Rapid Sex Chromosome Turnover in African Clawed Frogs (Xenopus) and the Origins of New Sex Chromosomes
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
8556 to 8508
National Geographic Research and Exploration
DKRVO 2024-2028/6.I.a
Ministry of Culture of the Czech Republic
P40 OD010997
NIH HHS - United States
DEB-1145459
US National Science Foundation
CZ.02.01.01/00/22_010/0002902
MSCA Fellowships
RGPIN-2017-05770
Natural Science and Engineering Research Council of Canada
Percy Sladen Memorial Fund
87759
National Research Foundation of South Africa
23-07331S
Czech Science Foundation
00023272
National Museum of the Czech Republic
R24OD030008
National Institute of Health
PubMed
39665151
PubMed Central
PMC11635168
DOI
10.1093/molbev/msae234
PII: 7921951
Knihovny.cz E-zdroje
- Klíčová slova
- allopolyploidization, genetic linkage, recombination landscape, sex chromosome turnover, sex determination,
- MeSH
- pohlavní chromozomy * genetika MeSH
- procesy určující pohlaví MeSH
- rekombinace genetická MeSH
- Xenopus * genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Sex chromosomes of some closely related species are not homologous, and sex chromosome turnover is often attributed to mechanisms that involve linkage to or recombination arrest around sex-determining loci. We examined sex chromosome turnover and recombination landscapes in African clawed frogs (genus Xenopus) with reduced representation genome sequences from 929 individuals from 19 species. We recovered extensive variation in sex chromosomes, including at least eight nonhomologous sex-associated regions-five newly reported here, with most maintaining female heterogamety, but two independent origins of Y chromosomes. Seven of these regions are found in allopolyploid species in the subgenus Xenopus, and all of these reside in one of their two subgenomes, which highlights functional asymmetry between subgenomes. In three species with chromosome-scale genome assemblies (Xenopus borealis, Xenopus laevis, and Xenopus tropicalis), sex-specific recombination landscapes have similar patterns of sex differences in rates and locations of recombination. Across these Xenopus species, sex-associated regions are significantly nearer chromosome ends than expected by chance, even though this is where the ancestral recombination rate is highest in both sexes before the regions became sex associated. As well, expansions of sex-associated recombination arrest occurred multiple times. New information on sex linkage along with among-species variation in female specificity of the sex-determining gene dm-w argues against a "jumping gene" model, where dm-w moves around the genome. The diversity of sex chromosomes in Xenopus raises questions about the roles of natural and sexual selection, polyploidy, the recombination landscape, and neutral processes in driving sex chromosome turnover in animal groups with mostly heterogametic females.
Department of Biological Sciences The University of Texas at El Paso El Paso TX 79968 USA
Department of Biology Evolutionary Morphology of Vertebrates Ghent University Ghent Belgium
Department of Biology University of Antwerp Wilrijk Belgium
Department of Cell Biology Charles University Viničná 7 Prague 12843 Czech Republic
Department of Zoology National Museum of the Czech Republic Prague Czech Republic
Institute of Vertebrate Biology of the Czech Academy of Sciences Brno Czech Republic
Museum of Vertebrate Zoology University of California Berkeley CA 94720 USA
Naturhistorisches Museum Bern Bern Switzerland
School of Biological Sciences University of Portsmouth Portsmouth UK
UMR 7179 Mécanismes Adaptatifs et Evolution Muséum national d'Histoire naturelle CNRS Paris France
Zobrazit více v PubMed
Adolfi MC, Herpin A, Schartl M. The replaceable master of sex determination: bottom-up hypothesis revisited. Philos Trans R Soc B. 2021:376(1832):20200090. 10.1098/rstb.2020.0090. PubMed DOI PMC
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997:25(17):3389–3402. 10.1093/nar/25.17.3389. PubMed DOI PMC
An H, Pires JC, Conant GC. Gene expression bias between the subgenomes of allopolyploid hybrids is an emergent property of the kinetics of expression. PLoS Comput Biol. 2024:20(1):e1011803. 10.1371/journal.pcbi.1011803. PubMed DOI PMC
Bachtrog D. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat Rev Genet. 2013:14(2):113–124. 10.1038/nrg3366. PubMed DOI PMC
Baird PA, Anderson TW, Newcombe HB, Lowry RB. Genetic disorders in children and young adults—a population study. Am J Hum Genet. 1988:42:677–693. PubMed PMC
Bewick AJ, Anderson DW, Evans BJ. Evolution of the closely related, sex-related genes DM-W and DMRT1 in African clawed frogs (Xenopus). Evolution. 2011:65(3):698–712. 10.1111/j.1558-5646.2010.01163.x. PubMed DOI
Blaser O, Grossen C, Neuenschwander S, Perrin N. Sex-chromosome turnovers induced by deleterious mutation load. Evolution. 2013:67(3):635–645. 10.1111/j.1558-5646.2012.01810.x. PubMed DOI
Blaser O, Neuenschwander S, Perrin N. Sex-chromosome turnovers: the hot-potato model. Am Nat. 2014:183(1):140–146. 10.1086/674026. PubMed DOI
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics. 2014:30(15):2114–2120. 10.1093/bioinformatics/btu170. PubMed DOI PMC
Bredeson JV, Mudd AB, Medina-Ruiz S, Mitros T, Smith OK, Miller KE, Lyons JB, Batra SS, Park J, Berkoff KC, et al. Conserved chromatin and repetitive patterns reveal slow genome evolution in frogs. Nat Commun. 2024:15(1):579. 10.1038/s41467-023-43012-9. PubMed DOI PMC
Bull JJ, Charnov EL. Changes in the heterogametic mechanism of sex determination. Heredity (Edinb). 1977:39(1):1–14. 10.1038/hdy.1977.38. PubMed DOI
Cannatella DC. Xenopus in space and time: fossils, node calibrations, tip-dating, and paleobiography. Cytogenet Genome Res. 2015:145(3–4):283–301. 10.1159/000438910. PubMed DOI
Cauret CM, Gansauge M-TT, Tupper A, Furman BLS, Knytl M, Song X, Greenbaum E, Meyer M, Evans BJ. Developmental systems drift and the drivers of sex chromosome evolution. Mol Biol Evol. 2020:37(3):799–810. 10.1093/molbev/msz268. PubMed DOI
Cauret CMS, Jordan DC, Kukoly L, Burton S, Anele EU, Kwiecien JM, Gansauge M-T, Senthillmohan S, Greenbaum E, Meyer M, et al. Functional dissection and assembly of a small, newly evolved, W chromosome-specific genomic region of the African clawed frog Xenopus laevis. PLoS Genet. 2023:19(10):e1010990. 10.1371/journal.pgen.1010990. PubMed DOI PMC
Chang CY, Witschi E. Breeding of sex-reversed males of Xenopus laevis Daudin. Proc Soc Exp Biol Med. 1955:89(1):150–152. 10.3181/00379727-89-21742. PubMed DOI
Charlesworth B, Wall JD. Inbreeding, heterozygote advantage and the evolution of neo-X and neo-Y sex chromosomes. Proc R Soc Biol Sci Series B. 1999:266(1414):51–56. 10.1098/rspb.1999.0603. DOI
Charlesworth D, Charlesworth B. Sex differences in fitness and selection for centric fusions between sex chromosomes and autosomes. Genet Res. 1980:35(2):205–214. 10.1017/S0016672300014051. PubMed DOI
Chen S, Zhang G, Shao C, Huang Q, Liu G, Zhang P, Song W, An N, Chalopin D, Volff JN, et al. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat Genet. 2014:46(3):253–260. 10.1038/ng.2890. PubMed DOI
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker R, Lunter G, Marth G, Sherry ST, et al. The variant call format and VCFtools. Bioinformatics. 2011:27(15):2156–2158. 10.1093/bioinformatics/btr330. PubMed DOI PMC
Dufresnes C, Borzée A, Horn A, Stöck M, Ostini M, Sermier R, Wassef J, Litvinchuck SN, Kosch TA, Waldman B, et al. Sex-chromosome homomorphy in Palearctic tree frogs results from both turnovers and X–Y recombination. Mol Biol Evol. 2015:32(9):2328–2337. 10.1093/molbev/msv113. PubMed DOI
Edger PP, Smith R, McKain MR, Cooley AM, Vallejo-Marin M, Yuan Y, Bewick AJ, Ji L, Platts AE, Bowman MJ, et al. Subgenome dominance in an interspecific hybrid, synthetic allopolyploid, and a 140-year-old naturally established neo-allopolyploid monkeyflower. Plant Cell. 2017:29(9):2150–2167. 10.1105/tpc.17.00010. PubMed DOI PMC
El Taher A, Ronco F, Matschiner M, Salzburger W, Böhne A. Dynamics of sex chromosome evolution in a rapid radiation of cichlid fishes. Sci Adv. 2021:7:eabe8215. 10.1126/sciadv.abe8215. PubMed DOI PMC
Elurbe DM, Paranjpe SS, Georgiou G, Van Kruijsbergen I, Bogdanovic O, Gibeaux R, Heald R, Lister R, Huynen MA, Van Heeringen SJ, et al. Regulatory remodeling in the allo-tetraploid frog Xenopus laevis. Genome Biol. 2017:18(1):198. 10.1186/s13059-017-1335-7. PubMed DOI PMC
Evans BJ, Bliss SM, Mendel SA, Tinsley RC. The Rift Valley is a major barrier to dispersal of African clawed frogs (Xenopus) in Ethiopia. Mol Ecol. 2011:20(20):4216–4230. 10.1111/j.1365-294X.2011.05262.x. PubMed DOI
Evans BJ, Brown RM, McGuire JA, Supriatna J, Andayani N, Diesmos A, Iskandar DT, Melnick DJ, Cannatella DC. Phylogenetics of fanged frogs (Anura; Ranidae; Limnonectes): testing biogeographical hypotheses at the Asian-Australian faunal zone interface. Syst Biol. 2003:52:794–819. 10.1080/10635150390251063. PubMed DOI
Evans BJ, Carter TF, Greenbaum E, Gvoždík V, Kelley DB, McLaughlin PJ, Pauwels OSG, Portik DM, Stanley EL, Tinsley RC, et al. Genetics, morphology, advertisement calls, and historical records distinguish six new polyploid species of African clawed frog (Xenopus, Pipidae) from West and Central Africa. PLoS One. 2015:10(12):e0142823. 10.1371/journal.pone.0142823. PubMed DOI PMC
Evans BJ, Gansauge MT, Stanley EL, Furman BLS, Cauret CMS, Ofori-Boateng C, Gvozdik V, Streicher JW, Greenbaum E, Tinsley RC, et al. Xenopus fraseri: Mr. Fraser, where did your frog come from? PLoS One. 2019:14(9):e0220892. 10.1371/journal.pone.0220892. PubMed DOI PMC
Evans BJ, Kelley DB, Melnick DJ, Cannatella DC. Evolution of RAG-1 in polyploid clawed frogs. Mol Biol Evol. 2005:22(5):1193–1207. 10.1093/molbev/msi104. PubMed DOI
Evans BJ, Kelley DB, Tinsley RC, Melnick DJ, Cannatella DC. A mitochondrial DNA phylogeny of clawed frogs: phylogeography on sub-Saharan Africa and implications for polyploid evolution. Mol Phylogenet Evol. 2004:33(1):197–213. 10.1016/j.ympev.2004.04.018. PubMed DOI
Evans BJ, Morales JC, Picker MD, Kelley DB, Melnick DJ. Absence of extensive introgression between Xenopus gilli and Xenopus laevis laevis (Anura: Pipidae), in southwestern Cape Province, South Africa. Copeia. 1998:1998(2):504–509. 10.2307/1447452. DOI
Evans BJ, Mudd AB, Bredeson JV, Furman BLS, Wasonga DV, Lyons JB, Harland RM, Rokhsar DS. New insights into Xenopus sex chromosome genomics from the Marsabit clawed frog X. borealis. J Evol Biol. 2022:35(12):1777–1790. 10.1111/jeb.14078. PubMed DOI PMC
Evans BJ, Pyron RA, Wiens JJ. Polyploidization and sex chromosome evolution in amphibians. In: Soltis PS, Soltis DE, editors. Polyploidy and genome evolution. Berlin: Springer Verlag; 2012. p. 385–410.
Feng YJ, Blackburn DC, Liang D, Hillis DM, Wake DB, Cannatella DC, Zhang P. Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the cretaceous-paleogene boundary. Proc Natl Acad Sci U S A. 2017:114(29):E5864–E5870. 10.1073/pnas.1704632114. PubMed DOI PMC
Feron R, Pan Q, Wen M, Imarazene B, Jouanno E, Anderson J, Herpin A, Journot L, Parrinello H, Klopp C, et al. RADSex: a computational workflow to study sex determination using restriction site-associated DNA sequencing data. Mol Ecol Resour. 2021:21(5):1715–1731. 10.1111/1755-0998.13360. PubMed DOI PMC
Fisher RA. The genetical theory of natural selection. Oxford: Clarendon; 1930.
Force A, Lynch M, Pickett B, Amores A, Yan YL, Postlethwait JH. Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 1999:151(4):1531–1545. 10.1093/genetics/151.4.1531. PubMed DOI PMC
Furman BLS, Cauret CM, Colby G, Measey J, Evans BJ. Limited genomic consequences of hybridization between two African clawed frogs, Xenopus gilli and X. laevis (Anura: Pipidae). Sci Rep. 2017:7(1):1091. 10.1038/s41598-017-01104-9. PubMed DOI PMC
Furman BLS, Cauret CMS, Knytl M, Song XY, Premachandra T, Ofori-Boateng C, Jordan DC, Horb ME, Evans BJ. A frog with three sex chromosomes that co-mingle together in nature: Xenopus tropicalis has a degenerate W and a Y that evolved from a Z chromosome. PLoS Genet. 2020:16(11):e1009121. 10.1371/journal.pgen.1009121. PubMed DOI PMC
Furman BLS, Dang UJ, Evans BJ, Golding GB. Divergent subgenome evolution after allopolyploidization in African clawed frogs (Xenopus). J Evol Biol. 2018:31(12):1945–1958. 10.1111/jeb.13391. PubMed DOI
Furman BLS, Evans BJ. Sequential turnovers of sex chromosomes in African clawed frogs (Xenopus) suggest some genomic regions are good at sex determination. G3. 2016:6:3625–3633. 10.1534/g3.116.033423. PubMed DOI PMC
Furman BLS, Evans BJ. Divergent evolutionary trajectories of two young, homomorphic, and closely related sex chromosome systems. Genome Biol Evol. 2018:10(3):742–755. 10.1093/gbe/evy045. PubMed DOI PMC
Gvoždík V, Knytl M, Zassi-Boulou AG, Fornaini NR, Bergelová B. Tetraploidy in the Boettger's dwarf clawed frog (Pipidae: Hymenochirus boettgeri) from the Congo indicates non-conspecificity with the captive population. Zool J Linn Soc. 2024:200(4):1034–1047. 10.1093/zoolinnean/zlad119. DOI
Hayashi S, Suda K, Fujimura F, Fujikawa M, Tamura K, Tsukamoto D, Evans BJ, Takamatsu N, Ito M. Neofunctionalization of a noncoding portion of a DNA transposon in the coding region of the chimerical sex-determining gene dm-W in Xenopus frogs. Mol Biol Evol. 2022:39(7):msac138. 10.1093/molbev/msac138. PubMed DOI PMC
He L, Wang Y, Wang Y, Zhang RG, Wang Y, Hörandl E, Mank JE, Ming R. Allopolyploidization from two dioecious ancestors leads to recurrent evolution of sex chromosomes and reversion to autosomes. Nat Commun. 2024:15. 10.1038/s41467-024-51158-3. PubMed DOI PMC
Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kaptonov V, Ovcharenko I, Putnam NH, Shu S, Taher L, et al. The genome of the western clawed frog Xenopus tropicalis. Science. 2010:328(5978):633–636. 10.1126/science.1183670. PubMed DOI PMC
Hufton AL, Panopoulou G. Polyploidy and genome restructuring: a variety of outcomes. Curr Opin Genet Dev. 2009:19(6):600–606. 10.1016/j.gde.2009.10.005. PubMed DOI
Ironside JE. No amicable divorce? Challenging the notion that sexual antagonism drives sex chromosome evolution. BioEssays. 2010:32(8):718–726. 10.1002/bies.200900124. PubMed DOI
Jay P, Tezenas E, Véber A, Giraud T. Sheltering of deleterious mutations explains the stepwise extension of recombination suppression on sex chromosomes and other supergenes. PLoS Biol. 2022:20(7):e3001698. 10.1371/journal.pbio.3001698. PubMed DOI PMC
Jeffries DL, Gerchen JF, Scharmann M, Pannell JR. A neutral model for the loss of recombination on sex chromosomes. Philos Trans R Soc Lond B Biol Sci. 2021:376(1832):20200096. 10.1098/rstb.2020.0096. PubMed DOI PMC
Jeffries DL, Lavanchy G, Sermier R, Sredl MJ, Miura I, Borzée A, Barrow LN, Canestrelli D, Crochet P-A, Dufresnes C, et al. A rapid rate of sex-chromosome turnover and non-random transitions in true frogs. Nat Commun. 2018:9(1):4088. 10.1038/s41467-018-06517-2. PubMed DOI PMC
Joshi N. Sabre - a barcode demultiplexing and trimming tool for FastQ files. GitHub: San Francisco, CA; 2011.
Koopman P, Munsterberg A, Capel B, Vivian N, Lovellbadge R. Expression of a candidate sex-determining gene during mouse testis differentiation. Nature. 1990:348(6300):450–452. 10.1038/348450a0. PubMed DOI
Korneliussen TS, Albrechtsen A, Nielsen R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics. 2014:15(1):356. 10.1186/s12859-014-0356-4. PubMed DOI PMC
Kuhl H, Tan WH, Klopp C, Kleiner W, Koyun B, Ciorpac M, Feron R, Knytl M, Kloas W, Schartl M, et al. A candidate sex determination locus in amphibians which evolved by structural variation between X- and Y-chromosomes. Nat Commun. 2024:15(1):4781. 10.1038/s41467-024-49025-2. PubMed DOI PMC
Lenormand T, Roze D. Y recombination arrest and degeneration in the absence of sexual dimorphism. Science. 2022:375(6581):663–666. 10.1126/science.abj1813. PubMed DOI
Lynch M, O'Hely M, Walsh B, Force A. The probability of preservation of a newly arisen gene duplicate. Genetics. 2001:159(4):1789–1804. 10.1093/genetics/159.4.1789. PubMed DOI PMC
Ma W-J, Veltsos P. The diversity and evolution of sex chromosomes in frogs. Genes (Basel). 2021:12(4):483. 10.3390/genes12040483. PubMed DOI PMC
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011:17(1):10–12. 10.14806/ej.17.1.200. DOI
Matsuda M, Shinomiya A, Kinoshita M, Suzuki A, Kobayashi T, Paul-Prasanth B, Lau E-I, Hamaguchi S, Sakaizumi M, Nagahama Y. DMY gene induces male development in genetically female (XX) medaka fish. Proc Natl Acad Sci U S A. 2007:104(10):3865–3870. 10.1073/pnas.0611707104. PubMed DOI PMC
Matsuda Y, Uno Y, Kondo M, Gilchrist MJ, Zorn AM, Rokhsar DS, Schmid M, Taira M. A new nomenclature of Xenopus laevis chromosomes based on the phylogenetic relationship to Silurana/Xenopus tropicalis. Cytogenet Genome Res. 2015:145(3–4):187–191. 10.1159/000381292. PubMed DOI
Mawaribuchi S, Takahashi S, Wada M, Uno Y, Matsuda Y, Kondo M, Fukui A, Takamatsu N, Taira M, Ito M. Sex chromosome differentiation and the W- and Z-specific loci in Xenopus laevis. Dev Biol. 2017:426(2):393–400. 10.1016/j.ydbio.2016.06.015. PubMed DOI
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010:20(9):1297–1303. 10.1101/gr.107524.110. PubMed DOI PMC
McVean GAT, Charlesworth B. The effects of Hill-Robertson interference between weakly selected mutations on patterns of molecular evolution and variation. Genetics. 2000:155(2):929–944. 10.1093/genetics/155.2.929. PubMed DOI PMC
Mitros T, Lyons JB, Session AM, Jenkins J, Shu S, Kwon T, Lane M, Ng C, Grammer TC, Khokha MK, et al. A chromosome-scale genome assembly and dense genetic map for Xenopus tropicalis. Dev Biol. 2019:452(1):8–20. 10.1016/j.ydbio.2019.03.015. PubMed DOI
Morgan TH. Sex limited inheritance in Drosophila. Science. 1910:32(812):120–122. 10.1126/science.32.812.120. PubMed DOI
Olmstead AW, Lindberg-Livingston A, Degitz SJ. Genotyping sex in the amphibian, Xenopus (Silurana) tropicalis, for endocrine disruptor bioassays. Aquat Toxicol. 2010:98(1):60–66. 10.1016/j.aquatox.2010.01.012. PubMed DOI
Pan Q, Kay T, Depincé A, Adolfi M, Schartl M, Guiguen Y, Herpin A. Evolution of master sex determiners: TGF-β signalling pathways at regulatory crossroads. Philos Trans R Soc Lond B Biol Sci. 2021:376(1832):20200091. 10.1098/rstb.2020.0091. PubMed DOI PMC
Paradis E, Claude J, Strimmer K. APE: analysis of phylogenetics and evolution in R language. Bioinformatics. 2004:20(2):289–290. 10.1093/bioinformatics/btg412. PubMed DOI
Pennell MW, Mank JE, Peichel CL. Transitions in sex determination and sex chromosomes across vertebrate species. Mol Ecol. 2018:27(19):3950–3963. 10.1111/mec.14540. PubMed DOI PMC
Perrin N. Random sex determination: when developmental noise tips the sex balance. BioEssays. 2016:38(12):1218–1226. 10.1002/bies.201600093. PubMed DOI
Ponnikas S, Sigeman H, Abbott JK, Hansson B. Why do sex chromosomes stop recombining? Trends Genet. 2018:34(7):492–503. 10.1016/j.tig.2018.04.001. PubMed DOI
Portik DM, Streicher JW, Wiens JJ. Frog phylogeny: a time-calibrated, species-level tree based on hundreds of loci and 5,242 species. Mol Phylogenet Evol. 2023:188:107907. 10.1016/j.ympev.2023.107907. PubMed DOI
Premachandra T, Cauret CMS, Conradie W, Measey J, Evans BJ. Population genomics and subgenome evolution of the allotetraploid frog Xenopus laevis in southern Africa. G3 (Bethesda). 2023:13(2):jkac325. 10.1093/g3journal/jkac325. PubMed DOI PMC
Rice WR. The accumulation of sexually antagonistic genes as a selective agent promoting the evolution of reduced recombination between primitive sex chromosomes. Evolution. 1987:41(4):911–914. 10.2307/2408899. PubMed DOI
Roco ÁS, Olmstead AW, Degitz SJ, Amano T, Zimmerman LB, Bullejos M. Coexistence of Y, W, and Z sex chromosomes in Xenopus tropicalis. Proc Natl Acad Sci U S A. 2015:112(34):E4752–E4761. 10.1073/pnas.1505291112. PubMed DOI PMC
Rodrigues N, Betto-Colliard C, Jourdan-Pineau H, Perrin N. Within-population polymorphism of sex-determination systems in the common frog (Rana temporaria). J Evol Biol. 2013:26(7):1569–1577. 10.1111/jeb.12163. PubMed DOI
Ross MT, Grafham DV, Coffey AJ, Scherer S, McLay K, Muzny D, Platzer M, Howell GR, Burrows C, Bird CP, et al. The DNA sequence of the human X chromosome. Nature. 2005:434(7031):325–337. 10.1038/nature03440. PubMed DOI PMC
Sardell JM, Kirkpatrick M. Sex differences in the recombination landscape. Am Nat. 2020:195(2):361–379. 10.1086/704943. PubMed DOI PMC
Saul F, Scharmann M, Wakatake T, Rajaraman S, Marques A, Freund M, Bringmann G, Channon L, Becker D, Carroll E, et al. Subgenome dominance shapes novel gene evolution in the decaploid pitcher plant Nepenthes gracilis. Nat Plants. 2023:9(12):2000–2015. 10.1038/s41477-023-01562-2. PubMed DOI
Saunders PA, Neuenschwander S, Perrin N. Sex chromosome turnovers and genetic drift: a simulation study. J Evol Biol. 2018:31(9):1413–1419. 10.1111/jeb.13336. PubMed DOI
Saunders PA, Neuenschwander S, Perrin N. Impact of deleterious mutations, sexually antagonistic selection, and mode of recombination suppression on transitions between male and female heterogamety. Heredity (Edinb). 2019:123(3):419–428. 10.1038/s41437-019-0225-z. PubMed DOI PMC
Schmid M, Evans B, Bogart JP. Polyploidy in Amphibia. Cytogenet Genome Res. 2015:145(3–4):315–330. 10.1159/000431388. PubMed DOI
Schnable JC, Springer NM, Freeling M. Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc Natl Acad Sci U S A. 2011:108(10):4069–4074. 10.1073/pnas.1101368108. PubMed DOI PMC
Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, Fukui A, Hikosaka A, Suzuki A, Kondo M, et al. Genome evolution in the allotetraploid frog Xenopus laevis. Nature. 2016:538(7625):336–343. 10.1038/nature19840. PubMed DOI PMC
Simakov O, Marletaz F, Yue J-X, O'Connell B, Jenkins J, Brandt A, Calef R, Tung C-H, Huang T-K, Schmutz J, et al. Deeply conserved synteny resolves early events in vertebrate evolution. Nat Ecol Evol. 2020:4(6):820–830. 10.1038/s41559-020-1156-z. PubMed DOI PMC
Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hillier L, Brown LG, Repping S, Pyntikova T, Ali J, Bieri T, et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature. 2003:423(6942):825–837. 10.1038/nature01722. PubMed DOI
Smith CA, Roeszler KN, Ohnesorg T, Cummins DM, Farlie PG, Doran TJ, Sinclair AH. The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature. 2009:461(7261):267–271. 10.1038/nature08298. PubMed DOI
Smith OK, Limouse C, Fryer KA, Teran NA, Sundararajan K, Heald R, Straight AF. Identification and characterization of centromeric sequences in Xenopus laevis. Genome Res. 2021:31(6):958–967. 10.1101/gr.267781.120. PubMed DOI PMC
Song X-Y, Furman BLS, Premachandra T, Knytl M, Cauret CMS, Wasonga DV, Measey J, Dworkin I, Evans BJ. Sex chromosome degeneration, turnover, and sex-biased expression of sex-linked transcripts in African clawed frogs (Xenopus). Philos Trans R Soc Lond B Biol Sci. 2021:376(1832):20200095. 10.1098/rstb.2020.0095. PubMed DOI PMC
Stoeck M, Kratochvil L, Kuhl H, Rovatsos M, Evans BJ, Suh A, Valenzuela N, Veyrunes F, Zhou Q, Gamble T, et al. A brief review of vertebrate sex evolution with a pledge for integrative research: towards ‘sexomics’. Philos Trans R Soc Lond B Biol Sci. 2021:376(1832):20200426. 10.1098/rstb.2020.0426. PubMed DOI PMC
Tennessen JA, Wei N, Straub SCK, Govindarajulu R, Liston A, Ashman T-L. Repeated translocation of a gene cassette drives sex-chromosome turnover in strawberries. PLoS Biol. 2018:16(8):e2006062. 10.1371/journal.pbio.2006062. PubMed DOI PMC
Toups MA, Vicoso B, Pannell JR. Dioecy and chromosomal sex determination are maintained through allopolyploid speciation in the plant genus Mercurialis. PLoS Genet. 2022:18(7):e1010226. 10.1371/journal.pgen.1010226. PubMed DOI PMC
Uno Y, Nishida C, Yoshimoto S, Ito M, Oshima Y, Yokoyama S, Nakamura M, Matsuda Y. Diversity in the origins of sex chromosomes in anurans inferred from comparative mapping of sexual differentiation genes for three species of the Ranidae and Xenopodinae. Chromosome Res. 2008:16(7):999–1011. 10.1007/s10577-008-1257-z. PubMed DOI
van Doorn GS, Kirkpatrick M. Turnover of sex chromosomes induced by sexual conflict. Nature. 2007:449(7164):909–912. 10.1038/nature06178. PubMed DOI
van Doorn GS, Kirkpatrick M. Transitions between male and female heterogamety caused by sex-antagonistic selection. Genetics. 2010:186(2):629. 10.1534/genetics.110.118596. PubMed DOI PMC
Van Ooijen JW. Joinmap 5, software for the calculation of genetic linkage maps in experimental populations. The Netherlands: Wageningen; 2019.
Xiao Q, Lauschke V. The prevalence, genetic complexity and population-specific founder effects of human autosomal recessive disorders. NPJ Genom Med. 2021:6(1):41. 10.1038/s41525-021-00203-x. PubMed DOI PMC
Xu M, Liao Z, Brock J, Du K, Li G, Chen Z, Wang Y, Gao Z, Agarwal G, Wei K, et al. Maternal dominance contributes to subgenome differentiation in allopolyploid fishes. Nat Commun. 2023:14(1):8357. 10.1038/s41467-023-43740-y. PubMed DOI PMC
Yano A, Guyomard R, Nicol B, Jouanno E, Quillet E, Klopp C, Cabau C, Bouchez O, Fostier A, Guiguen Y. An immune-related gene evolved into the master sex-determining gene in rainbow trout, oncorhynchus mykiss. Curr Biol. 2012:22(15):1423–1428. 10.1016/j.cub.2012.05.045. PubMed DOI
Yoshimoto S, Ikeda K, Izutsu Y, Shiba T, Takamatsu N, Ito M. Opposite roles of DMRT1 and its W-linked paralog, DM-W, in sexual dimorphism of Xenopus laevis: implications of a ZZ/ZW-type sex-determining system. Development. 2010:137(15):2519–2526. 10.1242/dev.048751. PubMed DOI
Yoshimoto S, Okada E, Umemoto H, Tamura K, Uno Y, Nishida-Umehara C, Matsuda Y, Takamatsu N, Shiba T, Ito M. A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proc Natl Acad Sci U S A. 2008:105(7):2469–2474. 10.1073/pnas.0712244105. PubMed DOI PMC
Zou C, Massonnet M, Minio A, Patel S, Llaca V, Karn A, Gouker F, Cadle-Davidson L, Reisch B, Fennell A, et al. Multiple independent recombinations led to hermaphroditism in grapevine. Proc Natl Acad Sci U S A. 2021:118(15):15. 10.1073/pnas.2023548118. PubMed DOI PMC