eds Schoen I, Martens K, van Dijk P), pp. 399-432. Berlin, Germany: Springer.

Biscotti M, Gerdol M, Canapa A, Forconi M, Olmo E, Pallavicini A, Barucca M, Schartl M. 2016. The lungfish transcriptome: a glimpse into molecular evolution events at the transition from water to land. Sci. Rep. 6, 21571. (10.1038/srep21571) PubMed DOI PMC

Pouyaud L, Wirjoatmodjo S, Rachmatika I, Tjakrawidjaja A, Hadiaty R, Hadie W. 1999. Une nouvelle espèce de coelacanthe. Preuves génétiques et morphologiques. C. R. Acad. Sci. 322, 261-267. (10.1016/S0764-4469(99)80061-4) PubMed DOI

Smith CL, Rand CS, Schaeffer B, Atz JW. 1975. Latimeria, the living coelacanth, is ovoviviparous. Science 190, 1105-1106. (10.1126/science.190.4219.1105) DOI

Wourms JP, Atz JW, Stribling MD.. 1991. Viviparity and the maternal-embryonic relationship in the coelacanth Latimeria chalumnae. In The biology of Latimeria chalumnae and evolution of coelacanths. Developments in environmental biology of fishes, vol. 12 (eds Musick JA, Bruton MN, Balon EK), pp. 225-248. Dordrecht, The Netherlands: Springer.

Amemiya CT, et al. . 2013. The African coelacanth genome provides insights into tetrapod evolution. Nature 496, 311-316. (10.1038/nature12027) PubMed DOI PMC

Forconi M, et al. 2013. Characterization of sex determination and sex differentiation genes in Latimeria. PLoS ONE 8, e56006. (10.1371/journal.pone.0056006) PubMed DOI PMC

Biscotti MA, Adolfi MC, Barucca M, Forconi M, Pallavicini A, Gerdol M, Canapa A, Costantini M. 2018. A comparative view on sex differentiation and gametogenesis genes in lungfish and coelacanths. Genome Biol. Evol. 10, 1430-1444. (10.1093/gbe/evy101) PubMed DOI PMC

Brinkmann H, Venkatesh B, Brenner S, Meyer A. 2004. Nuclear protein-coding genes support lungfish and not the coelacanth as the closest living relatives of land vertebrates. Proc. Natl Acad. Sci. USA 101, 4900-4905. (10.1073/pnas.0400609101) PubMed DOI PMC

Kershaw F, Joss GH, Joss JMP. 2009. Early development in sarcopterygian fishes. In Development of non-teleost fishes (eds Kunz YW, Luer CA, Kapoor BG), pp. 275-289. Enfield, NJ: Scientific Publication.

Meyer A, et al. . 2021. Giant lungfish genome elucidates the conquest of land by vertebrates. Nature 590, 284-299. (10.1038/s41586-021-03198-8). PubMed DOI PMC

Wang K, et al. . 2021. African lungfish genome sheds light on the vertebrate water-to-land transition. Cell 184, 1362-1376. (10.1016/j.cell.2021.01.047) PubMed DOI

Betancur RR, et al. 2013. The tree of life and a new classification of bony fishes. PLoS Curr. Tree Life 1. (10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288) PubMed DOI PMC

Pyron A. 2011. Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. Syst. Biol. 60, 4466-4481. (10.1093/sysbio/syr047) PubMed DOI

Bossuyt F, Roelants K. 2009. Anura. In The timetree of life (eds Hedges SB, Kumar S), pp. 357-364. New York, NY: Oxford University Press.

Pyron RA, Wiens JJ. 2011. A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol. Phylogenet. Evol. 61, 543-583. (10.1016/j.ympev.2011.06.012) PubMed DOI

Feng Y-J, Blackburn DC, Liang D, Hillis DM, Wake DB, Cannatella DC, Zhang P. 2017. Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous–Paleogene boundary. Proc. Natl Acad. Sci. USA 114, E5864-E5870. (10.1073/pnas.1704632114) PubMed DOI PMC

San Mauro D, Gower DJ, Müller H, Loader SP, Zardoya R, Nussbaum RA, Wilkinson M. 2014. Life-history evolution and mitogenomic phylogeny of caecilian amphibians. Mol. Phylogenet. Evol. 73, 177-189. (10.1016/j.ympev.2014.01.009) PubMed DOI

Dünker N, Wake MH, Olson WM. 2000. Embryonic and larval development in the caecilian Ichthyophis kohtaoensis (Amphibia, Gymnophiona) a staging table. J. Morph. 243, 3-34. (10.1002/(SICI)1097-4687(200001)243:1<3::AID-JMOR2>3.0.CO;2-D) PubMed DOI

AmphibiaWeb. See www.amphibiaweb.org (accessed December 2020).

Burgin CJ, Colella JP, Kahn PL, Upham NS. 2018. How many species of mammals are there? J. Mammal. 99, 1-11. (10.1093/jmammal/gyz052) DOI

Mammal Diversity Database. 2020. Mammal Diversity Database (Version 1.2) (Dataset). Zenodo. Accessed December 2020. (10.5281/zenodo.4139818) DOI

Liedtke HC, Gower DJ, Wilkinson M, Gomez-Mestre I. 2018. Macroevolutionary shift in the size of amphibian genomes and the role of life history and climate. Nat. Ecol. Evol. 2, 1792-1799. (10.1038/s41559-018-0674-4) PubMed DOI

Li J, Yu H, Wang W, Fu C, Zhang W, Han F, Wu H. 2019. Genomic and transcriptomic insights into molecular basis of sexually dimorphic nuptial spines in Leptobrachium leishanense. Nat. Comm. 10, 5551. (10.1038/s41467-019-13531-5) PubMed DOI PMC

Gomez-Mestre I, Pyron RA, Wiens JJ. 2011. Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs. Evolution 66, 3687-3700. (10.1111/j.1558-5646.2012.01715.x) PubMed DOI

Buckley D, Alcobendas M, Garcia-Paris M, Wake MH. 2007. Heterochrony, cannibalism, and the evolution of viviparity in Salamandra salamandra. Evol. Dev. 9, 105-115. (10.1111/j.1525-142X.2006.00141.x) PubMed DOI

Wake MH. 1977. The reproductive biology of caecilians. An evolutionary perspective. In The reproductive biology of amphibians (eds Taylor DH, Guttman SI), pp. 73-100. Oxford, OH: Miami University.

Exbrayat J-M. 2009. Oogenesis and female reproductive system in Gymnophiona. In Reproduction in amphibians (ed. Ogielska M), pp. 305-342. Enfield, NH: Scientific Publication.

Wake MH. 1989. Phylogenesis of direct development and viviparity in vertebrates. In Complex organismal functions: integration and evolution in vertebrates (eds Wake D, Roth G), pp. 235-250. New York, NY: John Wiley & Sons Ltd.

Hoffman A, et al. . 2015. Genetic diversity and distribution patterns of diploid and polyploid hybrid water frog populations (Pelophylax esculentus complex) across Europe. Mol. Ecol. 24, 4371-4391. (10.1111/mec.13325) PubMed DOI

Schmid M, Evans BJ, Bogart JP. 2015. Polyploidy in amphibia. Cytogenet. Genome Res. 145, 315-330. (10.1159/000431388) PubMed DOI

Grafe TU, Linsenmair KE. 1989. Protogynous sex change in the reed frog (Hyperolius viridiflavus). Copeia 1989, 1024-1029. (10.2307/1445989) DOI

Schmid M, Nanda I, Steinlein C, Kausch K, Epplen JT, Haaf T. 1991. Sex-determining mechanisms and sex chromosomes in amphibia. In Amphibian cytogenetics and evolution (eds Green DM, Sessions SK), pp. 393-430. San Diego, CA: Academic Press.

Eggert C. 2004. Sex determination: the amphibian models. Reprod. Nutr. Dev. 44, 539-549. (10.1051/rnd:2004062) PubMed DOI

Hillis DM, Green DM. 1990. Evolutionary changes of heterogametic sex in the phylogenetic history of amphibians. J. Evol. Biol. 3, 49-64. (10.1046/j.1420-9101.1990.3010049.x) DOI

Ito M. 2018. Sex determination and differentiation in frogs. Reproductive and developmental strategies. Diversity and commonality in animals (eds Kobayashi K, Kitano T, Iwao Y, Kondo M), pp. 349-366. Tokyo, Japan: Springer.

Nakamura M. 2010. The mechanism of sex determination in vertebrates: are sex steroids the key-factor? J. Exp. Zool . 313A, 381-398. (10.1002/jez.616) PubMed DOI

Green DM. 1988. Cytogenetics of the endemic New Zealand frog, Leiopelma hochstetteri: extraordinary supernumerary chromosome variation and a unique sex-chromosome system. Chromosoma 97, 55-77. (10.1007/BF00331795) PubMed DOI

Roco AS, Olmstead AW, Degitz SJ, Amano T, Zimmerman LB, Bullejos M. 2015. Coexistence of Y, W, and Z sex chromosomes in Xenopus tropicalis. Proc. Natl Acad. Sci. USA 112, E4752-E4761. (10.1073/pnas.1505291112) PubMed DOI PMC

Gazoni T, Haddad CFB, Narimatsu H, Cabral-de-Mello DC, Lyra ML, Parise-Maltempi PP. 2018. More sex chromosomes than autosomes in the Amazonian frog Leptodactylus pentadactylus. Chromosoma 127, 269-278. (10.1007/s00412-018-0663-z) PubMed DOI

Schmid M, Steinlein C. 2001. Sex chromosomes, sex-linked genes, and sex determination in the vertebrate class Amphibia. In Genes and mechanisms in vertebrate sex determination (eds Scherer G, Schmid M), pp. 143-176. Basel, Switzerland: Birkhäuser Verlag, PubMed

Sessions SK, Bizjak Malib L, Green DM, Trifonov V, Ferguson-Smith M. 2016. Evidence for sex chromosome turnover in proteid salamanders. Cytogenet. Genome Res. 148, 305-313. (10.1159/000446882) PubMed DOI

Denton RD, Kudra RS, Malcom JW, Du Preez L, Malone JH.. 2018. The African bullfrog (Pyxicephalus adspersus) genome unites the two ancestral ingredients for making vertebrate sex chromosomes. BioRxiv (10.1101/329847) DOI

Furman BLS, Cauret CMS, Knytl M, Song X-Y, Premachandra T, Ofori-Boateng C, Jordan DC, Horb ME, Evans BJ. 2020. A frog with three sex chromosomes that co-mingle together in nature: Xenopus tropicalis has a degenerate W and a Y that evolved from a Z chromosome. PLoS Genet. 16, e1009121. (10.1371/journal.pgen.1009121) PubMed DOI PMC

Schmid M, Steinlein C. 2018. Chromosome banding in Amphibia. XXXVII. Y-Autosome translocations in Anura. Cytogenet. Genome Res. 154, 153-180. (10.1159/000487907) PubMed DOI

Wallace H. 1994. The balanced lethal system of crested newts. Heredity 73, 41-46. (10.1038/hdy.1994.96) DOI

Sessions SK, Macgregor HC, Schmid M, Haaf T. 1988. Cytology, embryology and evolution of the developmental arrest syndrome in newts of the genus Triturus (Caudata: Salamandridae). J. Exp. Zool. 248, 321-334. (10.1002/jez.1402480311) PubMed DOI

Green DM, Sessions SK (eds). 1991. Amphibian cytogenetics and evolution. San Diego, CA: Academic Press.

Keinath, MC, Timoshevskaya N, Timoshevskiy VA, Voss R, Smith JJ. 2018. Miniscule differences between sex chromosomes in the giant genome of a salamander. Sci. Rep. 8, 17882. (10.1038/s41598-018-36209-2) PubMed DOI PMC

Smith JJ, Voss SR. 2009. Amphibian sex determination: segregation and linkage analysis using members of the tiger salamander species complex (Ambystoma mexicanum and A. t. tigrinum). Heredity 102, 542– 548. (10.1038/hdy.2009.15). PubMed DOI PMC

Hu Q, Chang C, Wang Q, Tian H, Qiao Z, Wang L, Meng Y, Xu C, Xiao H. 2019. Genome-wide RAD sequencing to identify a sex-specific marker in Chinese giant salamander Andrias davidianus . BMC Genomics 20, 415. (10.1186/s12864-019-5771-5) PubMed DOI PMC

Hime PM, Briggler JT, Reece JS, Weisrock DW. 2019. Genomic data reveal conserved female heterogamety in giant salamanders with gigantic nuclear genomes. G3: Genes Genom. Genet. 9, 3467-3476. (10.1534/g3.119.400556) PubMed DOI PMC

Stöck M, et al. 2019. Shedding light on a secretive Tertiary urodelean relict: Hynobiid salamanders (Paradactylodon persicus s.l.) from Iran, illuminated by phylogeographic, developmental, and transcriptomic data. Genes 10, 306 (10.3390/genes10040306) PubMed DOI PMC

Biscotti MA, Carducci F, Barucca M, Gerdol M, Pallavicini A, Schartl M, Canapa A, Adolfi MC. 2020. The transcriptome of the newt Cynops orientalis provides new insights into evolution and function of sexual gene networks in sarcopterygians. Sci. Rep. 10, 5445. (10.1038/s41598-020-62408-x) PubMed DOI PMC

Venu G, Venkatachalaiah G. 2005. Karyology of two species of caecilians (Caeciliidae: Gymnophiona): evolution through tandem fusion and sex chromosome dimorphism. Caryologia 58, 140-151. (10.1080/00087114.2005.10589444) DOI

Evans BJ, Pyron RA, Wiens JJ. 2012. Polyploidization and sex chromosome evolution in amphibians. In Polyploidy and genome evolution (eds Soltis PS, Soltis DE), pp. 385-410. Berlin, Germany: Springer.

Stöck M, et al. 2011. Ever-young sex chromosomes in European tree frogs. PLoS Biol. 9, e1001062. (10.1371/journal.pbio.1001062) PubMed DOI PMC

Rodrigues N, Studer T, Dufresnes C, Perrin N. 2018. Sex-chromosome recombination in common frogs brings water to the fountain-of-youth. Mol. Biol. Evol. 35, 942-948. (10.1093/molbev/msy057) PubMed DOI

Stöck M, Savary R, Betto-Colliard C, Biollay S, Jourdan-Pineau H, Perrin N. 2013. Low rates of X-Y recombination, not turnovers, account for homomorphic sex chromosomes in several diploid species of Palearctic green toads (Bufo viridis subgroup). J. Evol. Biol. 3, 674-682. PubMed

Tamschick S, Rozenblut-Kościsty B, Ogielska M, Lehmann A, Lymberakis P, Hoffmann F, Lutz I, Kloas W, Stöck M. 2016. Sex reversal assessments reveal different vulnerability to endocrine disruption between deeply diverged anuran lineages. Sci. Rep. 6, 23825. (10.1038/srep23825) PubMed DOI PMC

Ponse K. 1941. La proportion sexuelle dans la descendance issue des œufs produits par l'organe de Bidder des crapauds femelles. Rev. Suisse Zool. 48, 541-544.

Ponse K. 1949. La différentiation du sexe et l'intersexualité chez les vértebrés. Lausanne, Switzerland: F. Rouge.

Olmstead AW, Lindberg-Livingston A, Degitz SJ. 2010. Genotyping sex in the amphibian, Xenopus (Silurana) tropicalis, for endocrine disruptor bioassays. Aquatic Toxicol. 98, 60-66. (10.1016/j.aquatox.2010.01.012) PubMed DOI

Bewick AJ, Anderson DW, Evans BJ. 2013. A large pseudoautosomal region on the sex chromosomes of the frog Silurana tropicalis. Genome Biol. Evol. 5, 1087-1098. (10.1093/gbe/evt073) PubMed DOI PMC

Mitros T, et al. . 2019. A chromosome-scale genome assembly and dense genetic map for Xenopus tropicalis. Dev. Biol. 452, 8-20. (10.1016/j.ydbio.2019.03.015) PubMed DOI

Yoshimoto S, et al. . 2008. A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proc. Natl Acad. Sci. USA 105, 2469-2474. (10.1073/pnas.0712244105) PubMed DOI PMC

Bewick AJ, Anderson DW, Evans BJ. 2011. Evolution of the closely related, sex-related genes dm-w and Dmrt1 in African clawed frogs (Xenopus). Evolution 65, 698-712. (10.1111/j.1558-5646.2010.01163.x) PubMed DOI

Furman BLS, Evans BJ. 2016. Sequential turnovers of sex chromosomes in African clawed frogs (Xenopus) suggest some genomic regions are good at sex determination. G3: Genes Genom. Genet. 6, 3625-3633. (10.1534/g3.116.033423) PubMed DOI PMC

Mawaribuchi S, et al. 2017. Sex chromosome differentiation and the W- and Z-specific loci in Xenopus laevis. Dev. Biol. 426, 393-400. (10.1016/j.ydbio.2016.06.015) PubMed DOI

Brelsford A, et al. 2013. Homologous sex chromosomes in three deeply divergent anuran species. Evolution 67, 2434-2440. (10.1111/evo.12151) PubMed DOI

Brelsford A, Dufresnes C, Perrin N. 2016. Trans-species variation in Dmrt1 is associated with sex determination in four European tree-frog species. Evolution 70, 840-847. (10.1111/evo.12891) PubMed DOI

Ogita Y, et al. . 2020. Parallel evolution of two dmrt1-derived genes, dmy and dm-W, for vertebrate sex determination. iScience 23, 100757. (10.1016/j.isci.2019.100757) PubMed DOI PMC

Miura I. 2008. An evolutionary witness: the frog Rana rugosa underwent change of heterogametic sex from XY male to ZW female. Sex. Dev. 1, 323-331. (10.1159/000111764) PubMed DOI

Uno Y, Nishida C, Oshima Y, Yokoyama S, Miura I. 2008. Comparative chromosome mapping of sex-linked genes and identification of sex chromosomal rearrangements in the Japanese wrinkled frog (Rana rugosa, Ranidae) with ZW and XY sex chromosome systems. Chromosome Res. 16, 637-647. (10.1007/s10577-008-1217-7) PubMed DOI

Miura I. 2017. Sex determination and sex chromosomes in Amphibia. Sex. Dev. 11, 298-306. (10.1159/000485270) PubMed DOI

Gemmell NJ, et al. . 2020. The tuatara genome: insights into vertebrate evolution from the sole survivor of an ancient reptilian order. Nature 584, 403-409. (10.1038/s41586-020-2561-9) PubMed DOI PMC

Janes DE, et al. 2014. Molecular evolution of Dmrt1 accompanies change of sex-determining mechanisms in reptilia. Biol. Lett. 10, 20140809. (10.1098/rsbl.2014.0809) PubMed DOI PMC

Cree A, Thompson MB, Daugherty CH. 1995. Tuatara sex determination. Nature 375, 543. (10.1038/375543a0) PubMed DOI

Uetz P (ed.) 2020. The Reptile Database. See http://www.reptile-database.org (accessed December 2020).

Zheng Y, Wiens JJ. 2016. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol. Phylogenet. Evol. 94, 537-547. (10.1016/j.ympev.2015.10.009) PubMed DOI

Organ CL, Moreno GR, Edwards SV. 2008. Three tiers of genome evolution in reptiles. Integr. Comp. Biol. 48, 494-504. (10.1093/icb/icn046) PubMed DOI PMC

Shine R. 1983. Reptilian reproductive modes: the oviparity-viviparity continuum. Herpetologica 39, 1-8.

Darevsky IS. 1958. Natural parthenogenesis in certain subspecies of rock lizards (Lacerta saxicola Eversmann). Dokl. Akad. Nauk SSSR Biol. Sci. 122, 730-732.

Kearney M, Fujita MK, Ridenour J. 2009. Lost sex in the reptiles: constraints and correlations. In Lost sex: the evolutionary biology of parthenogenesis (eds Schön I, Martens K, van Dijk P), pp. 447-474. Dordrecht, The Netherlands: Springer.

Fujita MK, Moritz C. 2009. Origin and evolution of parthenogenetic genomes in lizards: current state and future directions. Cytogenet. Genome Res. 127, 261-272. (10.1159/000295177) PubMed DOI

Lutes AA, Baumann DP, Neaves WB, Baumann P.. 2011. Laboratory synthesis of an independently reproducing vertebrate species. Proc. Natl Acad. Sci. USA 108, 9910-9915. (10.1073/pnas.1102811108) PubMed DOI PMC

Moritz C, Bi K.. 2011. Spontaneous speciation by ploidy elevation: laboratory synthesis of a new clonal vertebrate. Proc. Natl Acad. Sci. USA 108, 9733-9734. (10.1073/pnas.1106455108) PubMed DOI PMC

Ezaz T, Sarre SD, O'Meally D, Graves JAM, Georges A. 2009. Sex chromosome evolution in lizards: independent origins and rapid transitions. Cytogenet. Genome Res. 127, 249-260. (10.1159/000300507) PubMed DOI

Valenzuela N. 2018. Causes and consequences of evolutionary transitions in the level of phenotypic plasticity of reptilian sex determination. In Transitions between sexual systems, (ed. Leonard J), pp. 345-363. Cham, Switzerland: Springer.

Gamble T, Coryell J, Ezaz T, Lynch J, Scantlebury DP, Zarkower D. 2015. Restriction site-associated DNA sequencing (RAD-seq) reveals an extraordinary number of transitions among gecko sex-determining systems. Mol. Biol. Evol. 32, 1296-1309. (10.1093/molbev/msv023) PubMed DOI

Kostmann A, Kratochvíl L, Rovatsos M.. 2021. Poorly differentiated XX/XY sex chromosomes are widely shared across skink radiation. Proc. R. Soc. B 288, 20202139. (10.1098/rspb.2020.2139) PubMed DOI PMC

Pokorná M, Altmanová M, Kratochvíl L. 2014. Multiple sex chromosomes in the light of female meiotic drive in amniote vertebrate. Chromosome Res. 22, 35-44. (10.1007/s10577-014-9403-2) PubMed DOI

Pennell MW, Kirkpatrick M, Otto SP, Vamosi JC, Peichel CL, Valenzuela N, Kitano J. 2015. Y Fuse? Sex chromosome fusions in fishes and reptiles. PLoS Genet. 11, e1005237. (10.1371/journal.pgen.1005237) PubMed DOI PMC

Leonard JL. 2013. Williams' paradox and the role of phenotypic plasticity in sexual systems. Integr. Comp. Biol. 53, 671-688. (10.1093/icb/ict088) PubMed DOI

Booth W, Schuett GW. 2016. The emerging phylogenetic pattern of parthenogenesis in snakes. Biol. J. Linn. Soc. Lond. 118, 172-186. (10.1111/bij.12744) DOI

Kratochvíl L, Vukić J, Červenka J, Kubička L, Johnson Pokorná M, Kukačková D, Rovatsos M, Piálek L. 2020. Mixed-sex offspring produced via cryptic parthenogenesis in a lizard. Mol. Ecol. 9, 4118-4127 (10.1111/mec.15617) PubMed DOI

Rovatsos M, Pokorná M, Altmanová M, Kratochvíl L. 2014. Cretaceous park of sex determination: sex chromosomes are conserved across iguanas. Biol. Lett. 10, 20131093. (10.1098/rsbl.2013.1093) PubMed DOI PMC

Rovatsos M, Vukić J, Altmanová M, Johnson Pokorná M, Moravec J, Kratochvíl L. 2016. Conservation of sex chromosomes in lacertid lizards. Mol. Ecol. 25, 3120-3126. PubMed

Augstenová B, Johnson Pokorná M, Altmanová M, Frynta D, Rovatsos M, Kratochvíl L. et al. 2018. ZW, XY, and yet ZW: sex chromosome evolution in snakes even more complicated. Evolution 72, 1701-1707. (10.1111/evo.13543) PubMed DOI

Rovatsos M, Rehák I, Velenský P, Kratochvíl L. 2019. Shared ancient sex chromosomes in varanids, beaded lizards, and alligator lizards. Mol. Biol. Evol. 36, 1113-1120. (10.1093/molbev/msz024) PubMed DOI

Iannucci A, et al. . 2019. Conserved sex chromosomes and karyotype evolution in monitor lizards (Varanidae). Heredity 123, 215-227. (10.1038/s41437-018-0179-6) PubMed DOI PMC

Nielsen SV, Banks JL, Diaz RE Jr, Trainor PA, Gamble T. 2018. Dynamic sex chromosomes in Old World chameleons (Squamata: Chamaeleonidae). J. Evol. Biol. 31, 484-490. (10.1111/jeb.13242) PubMed DOI

Gamble T. 2010. A review of sex determining mechanisms in geckos (Gekkota: Squamata). Sex. Dev. 4, 88-103. (10.1159/000289578) PubMed DOI PMC

Gamble T, Castoe TA, Nielsen SV, Banks JL, Card DC, Schield DR, Schuett GW, Booth W. 2017. The discovery of XY sex chromosomes in a Boa and Python. Curr. Biol. 27, 2148-2153. (10.1016/j.cub.2017.06.010) PubMed DOI

Vicoso B, Emerson JJ, Zektser Y, Mahajan S, Bachtrog D. 2013. Comparative sex chromosome genomics in snakes: differentiation, evolutionary strata, and lack of global dosage compensation. PLoS Biol. 11, e1001643. (10.1371/journal.pbio.1001643) PubMed DOI PMC

Lind AL, et al. . 2019. Genome of the Komodo dragon reveals adaptations in the cardiovascular and chemosensory systems of monitor lizards. Nat. Ecol. Evol. 3, 1241-1252. (10.1038/s41559-019-0945-8) PubMed DOI PMC

Rupp SM, Webster TH, Olney KC, Hutchins ED, Kusumi K, Wilson Sayres MA. 2017. Evolution of dosage compensation in Anolis carolinensis, a reptile with XX/XY chromosomal sex determination. Genome Biol. Evol. 9, 231-240. (10.1093/gbe/evw263) PubMed DOI PMC

Marin R, et al. 2017. Convergent origination of a Drosophila-like dosage compensation mechanism in a reptile lineage. Genome Res. 27, 1974-1987. (10.1101/gr.223727.117) PubMed DOI PMC

Acosta A, et al. 2019. Corytophanids replaced the pleurodont XY system with a new pair of XY chromosomes. Genome Biol. Evol. 9, 666-2677. (10.1093/gbe/evz196) PubMed DOI PMC

Rovatsos M, Gamble T, Nielsen SV, Georges A, Ezaz T, Kratochvíl L. 2021. Do male and female heterogamety really differ in expression regulation? Lack of global dosage balance in pygopodid geckos. Phil. Trans. R. Soc. B 376, 20200102. (10.1098/rstb.2020.0102) PubMed DOI PMC

Nielsen SV, Guzmán-Méndez IA, Gamble T, Blumer M, Pinto BJ, Kratochvíl L, Rovatsos M. 2015. Escaping the evolutionary trap? Sex chromosome turnover in basilisks and related lizards (Corytophanidae: Squamata). Biol. Lett. 15, 20190498. (10.1098/rsbl.2019.0498) PubMed DOI PMC

Wang Z, et al. 2013. The draft genomes of soft­shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat. Gen. 45, 701-708. (10.1038/ng.2615) PubMed DOI PMC

Shaffer B, McCartney-Melstad E, Near TJ, Mountac GG, Spinks PQ. 2017. Phylogenomic analyses of 539 highly informative loci dates a fully resolved time tree for the major clades of living turtles (Testudines). Mol. Phylogenet. Evol. 115, 7-15. (10.1016/j.ympev.2017.07.006) PubMed DOI

Kasai F, O'Brien PCM, Ferguson-Smith MA. 2012. Reassessment of genome size in turtle and crocodile based on chromosome measurement by flow karyotyping: close similarity to chicken. Biol. Lett. 8, 631-635. (10.1098/rsbl.2012.0141) PubMed DOI PMC

Kawagoshi T, Nishida C, Matsuda Y. 2012. The origin and differentiation process of X and Y chromosomes of the black marsh turtle (Siebenrockiella crassicollis, Geoemydidae, Testudines). Chromosome Res. 20, 95-110. (10.1007/s10577-011-9267-7) PubMed DOI

Kawagoshi T, Uno Y, Matsubara K, Matsuda Y, Nishida C. 2009. The ZW micro-sex chromosomes of the Chinese soft-shelled turtle (Pelodiscus sinensis, Trionychidae, Testudines) have the same origin as chicken chromosome 15. Cytogenet. Genome Res. 125, 125-131. (10.1159/000227837) PubMed DOI

Badenhorst D, Stanyon R, Engstrom T, Valenzuela N. 2013. A ZZ/ZW microchromosome system in the spiny softshell turtle, Apalone spinifera, reveals an intriguing sex chromosome conservation in Trionychidae. Chromosome Res. 21, 137-147. (10.1007/s10577-013-9343-2) PubMed DOI

Bista B, Valenzuela N. 2020. Turtle insights into the evolution of the reptilian karyotype and the genomic architecture of sex determination. Genes 11, 416 (10.3390/genes11040416) PubMed DOI PMC

Mazzoleni S, et al. . 2020. Sex is determined by XX/XY sex chromosomes in Australasian side-necked turtles (Testudines: Chelidae). Sci. Rep. 10, 4276. (10.1038/s41598-020-61116-w) PubMed DOI PMC

Rovatsos M, Praschag P, Fritz U, Kratochvil L. 2017. Stable Cretaceous sex chromosomes enable molecular sexing in softshell turtles (Testudines: Trionychidae). Sci. Rep. 7, 42150. (10.1038/srep42150) PubMed DOI PMC

Lee LS, Montiel EE, Valenzuela N. 2019. Discovery of putative XX/XY male heterogamety in Emydura subglobosa turtles exposes a novel trajectory of sex chromosome evolution in Emydura. Cytogenet. Genome Res. 158, 160-169. (10.1159/000501891) PubMed DOI

Rovatsos M, Kratochvil L. 2021. Evolution of dosage compensation does not depend on genomic background. Mol. Ecol. 30, 1836-1845. (10.1101/2020.08.14.251801) PubMed DOI

Bista B, Wu Z, Literman R, Valenzuela N. 2021. Thermosensitive sex chromosome dosage compensation in ZZ/ZW softshell turtles, Apalone spinifera. Phil. Trans. R. Soc. B 376, 20200101. (10.1098/rstb.2015.2020.0101) PubMed DOI PMC

Radhakrishnan S, Valenzuela N. 2017. Chromosomal context affects the molecular evolution of sex-linked genes and their autosomal counterparts in turtles and other vertebrates. J. Hered. 108, 720-730. PubMed

Literman R, Burret A, Bista B, Valenzuela N. 2018. Putative independent evolutionary reversals from genotypic to temperature-dependent sex determination are associated with accelerated evolution of sex-determining genes in turtles. J. Mol. Evol. 86, 11-26. PubMed

Eggers S, Ohnesorg T, Sinclair A. 2014. Genetic regulation of mammalian gonad development. Nat. Rev. Endocrinol. 10, 673-683. (10.1038/nrendo.2014.163) PubMed DOI

Smith CA. 2010. Sex determination in birds: a review. Emu 110, 364-377.

Lee LS, Montiel Jiménez EE, Navarro-Domínguez BM, Valenzuela N. 2019. Chromosomal rearrangements during turtle evolution altered the synteny of genes involved in vertebrate sex determination. Cytogenet. Genome Res. 157, 77-88. (10.1159/000497302). PubMed DOI

Czerwinski M, Natarajan A, Barske L, Looger LL, Capel B. 2016. A timecourse analysis of systemic and gonadal effects of temperature on sexual development of the red-eared slider turtle Trachemys scripta elegans. Dev. Biol. 420, 166-177. (10.1016/j.ydbio.2016.09.018) PubMed DOI

Radhakrishnan S, Literman R, Neuwald J, Severin A, Valenzuela N. 2017. Transcriptomic responses to environmental temperature by turtles with temperature-dependent and genotypic sex determination assessed by RNAseq inform the genetic architecture of embryonic gonadal development. PLoS ONE 12, e0172044. (10.1371/journal.pone.0172044) PubMed DOI PMC

Radhakrishnan S, Literman R, Neuwald JL, Valenzuela N. 2018. Thermal response of epigenetic genes informs turtle sex determination with and without sex chromosomes. Sex. Dev. 12, 308-319. (10.1159/000492188) PubMed DOI

Radhakrishnan S, Literman R, Mizoguchi BA, Valenzuela N. 2017. MeDIPseq and nCpG analyses illuminate sexually dimorphic methylation of gonadal development genes with high historic methylation in turtle hatchlings with temperature-dependent sex determination. Epigenetics Chromatin 10, 1-16. (10.1186/s13072-017-0136-2) PubMed DOI PMC

Ge C, Ye J, Weber C, Sun W, Zhang H, Zhou Y, Cai C, Qian G, Capel B. 2018. The histone demethylase Kdm6b regulates temperature-dependent sex determination in a turtle species. Science 360, 645-648. (10.1126/science.aap8328) PubMed DOI

Weber C, Capel B. 2021. Sex determination without sex chromosomes. Phil. Trans. R. Soc. B 376, 20200109. (10.1098/rstb.2020.0109) PubMed DOI PMC

Chiari Y, Cahais V, Galtier N, Delsuc F. 2012. Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biol. 10, 1-14. (10.1186/1741-7007-10-65) PubMed DOI PMC

Green RE, Braun EL, Armstrong J, Earl D, Nguyen N. 2014. Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science 346, 1254449. (10.1126/science.1254449) PubMed DOI PMC

Brochu CA. 2003. Phylogenetic approaches toward crocodylian history. Annu. Rev. Earth Planet. Sci. 31, 357-397. (10.1146/annurev.earth.31.100901.141308) DOI

Wan Q-H, et al. 2013. Genome analysis and signature discovery for diving and sensory properties of the endangered Chinese alligator. Cell Res. 23, 1091-1105. (10.1038/cr.2013.104) PubMed DOI PMC

Lewis JL, FitzSimmons NN, Jamerlan ML, Buchan JC, Grigg GC. 2013. Mating systems and multiple paternity in the estuarine crocodile (Crocodylus porosus). J. Herpetol. 47, 24-33. (10.1670/10-303) DOI

González EJ, Martínez-López M, Morales-Garduza MA, García-Morales R, Charruau P, Gallardo-Cruz JA. 2019. The sex-determination pattern in crocodilians: a systematic review of three decades of research. J. Anim. Ecol. 88, 1417-1427. (10.1111/1365-2656.13037) PubMed DOI

Smith CA, Joss JMP. 1994. Steroidogenic enzyme activity and ovarian differentiation in the saltwater crocodile, Crocodylus porosus. Gen. Comp. Endocrinol. 93, 232-245. (10.1006/gcen.1994.1027) PubMed DOI

Smith CA, Elf PK, Lang JW, Joss JMP. 1995. Aromatase enzyme activity during gonadal sex differentiation in alligator embryos. Differentiation 58, 281-290. (10.1046/j.1432-0436.1995.5840281.x) DOI

Yatsu R, et al. 2016. RNA-seq analysis of the gonadal transcriptome during Alligator mississippiensis temperature-dependent sex determination and differentiation. BMC Genomics 17, 1. (10.1186/s12864-016-2396-9) PubMed DOI PMC

Deveson IW, Holleley CE, Blackburn J, Graves JAM, Mattick JS, Waters PD, Georges A. 2017. Differential intron retention in Jumonji chromatin modifier genes is implicated in reptile temperature-dependent sex determination. Sci. Adv. 3, e1700731. (10.1126/sciadv.1700731) PubMed DOI PMC

Lin JQ, Zhou Q, Yang HQ, Fang LM, Tang K-Y, Sun L, Wan Q-H, Fang S-G. 2018. Molecular mechanism of temperature-dependent sex determination and differentiation in Chinese alligator revealed by developmental transcriptome profiling. Sci. Bull. 63, 209-212. (10.1016/j.scib.2018.01.004) PubMed DOI

AVIBASE. 2020. See https://avibase.bsc-eoc.org/avibase.jsp?lang=EN.

Zhang G. 2018. The bird's-eye view on chromosome evolution. Genome Biol. 19, 201. (10.1186/s13059-018-1585-z) PubMed DOI PMC

Feng S, et al. . 2020. Dense sampling of bird diversity increases power of comparative genomics. Nature 587, 252-257. (10.1038/s41586-020-2873-9) PubMed DOI PMC

Fridolfsson AK, et al. . 1998. Evolution of the avian sex chromosomes from an ancestral pair of autosomes. Proc. Natl Acad. Sci. USA 95, 8147-8152. (10.1073/pnas.95.14.8147) PubMed DOI PMC

Hirst CE, Major AT, Ayes KL, Brown RJ, Mariette M, Sackton TB, Smith CA. 2017. Sex reversal and comparative data undermine the W chromosome and support Z-linked Dmrt1 as the regulator of gonadal sex differentiation in birds. Endocrinology 158, 2970-2987. (10.1210/en.2017-00316) PubMed DOI

Estermann MA, Williams S, Hirst CE, Roly, ZY, Serralbo O, Adhikari D, Powell D, Major AT, Smith CA. 2020. Insights into gonadal sex differentiation provided by single-cell transcriptomics in the chicken embryo. Cell Rep. 31, 107491. (10.1016/j.celrep.2020.03.055) PubMed DOI

Smith CA, Roeszler KN, Ohnesorg T, Cummins DM, Farlie FG, Doran TJ, Sinclair AH. 2009. The avian Z-linked gene Dmrt1 is required for male sex determination in the chicken. Nature 461, 267-271. (10.1038/nature08298) PubMed DOI

Zhou Q, Zhang J, Bachtrog D, An N, Huang Q, Jarvis ED, Gilbert MTP, Zhang G. 2014. Complex evolutionary trajectories of sex chromosomes across bird taxa. Science 346, 1246338. (10.1126/science.1246338) PubMed DOI PMC

Shetty S, Kirby P, Zarkower D, Graves JAM. 2002. Dmrt1 in a ratite bird: evidence for a role in sex determination and discovery of a putative regulatory element. Cytogenet. Genome Res. 99, 245-251. (10.1159/000071600) PubMed DOI

Yazdi HP, Ellegren H. 2019. A genetic map of ostrich Z chromosome and the role of inversions in avian sex chromosome evolution. Genome Biol. Evol. 10, 2049-2060. (10.1093/gbe/evy163) PubMed DOI PMC

Vicoso B, Kaiser VB, Bachtrog D. 2013. Sex-biased gene expression at homomorphic sex chromosomes in emus and its implication for sex chromosome evolution. Proc. Natl Acad. Sci. USA 110, 6453-6458. (10.1073/pnas.1217027110) PubMed DOI PMC

Ioannidis J, et al. 2020. Primary sex determination in birds depends on DMRT1 dosage, but gonadal sex does not determine secondary sexual characteristics. Proc. Natl Acad. Sci. USA 118, e2020909118. (10.1073/pnas.2020909118) DOI

Zhao D, McBride D, Nandi S, McQueen HA, McGrew MJ. 2010. Somatic sex identity is cell autonomous in the chicken. Nature 464, 237-242. (10.1038/nature08852) PubMed DOI PMC

Lin M, Thorne MH, Martin IC, Sheldon BL, Jones RC. 1995. Development of the gonads in the triploid (ZZW and ZZZ) fowl, Gallus domesticus, and comparison with normal diploid males (ZZ) and females (ZW). Reprod. Fertility Dev. 7, 1185-1197. (10.1071/RD9951185) PubMed DOI

Graves JAM. 2003. Sex and death in birds: a model of dosage compensation that predicts lethality of sex chromosome an-euploids. Cytogenet. Genome Res. 101, 278-282. (10.1159/000074349) PubMed DOI

Kuroiwa A. 2017. Sex-determining mechanism in avians. In Avian reproduction. Advances in experimental medicine and biology, vol. 1001 (ed. Sasanami T), pp. 19-31. Singapore: Springer. PubMed

Clinton M. 1998. Sex determination and gonadal development: a bird's eye view. J. Exp. Zool. 281, 457-465. PubMed

Bloom SE. 1972. Chromosome abnormalities in chicken (Gallus domesticus) embryos: types, frequencies and phenotypic effects. Chromosoma 37, 309-326. (10.1007/bf00319873) PubMed DOI

Otto SP, Whitton J. 2000. Polyploidy: incidence and evolution. Annu. Rev. Genet. 34, 401-437. (10.1146/annurev.genet.34.1.401) PubMed DOI

Gunski RJ, Cañedo AD, Garnero ADV, Ledesma MA, Coria N, Montalti D, Degrandi TM. 2017. Multiple sex chromosome system in penguins (Pygoscelis, Spheniscidae). Comp. Cytogenet. 11, 541-552. (10.3897/CompCytogen.v11i3.13795) PubMed DOI PMC

Pala I, Naurin S, Stervander M, Hasselquist D, Bensch S, Hansson B. 2012. Evidence of a neo-sex chromosome in birds. Heredity 108, 264-272. (10.1038/hdy.2011.70) PubMed DOI PMC

Pala I, Hasselquist D, Bensch S, Hansson B. 2012. Patterns of molecular evolution of an avian neo-sex chromosome. Mol. Biol. Evol. 12, 3741-3754. (10.1093/molbev/mss177) PubMed DOI

Sigeman H, Ponnikas S, Chauhan P, Dierickx E, Brooke MD, Hansson B. 2019. Repeated sex chromosome evolution in vertebrates supported by expanded avian sex chromosomes. Proc. R. Soc. B 286, 20192051. (10.1098/rspb.2019.2051) PubMed DOI PMC

Gan HM, Falk S, Morales HE, Austin CM, Sunnucks P, Pavlova A. 2019. Genomic evidence of neo-sex chromosomes in the eastern yellow robin. GigaScience 8, giz111. (10.1093/gigascience/giz111) PubMed DOI PMC

Graves JAM. 2016. Evolution of vertebrate sex chromosomes and dosage compensation. Nat. Rev. Gen. 17, 33-46. (10.1038/nrg.2015.2) PubMed DOI

Yazdi HP, Silva WTAF, Suh A. 2020. Why do some sex chromosomes degenerate more slowly than others? The odd case of ratite sex chromosomes. Genes 11, 1153. (10.3390/genes11101153) PubMed DOI PMC

Bellott D, et al. 2017. Avian W and mammalian Y chromosomes convergently retained dosage-sensitive regulators. Nat. Genet. 49, 387-394. (10.1038/ng.3778) PubMed DOI PMC

Xu L, Zhou Q. 2020. The female-specific W chromosomes of birds have conserved gene contents but are not feminized. Genes 11, 1126. (10.3390/genes11101126) PubMed DOI PMC

Uebbing S, Künstner A, Makinen H, Ellegren H. 2013. Transcriptome sequencing reveals the character of incomplete dosage compensation across multiple tissues in flycatchers. Genome Biol. Evol. 5, 1555-1566. (10.1093/gbe/evt114) PubMed DOI PMC

Itoh Y, et al. 2007. Dosage compensation is less effective in birds than in mammals. J. Biol. 6, 2. (10.1186/jbiol53) PubMed DOI PMC

Irwin DE. 2018. Sex chromosomes and speciation in birds and other ZW systems. Mol. Ecol. 27, 3831-3851. (10.1111/mec.14537) PubMed DOI

Warnefors M, Mossinger K, Halbert J, Studer T, VandeBerg JL. 2017. Sex-biased microRNA expression in mammals and birds reveals underlying regulatory mechanisms and a role in dosage compensation. Genome Res. 27, 1961-1973. (10.1101/gr.225391.117) PubMed DOI PMC

Graves JAM. 2014. Avian sex, sex chromosomes, and dosage compensation in the age of genomics. Chromosome Res. 22, 45-57. (10.1007/s10577-014-9409-9) PubMed DOI

Xu L, Wa Sin SY, Grayson P, Edwards SV, Sackton TB. 2019. Evolutionary dynamics of sex chromosomes of paleognathous birds. Genome Biol. Evol. 11, 2376-2390. (10.1093/gbe/evz154) PubMed DOI PMC

Kapusta A, Suh A. 2016. Evolution of bird genomes - a transposon's-eye view. Annu. NY Acad. Sci. 1389, 164-185. (10.1111/nyas.13295) PubMed DOI

Peona V, et al. 2021. The avian W chromosome is a refugium for endogenous retroviruses with likely effects on female-biased mutational load and genetic incompatibilities. Phil. Trans. R. Soc. B 376, 20200186. (10.1098/rstb.2020.0186) PubMed DOI PMC

Pigozzi MI, Solari AJ. 1998. Germ cell restriction and regular transmission of an accessory chromosome that mimics a sex body in the zebra finch, Taeniopygia guttata. Chromosome Res. 6, 105-113 (10.1023/A:1009234912307) PubMed DOI

Itoh Y, Kampf K, Pigozzi MI, Arnold AP. 2009. Molecular cloning and characterization of the germline-restricted chromosome sequence in the zebra finch. Chromosoma 118, 527-536. (10.1007/s00412-009-0216-6) PubMed DOI PMC

Malinovskaya LP, et al. . 2020. Germline-restricted chromosome (GRC) in the sand martin and the pale martin (Hirundinidae, Aves): synapsis, recombination and copy number variation. Sci. Rep. 10, 1058. (10.1038/s41598-020-58032-4) PubMed DOI PMC

Biederman MK, Nelson MM, Asalone KC, Pedersen AL, Saldanha CJ, Bracht JR. 2018. Discovery of the first germline-restricted gene by subtractive transcriptomic analysis in the zebra finch, Taeniopygia guttata. Curr. Biol. 28, 1620-1627. (10.1016/j.cub.2018.03.067) PubMed DOI PMC

Kinsella CM, et al. 2019. Programmed DNA elimination of germline development genes in songbirds. Nat. Comm. 10, 5468. (10.1038/s41467-019-13427-4) PubMed DOI PMC

Torgasheva AA, et al. . 2019. Germline-restricted chromosome (GRC) is widespread among songbirds. Proc. Natl Acad. Sci. USA 116, 11 845-11 850. (10.1073/pnas.1817373116) PubMed DOI PMC

Pei Y, et al. 2021. Occasional paternal inheritance of the germline-restricted chromosome in songbirds. BioRxiv. See https://www.biorxiv.org/content/10.1101/2021.01.28.428604v1. (10.1101/2021.01.28.428604) DOI

Cortez D, Marin R, Toledo-Flores D, Froidevaux L, Liechti A, Waters PD, Grützner F, Kaessmann H. 2014. Origins and functional evolution of Y chromosomes across mammals. Nature 508, 488-493. (10.1038/nature13151) PubMed DOI

Warren WC, et al. 2008. Genome analysis of the platypus reveals unique signatures of evolution. Nature 453, 175-183. (10.1038/nature06936) PubMed DOI PMC

Zhou Y, et al. . 2021. Platypus and echidna genomes reveal mammalian biology and evolution. Nature 592, 756-762. (10.1038/s41586-020-03039-0) PubMed DOI PMC

Rens W, et al. . 2007. The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z. Genome Biol. 8, R243. (10.1186/gb-2007-8-11-r243) PubMed DOI PMC

Grützner F, Rens W, Tsend-Ayush E, El-Mogharbel N, O'Brien PCM, Jones RC, Ferguson-Smith MA, Graves JAM. 2004. In the platypus a meiotic chain of ten sex chromosomes shares genes with the bird Z and mammal X chromosomes. Nature 432, 913-917. (10.1038/nature03021) PubMed DOI

Veyrunes F, et al. . 2008. Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes. Genome Res. 18, 965-973. (10.1101/gr.7101908) PubMed DOI PMC

El-Mogharbel N, Wakefield M, Deakin JE, Tsend-Ayush E, Grützner F, Alsop A, Ezaz T, Marshall Graves JA. 2007. Dmrt gene cluster analysis in the platypus: new insights into genomic organization and regulatory regions. Genomics 89, 10-21. (10.1016/j.ygeno.2006.07.017) PubMed DOI

Deakin JE. 2017. Implications of monotreme and marsupial chromosome evolution on sex determination and differentiation. Gen. Comp. Endocrinol. 244, 130-138. (10.1016/j.ygcen.2015.09.029) PubMed DOI

Deakin JE, Hore TA, Koina E, Graves JAM. 2008. The status of dosage compensation in the multiple X chromosomes of the platypus. PLoS Genet. 4, e1000140. (10.1371/journal.pgen.1000140) PubMed DOI PMC

Julien P, Brawand D, Soumillon M, Necsulea A, Liechti A, Schütz F, Daish T, Grützner F, Kaessmann H. 2012. Mechanisms and evolutionary patterns of mammalian and avian dosage compensation. PLoS Biol. 10, e1001328. (10.1371/journal.pbio.1001328) PubMed DOI PMC

Whitworth DJ, Pask AJ. 2016. The X factor: X chromosome dosage compensation in the evolutionarily divergent monotremes and marsupials. Semin. Cell Dev. Biol. 56, 117-121. (10.1016/j.semcdb.2016.01.006) PubMed DOI

Redia CA, Capanna E. 2012. Genome size evolution: sizing mammalian genomes. Cytogenet. Genome Res. 137, 97-112. (10.1159/000338820) PubMed DOI

Deakin JE, O'Neill RJ. 2020. Evolution of marsupial genomes. Annu. Rev. Anim. Biosci. 8, 25-45. (10.1146/annurev-animal-021419-083555) PubMed DOI

Frankenberg S. 2018. Pre-gastrula development of non-eutherian mammals. Curr. Top. Dev. Biol. 128, 237-265. (10.1016/bs.ctdb.2017.10.013) PubMed DOI

Hayman D. 1989. Marsupial cytogenetics. Aust. J. Zool. 37, 331-349. (10.1071/ZO9890331) DOI

Deakin JE. 2018. Chromosome evolution in marsupials. Genes 9, 72. (10.3390/genes9020072) PubMed DOI PMC

Grant J, et al. 2012. Rsx is a metatherian RNA with Xist-like properties in X-chromosome inactivation. Nature 487, 254-258. (10.1038/nature11171) PubMed DOI PMC

Deakin JE. 2013. Marsupial X chromosome inactivation: past, present and future. Aust. J. Zool. 61, 13-23.

Rens W, Wallduck MS, Lovell FL, Ferguson-Smith MA, Ferguson-Smith AC. 2010. Epigenetic modifications on X chromosomes in marsupial and monotreme mammals and implications for evolution of dosage compensation. Proc. Natl Acad. Sci. USA 107, 17 657-17 662. (10.1073/pnas.0910322107) PubMed DOI PMC

Johnson PG, Watson CM, Adams M, Paull DJ. 2002. Sex chromosome elimination, X chromosome inactivation and reactivation in the southern brown bandicoot Isoodon obesulus (Marsupialia: Peramelidae). Cytogenet. Genome Res. 99, 119-124. (10.1159/000071583) PubMed DOI

Sharp P. 1982. Sex chromosome pairing during male meiosis in marsupials. Chromosoma 86, 27-47. (10.1007/BF00330728) PubMed DOI

Page J, Berrios S, Parra MT, Viera A, Suja JA, Prieto I, Barbero JL, Rufas JS, Fernández-Donoso R. 2005. The program of sex chromosome pairing in meiosis is highly conserved across marsupial species: implications for sex chromosome evolution. Genetics 170, 793-799. (10.1534/genetics.104.039073) PubMed DOI PMC

Foster JW, et al. 1992. Evolution of sex determination and the Y chromosome: SRY-related sequences in marsupials. Nature 359, 531-533. (10.1038/359531a0) PubMed DOI

Evans BJ, Upham NS, Golding GB, Ojeda RA, Ojeda AA. 2017. Evolution of the largest mammalian genome. Genome Biol. Evol. 9, 1711-1724. (10.1093/gbe/evx113) PubMed DOI PMC

Georgiades P, Watkins M, Burton GJ, Ferguson-Smith AC. 2001. Roles for genomic imprinting and the zygotic genome in placental development. Proc. Natl Acad. Sci. USA 98, 4522-4527. (10.1073/pnas.081540898) PubMed DOI PMC

Svartman MT, Stone G, Stanyon R. 2005. Molecular cytogenetics discards polyploidy in mammals. Genomics 85, 425-430. (10.1016/j.ygeno.2004.12.004) PubMed DOI

Bachtrog D. 2013. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat. Rev. Genet. 14, 113-124. (10.1038/nrg3366) PubMed DOI PMC

De la Fuente R, Parra MT, Viera A, Calvente A, Gomez R, Suja J, Rufas JS, Page J. 2007. Meiotic pairing and segregation of achiasmate sex chromosomes in eutherian mammals: the role of SYCP3 protein. PLoS Genet. 3, e198. (10.1371/journal.pgen.0030198) PubMed DOI PMC

Tasman Daish T, Grützner F. 2019. Evolution and meiotic organization of heteromorphic sex chromosomes. Curr. Topics Dev. Biol. 134, 1-48. (10.1016/bs.ctdb.2019.009) PubMed DOI

Gil-Fernandez G-F, et al. 2020. Meiosis reveals the early steps in the evolution of a neo-XY sex chromosome pair in the African pygmy mouse Mus minutoides. PLoS Genet. 16, e1008959. (10.1371/journal.pgen.1008959) PubMed DOI PMC

Wutz A, Rasmussen TP, Jaenisch R. 2002. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat. Genet. 30, 167-174. (10.1038/ng820) PubMed DOI

Jégu T, Aeby E, Lee JT. 2017. The X chromosome in space. Nat. Rev. Genet. 18, 377-389. PubMed

Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R. 1991. Male development of chromosomally female mice transgenic for Sry. Nature 351, 117-121. PubMed

Miyawaki S, Kuroki S, Maeda R, Okashita N, Koopman P, Tichibana M. 2020. The mouse Sry locus harbors a cryptic exon that is essential for male sex determination. Science 370, 121-124. PubMed

Parma P, Veyrunes F, Pailhoux E. 2016. Sex reversal in non-human placental mammals. Sex. Dev. 10, 326-344. (10.1159/000448361) PubMed DOI

Kuroiwa A, Ishiguchi Y, Yamada F, Shintaro A, Matsuda Y. 2010. The process of a Y-loss event in an XO/XO mammal, the Ryukyu spiny rat. Chromosoma 119, 519-526. PubMed

Just W, Baumstark A, Süss A, Graphodatsky A, Rens W, Schäfer N, Bakloushinskaya I, Hameister H, Vogel W. 2007. Ellobius lutescens: sex determination and sex chromosome. Sex. Dev. 1, 211-221. (10.1159/000104771) PubMed DOI

Veyrunes F, Chevret P, Catalan J, Castiglia R, Watson J, Dobigny G, Robinson TJ, Britton-Davidian J. 2010. A novel sex determination system in a close relative of the house mouse. Proc. R. Soc. B 277, 1049-1056. (10.1098/rspb.2009.1925) PubMed DOI PMC

Real FM, et al. 2020. The mole genome reveals regulatory rearrangements associated with adaptive intersexuality. Science 370, 208-214. (10.1126/science.aaz2582) PubMed DOI PMC

Uhlenhaut NH, et al. . 2009. Somatic sex reprogramming of adult ovaries to testes by foxl2 ablation. Cell 139, 1130-1142. PubMed

Matson CK, Murphy MW, Sarver AL, Griswold MD, Bardwell VJ, Zarkower D. 2011. Dmrt1 prevents female reprogramming in the postnatal mammalian testis. Nature 476, 101-104. (10.1038/nature10239) PubMed DOI PMC

Naqvi S, Godfrey AK, Hughes, JF, Goodheart ML, Mitchell RN, Page DC. 2019. Conservation, acquisition, and functional impact of sex-biased gene expression in mammals. Science 365, eaaw7317. (10.1126/science.aaw7317) PubMed DOI PMC

Davis EJ, Lobach I, Dubal DB. 2019: Female XX sex chromosomes increase survival and extend lifespan in aging mice. Aging Cell 18, e12871. (10.1111/acel.12871) PubMed DOI PMC

VGP. 2020. See https://vertebrategenomesproject.org.

EBG. 2020. See https://www.earthbiogenome.org/.

Fish1 k. 2020. See https://db.cngb.org/fisht1k.

Birds10 K. 2020. See https://b10k.genomics.cn.

Skaletsky H, et al. . 2003. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423, 825-837. (10.1038/nature01722). PubMed DOI

Carvalho AB, Clark AG. 2013. Efficient identification of Y chromosome sequences in the human and Drosophila genomes. Genome Res. 23, 1894-1907. (10.1101/gr.156034.113) PubMed DOI PMC

Clark AG. 2014. The vital Y chromosome. Nature 508, 463-465. (10.1038/508463a) PubMed DOI

Rhie A, et al. 2021. Towards complete and error-free genome assemblies of all vertebrate species. Nature 592, 737-746. (10.1038/s41586-021-03451-0) PubMed DOI PMC

Koepfli K-P, Paten B, Antunes A, Belov K, Bustamante Cet al. . 2015. The genome 10 K project: a way forward. Ann. Rev. Anim. Biosci. 3, 57-111. (10.1146/annurev-animal-090414-014900) PubMed DOI PMC

Pennell MW, Mank JE, Peichel CL. 2018. Transitions in sex determination and sex chromosomes across vertebrate species. Mol. Ecol. 2, 3950-3963. (10.1111/mec.14540) PubMed DOI PMC

Payseur BA, Presgraves DC, Filatov DA. 2018. Sex chromosomes and speciation. Mol. Ecol. 27, 3745-3748. (10.1111/mec.14828) PubMed DOI PMC

Runemark A, Eroukhmanoff F, Nava-Bolaños A, Hermansen JS, Meier JI. 2018. Hybridization, sex-specific genomic architecture and local adaptation. Phil. Trans. R. Soc. B 373, 20170419. (10.1098/rstb.2017.0419) PubMed DOI PMC

Capel B (ed). 2019. Sex determination in vertebrates. Current topics in developmental biology, vol. 104, pp. 1-376. New York, NY: Academic Press.

Kopp A. 2012. Dmrt genes in the development and evolution of sexual dimorphism. Trends Genet. 28, 175-184. (10.1016/j.tig.2012.02.002) PubMed DOI PMC

Darbre PD. 2019. The history of endocrine-disrupting chemicals. Curr. Opin. Endocrinol. Metab. Res. 7, 26-33. (10.1016/j.coemr.2019.06.007) DOI

Kloas W, et al. 2009. Endocrine disruption in aquatic vertebrates. Ann. NY Acad. Sci. 1163, 187-200. (10.1111/j.1749-6632.2009.04453.x) PubMed DOI

Wang H, Piferrer F, Chen S (eds). 2019. Sex control in aquaculture, vol. 1. New York, NY: John Wiley & Sons.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Natural repeated backcrosses lead to triploidy and tetraploidy in parthenogenetic butterfly lizards (Leiolepis: Agamidae)

. 2025 Jan 24 ; 15 (1) : 3094. [epub] 20250124

Rapid Sex Chromosome Turnover in African Clawed Frogs (Xenopus) and the Origins of New Sex Chromosomes

. 2024 Dec 05 ; 41 (12) : .

The European Reference Genome Atlas: piloting a decentralised approach to equitable biodiversity genomics

. 2024 Sep 17 ; 3 (1) : 28. [epub] 20240917

Premeiotic endoreplication is the mechanism of obligate parthenogenesis in rock lizards of the genus Darevskia

. 2024 Sep ; 20 (9) : 20240182. [epub] 20240918

Madagascar Leaf-Tail Geckos (Uroplatus spp.) Share Independently Evolved Differentiated ZZ/ZW Sex Chromosomes

. 2023 Jan 09 ; 12 (2) : . [epub] 20230109

Mendelian nightmares: the germline-restricted chromosome of songbirds

. 2022 Sep ; 30 (2-3) : 255-272. [epub] 20220413

Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: along the 'extended speciation continuum'

. 2021 Sep 13 ; 376 (1833) : 20200103. [epub] 20210726

Expanding the classical paradigm: what we have learnt from vertebrates about sex chromosome evolution

. 2021 Sep 13 ; 376 (1833) : 20200097. [epub] 20210726

Preface

. 2021 Aug 30 ; 376 (1832) : 20200088. [epub] 20210712

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.c.5438942

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...