Fast Surface Hydrophilization via Atmospheric Pressure Plasma Polymerization for Biological and Technical Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GACR 19-15240S
Grantová Agentura České Republiky
LO1411 (NPU I)
Ministry of Education Youth and Sports of Czech Republic
PubMed
31590313
PubMed Central
PMC6836037
DOI
10.3390/polym11101613
PII: polym11101613
Knihovny.cz E-zdroje
- Klíčová slova
- atmospheric pressure plasma, deposition, hydrophilization, plasma polymer, polymer modification, polymer surface, polypropylene, superhydrophilic layers, surface free energy,
- Publikační typ
- časopisecké články MeSH
Polymeric surfaces can benefit from functional modifications prior to using them for biological and/or technical applications. Surfaces considered for biocompatibility studies can be modified to gain beneficiary hydrophilic properties. For such modifications, the preparation of highly hydrophilic surfaces by means of plasma polymerization can be a good alternative to classical wet chemistry or plasma activation in simple atomic or molecular gasses. Atmospheric pressure plasma polymerization makes possible rapid, simple, and time-stable hydrophilic surface preparation, regardless of the type and properties of the material whose surface is to be modified. In this work, the surface of polypropylene was coated with a thin nanolayer of plasma-polymer which was prepared from a low-concentration mixture of propane-butane in nitrogen using atmospheric pressure plasma. A deposition time of only 1 second was necessary to achieve satisfactory hydrophilic properties. Highly hydrophilic, stable surfaces were obtained when the deposition time was 10 seconds. The thin layers of the prepared plasma-polymer exhibit highly stable wetting properties, they are smooth, homogeneous, flexible, and have good adhesion to the surface of polypropylene substrates. Moreover, they are constituted from essential elements only (C, H, N, O). This makes the presented modified plasma-polymer surfaces interesting for further studies in biological and/or technical applications.
Zobrazit více v PubMed
Young R.J., Lovell P.A. Introduction to Polymers. CRC Press; Boca Raton, FL, USA: 2011.
Olatujni O. In: Natural Polymers. Olatunji O., editor. Springer International Publishing; Cham, Switzerland: 2016.
Mascia L. Polymers in Industry from A to Z: A Concise Encyclopedia. WILEY-VCH Verlag; Weinheim, Germany: 2012.
Nemani S.K., Annavarapu R.K., Mohammadian B., Raiyan A., Heil J., Haque M.A., Abdelaal A., Sojoudi H. Surface Modification of Polymers: Methods and Applications. Adv. Mater. Interfaces. 2018;5:1801247. doi: 10.1002/admi.201801247. DOI
Fabbri P., Messori M. Surface Modification of Polymers. In: Jasso-Gastinel C.F., Kenny J.M., editors. Modification of Polymer Properties. Elsevier; Amsterdam, The Netherlands: 2017. pp. 109–130.
Iqbal M., Dinh D.K., Abbas Q., Imran M., Sattar H., Ul Ahmad A. Controlled Surface Wettability by Plasma Polymer Surface Modification. Surfaces. 2019;2:349–371. doi: 10.3390/surfaces2020026. DOI
Gotoh K., Yasukawa A., Kobayashi Y. Wettability characteristics of poly(ethylene terephthalate) films treated by atmospheric pressure plasma and ultraviolet excimer light. Polym. J. 2011;43:545–551. doi: 10.1038/pj.2011.20. DOI
Šimor M., Ráhel’ J., Černák M., Imahori Y., Štefečka M., Kando M. Atmospheric-pressure plasma treatment of polyester nonwoven fabrics for electroless plating. Surf. Coatings Technol. 2003;172:1–6. doi: 10.1016/S0257-8972(03)00313-X. DOI
Messori M., Toselli M., Pilati F., Fabbri E., Fabbri P., Pasquali L., Nannarone S. Prevention of plasticizer leaching from PVC medical devices by using organic–inorganic hybrid coatings. Polymer (Guildf) 2004;45:805–813. doi: 10.1016/j.polymer.2003.12.006. DOI
Oehr C. Plasma surface modification of polymers for biomedical use. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2003;208:40–47. doi: 10.1016/S0168-583X(03)00650-5. DOI
Klee D., Höcker H. Polymers for Biomedical Applications: Improvement of the Interface Compatibility. In: Eastmond G.C., Höcker H., Klee D., editors. Biomedical Applications Polymer Blends. Advances in Polymer Science. Volume 149. Springer Berlin Heidelberg; Berlin, Heidelberg: 1999. pp. 1–57.
Yoshida S., Hagiwara K., Hasebe T., Hotta A. Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release. Surf. Coatings Technol. 2013;233:99–107. doi: 10.1016/j.surfcoat.2013.02.042. DOI
Kulshrestha A.S., Mahapatro A. Polymers for Biomedical Applications. American Chemical Society.; Washington, DC, USA: 2008. pp. 1–7.
Lin P., Lin C.-W., Mansour R., Gu F. Improving biocompatibility by surface modification techniques on implantable bioelectronics. Biosens. Bioelectron. 2013;47:451–460. doi: 10.1016/j.bios.2013.01.071. PubMed DOI
Irfan M., Idris A. Overview of PES biocompatible/hemodialysis membranes: PES–blood interactions and modification techniques. Mater. Sci. Eng. C. 2015;56:574–592. doi: 10.1016/j.msec.2015.06.035. PubMed DOI
Macgregor M., Vasilev K. Perspective on Plasma Polymers for Applied Biomaterials Nanoengineering and the Recent Rise of Oxazolines. Materials (Basel) 2019;12:191. doi: 10.3390/ma12010191. PubMed DOI PMC
Tihan T.G., Ionita M.D., Popescu R.G., Iordachescu D. Effect of hydrophilic–hydrophobic balance on biocompatibility of poly(methyl methacrylate) (PMMA)–hydroxyapatite (HA) composites. Mater. Chem. Phys. 2009;118:265–269. doi: 10.1016/j.matchemphys.2009.03.019. DOI
Stallard C.P., McDonnell K.A., Onayemi O.D., O’Gara J.P., Dowling D.P. Evaluation of Protein Adsorption on Atmospheric Plasma Deposited Coatings Exhibiting Superhydrophilic to Superhydrophobic Properties. Biointerphases. 2012;7:31. doi: 10.1007/s13758-012-0031-0. PubMed DOI
Mredha M.T.I., Pathak S.K., Tran V.T., Cui J., Jeon I. Hydrogels with superior mechanical properties from the synergistic effect in hydrophobic–hydrophilic copolymers. Chem. Eng. J. 2019;362:325–338. doi: 10.1016/j.cej.2018.12.023. DOI
Kocijan A., Conradi M., Hočevar M. The Influence of Surface Wettability and Topography on the Bioactivity of TiO2/Epoxy Coatings on AISI 316L Stainless Steel. Materials (Basel) 2019;12:1877. doi: 10.3390/ma12111877. PubMed DOI PMC
Schmalz G., Galler K.M. Biocompatibility of biomaterials—Lessons learned and considerations for the design of novel materials. Dent. Mater. 2017;33:382–393. doi: 10.1016/j.dental.2017.01.011. PubMed DOI
Wan Y., Qu X., Lu J., Zhu C., Wan L., Yang J., Bei J., Wang S. Characterization of surface property of poly(lactide-co-glycolide) after oxygen plasma treatment. Biomaterials. 2004;25:4777–4783. doi: 10.1016/j.biomaterials.2003.11.051. PubMed DOI
Francolini I., Vuotto C., Piozzi A., Donelli G. Antifouling and antimicrobial biomaterials: An overview. APMIS. 2017;125:392–417. doi: 10.1111/apm.12675. PubMed DOI
Utrata-Wesolek A. Antifouling surfaces in medical application. Polimery. 2013;58:685–695. doi: 10.14314/polimery.2013.685. DOI
Jiménez-Pardo I., van der Ven L., van Benthem R., de With G., Esteves A. Hydrophilic Self-Replenishing Coatings with Long-Term Water Stability for Anti-Fouling Applications. Coatings. 2018;8:184. doi: 10.3390/coatings8050184. DOI
Buskens P., Wouters M., Rentrop C., Vroon Z. A brief review of environmentally benign antifouling and foul-release coatings for marine applications. J. Coatings Technol. Res. 2013;10:29–36. doi: 10.1007/s11998-012-9456-0. DOI
Donnelly B., Bedwell I., Dimas J., Scardino A., Tang Y., Sammut K. Effects of Various Antifouling Coatings and Fouling on Marine Sonar Performance. Polymers (Basel) 2019;11:663. doi: 10.3390/polym11040663. PubMed DOI PMC
Černák M., Kováčik D., Ráhel’ J., St’ahel P., Zahoranová A., Kubincová J., Tóth A., Černáková L. Generation of a high-density highly non-equilibrium air plasma for high-speed large-area flat surface processing. Plasma Phys. Control. Fusion. 2011;53:124031. doi: 10.1088/0741-3335/53/12/124031. DOI
Palumbo F., Di Mundo R., Cappelluti D., D’Agostino R. SuperHydrophobic and SuperHydrophilic Polycarbonate by Tailoring Chemistry and Nano-texture with Plasma Processing. Plasma Process. Polym. 2011;8:118–126. doi: 10.1002/ppap.201000098. DOI
Pappas D. Status and potential of atmospheric plasma processing of materials. J. Vac. Sci. Technol. A Vac. Surf. Film. 2011;29:020801. doi: 10.1116/1.3559547. DOI
Noeske M., Degenhardt J., Strudthoff S., Lommatzsch U. Plasma jet treatment of five polymers at atmospheric pressure: Surface modifications and the relevance for adhesion. Int. J. Adhes. Adhes. 2004;24:171–177. doi: 10.1016/j.ijadhadh.2003.09.006. DOI
Lehocký M., Drnovská H., Lapčíková B., Barros-Timmons A.M., Trindade T., Zembala M., Lapčík L. Plasma surface modification of polyethylene. Colloid. Surf. A. 2003;222:125–131. doi: 10.1016/S0927-7757(03)00242-5. DOI
Dorai R., Kushner M.J. A model for plasma modification of polypropylene using atmospheric pressure discharge. J. Phys. D Appl. Phys. 2003;36:666. doi: 10.1088/0022-3727/36/6/309. DOI
Fricke K., Steffen H., von Woedtke T., Schröder K., Weltmann K.-D. High Rate Etching of Polymers by Means of an Atmospheric Pressure Plasma Jet. Plasma Process. Polym. 2011;8:51–58. doi: 10.1002/ppap.201000093. DOI
Egitto F.D. Plasma etching and modification of organic polymers. Pure Appl. Chem. 1990;62:1699–1708. doi: 10.1351/pac199062091699. DOI
Cho J.S., Kim K.H., Han S., Beag Y.W., Koh S.K. Hydrophilic surface formation on polymers by ion-assisted reaction. Prog. Org. Coat. 2003;48:251–258. doi: 10.1016/S0300-9440(03)00098-5. DOI
Gerenser L.J. XPS studies of in situ plasma-modified polymer surfaces. J. Adhes. Sci. Technol. 1993;7:1019–1040. doi: 10.1163/156856193X00556. DOI
Tsougeni K., Petrou P.S., Tserepi A., Kakabakos S.E., Gogolides E. Nano-texturing of poly (methyl methacrylate) polymer using plasma processes and applications in wetting control and protein adsorption. Microelectron. Eng. 2009;86:1424–1427. doi: 10.1016/j.mee.2008.11.082. DOI
Skarmoutsou A., Charitidis C.A., Gnanappa A.K., Tserepi A., Gogolides E. Nanomechanical and nanotribological properties of plasma nanotextured superhydrophilic and superhydrophobic polymeric surfaces. Nanotechnology. 2012;23:505711. doi: 10.1088/0957-4484/23/50/505711. PubMed DOI
Gupta B., Plummer C., Bisson I., Frey P., Hilborn J. Plasma-induced graft polymerization of acrylic acid onto poly (ethylene terephthalate) films: Characterization and human smooth muscle cell growth on grafted films. Biomaterials. 2002;23:863–871. doi: 10.1016/S0142-9612(01)00195-8. PubMed DOI
Qiu Y.X., Klee D., Plüster W., Severich B., Höcker H. Surface modification of polyurethane by plasma-induced graft polymerization of poly (ethylene glycol) methacrylate. J. Appl. Polym. Sci. 1996;61:2373–2382. doi: 10.1002/(SICI)1097-4628(19960926)61:13<2373::AID-APP17>3.0.CO;2-5. DOI
Wavhal D.S., Fisher E.R. Hydrophilic modification of polyethersulfone membranes by low temperature plasma-induced graft polymerization. J. Membrane Sci. 2002;209:255–269. doi: 10.1016/S0376-7388(02)00352-6. DOI
Ulbricht M., Belfort G. Surface modification of ultrafiltration membranes by low temperature plasma II. Graft polymerization onto polyacrylonitrile and polysulfone. J. Membrane Sci. 1996;111:193–215. doi: 10.1016/0376-7388(95)00207-3. DOI
Sun J., Yao L., Sun S., Gao Z.Q., Qiu Y.P. Effect of storage condition and aging on acrylic acid inverse emulsion surface-grafting polymerization of PET films initiated by atmospheric pressure plasmas. Surf. Coat. Technol. 2011;205:2799–2805. doi: 10.1016/j.surfcoat.2010.10.048. DOI
Johnsen K., Kirkhorn S., Olafsen K., Redford K., Stori A. Modification of polyolefin surfaces by plasma-induced grafting. J. Appl. Polym. Sci. 1996;59:1651–1657. doi: 10.1002/(SICI)1097-4628(19960307)59:10<1651::AID-APP17>3.0.CO;2-Z. DOI
Bahners T., Prager L., Pender A., Gutmann J.S. Super-wetting surfaces by plasma- and UV-based grafting of micro-rough acrylate coating. Prog. Org. Coat. 2013;76:1356–1362. doi: 10.1016/j.porgcoat.2013.04.007. DOI
Sciarratta V., Vohrer U., Hegemann D., Müller M., Oehr C. Plasma functionalization of polypropylene with acrylic acid. Surf. Coat. Technol. 2003;174:805–810. doi: 10.1016/S0257-8972(03)00564-4. DOI
Biederman H. Plasma Polymer Films. Imperial College Press; London, UK: 2004.
Foest R., Kindel E., Ohl A., Stieber M., Weltmann K.D. Non-thermal atmospheric pressure discharges for surface modification. Plasma Phys. Contr. F. 2005;47:B525. doi: 10.1088/0741-3335/47/12B/S38. DOI
Malmsten M., Johansson J.-Å., Burns N.L., Yasuda H.K. Protein adsorption at n-butane plasma polymer surfaces. Colloid. Surface. B. 1996;6:191–199. doi: 10.1016/0927-7765(95)01255-9. DOI
Merche D., Vandencasteele N., Reniers F. Atmospheric plasmas for thin film deposition: A critical review. Thin Solid Films. 2012;520:4219–4236. doi: 10.1016/j.tsf.2012.01.026. DOI
Morent R., De Geyter N., Trentesaux M., Gengembre L., Dubruel P., Leys C., Payen E. Stability study of polyacrylic acid films plasma-polymerized on polypropylene substrates at medium pressure. Appl. Surf. Sci. 2010;257:372–380. doi: 10.1016/j.apsusc.2010.06.080. DOI
Ward L.J., Schofield W.C.E., Badyal J.P.S., Goodwin A.J., Merlin P.J. Atmospheric pressure plasma deposition of structurally well-defined polyacrylic acid films. Chem. Mater. 2003;15:1466–1469. doi: 10.1021/cm020289e. DOI
Beck A.J., Short R.D., Matthews A. Deposition of functional coatings from acrylic acid and octamethylcyclotetrasiloxane onto steel using an atmospheric pressure dielectric barrier discharge. Surf. Coat. Technol. 2008;203:822–825. doi: 10.1016/j.surfcoat.2008.05.017. DOI
Topala I., Dumitrascu N., Popa G. Properties of the acrylic acid polymers obtained by atmospheric pressure plasma polymerization. Nucl. Instrum. Meth. B. 2009;267:442–445. doi: 10.1016/j.nimb.2008.10.029. DOI
Morent R., De Geyter N., Van Vlierberghe S., Dubruel P., Leys C., Gengembre L., Schacht E., Payen E. Deposition of HMDSO-based coatings on PET substrates using an atmospheric pressure dielectric barrier discharge. Prog. Org. Coat. 2009;64:304–310. doi: 10.1016/j.porgcoat.2008.07.030. DOI
Yasuda H., Bumgarner M.O., Marsh H.C., Morosoff N. Plasma polymerization of some organic compounds and properties of the polymers. J. Polym. Sci. Pol. Chem. Edition. 1976;14:195–224. doi: 10.1002/pol.1976.170140118. DOI
Heyse P., Dams R., Paulussen S., Houthoofd K., Janssen K., Jacobs P.A., Sels B.F. Dielectric barrier discharge at atmospheric pressure as a tool to deposit versatile organic coatings at moderate power input. Plasma Process. Polym. 2007;4:145–157. doi: 10.1002/ppap.200600087. DOI
Hossain M.M., Hegemann D., Fortunato G., Herrmann A.S., Heuberger M. Plasma Deposition of Permanent Superhydrophilic a-C: H: N Films on Textiles. Plasma Process. Polym. 2007;4:471–481. doi: 10.1002/ppap.200600214. DOI
Shen M., Bell A.T. A Review of Recent Advances in Plasma Polymerization. ACS Sym. Ser. 1979;108:1–33.
Friedrich J. Mechanisms of plasma polymerization-reviewed from a chemical point of view. Plasma Process. Polym. 2011;8:783–802. doi: 10.1002/ppap.201100038. DOI
Biederman H. Polymer films prepared by plasma polymerization and their potential application. Vacuum. 1987;37:367–373. doi: 10.1016/0042-207X(87)90027-3. DOI
Serra R., Zheludkevich M.L., Ferreira M.G.S. Influence of the RF plasma polymerization process on the barrier properties of coil-coating. Prog. Org. Coat. 2005;53:225–234. doi: 10.1016/j.porgcoat.2005.03.006. DOI
Lee H.R., Kim D.J., Lee K.H. Anti-reflective coating for the deep coloring of PET fabrics using an atmospheric pressure plasma technique. Surf. Coat. Tech. 2001;142:468–473. doi: 10.1016/S0257-8972(01)01137-9. DOI
Múgica-Vidal R., Alba-Elías F., Sainz-García E., Ordieres-Meré J. Atmospheric plasma-polymerization of hydrophobic and wear-resistant coatings on glass substrates. Surf. Coat. Tech. 2014;259:374–385. doi: 10.1016/j.surfcoat.2014.10.067. DOI
Vautrin-Ul C., Boisse-Laporte C., Benissad N., Chausse A., Leprince P., Messina R. Plasma-polymerized coatings using HMDSO precursor for iron protection. Prog. Org. Coat. 2000;38:9–15. doi: 10.1016/S0300-9440(99)00077-6. DOI
Ko Y.M., Choe H.C., Jung S.C., Kim B.H. Plasma deposition of a silicone-like layer for the corrosion protection of magnesium. Prog. Org. Coat. 2013;76:1827–1832. doi: 10.1016/j.porgcoat.2013.05.024. DOI
Massines F., Sarra-Bournet C., Fanelli F., Naudé N., Gherardi N. Atmospheric pressure low temperature direct plasma technology: Status and challenges for thin film deposition. Plasma Process. Polym. 2012;9:1041–1073. doi: 10.1002/ppap.201200029. DOI
Amir I., Hudec I., Volovič M. Surface modification of textile reinforming material by plasma treatment and plasma polymerization. Chem. Listy. 2009;103:s100–s101.
Šimor M., Ráheľ J., Vojtek P., Černák M., Brablec A. Atmospheric-pressure diffuse coplanar surface discharge for surface treatments. Appl.Phys. Lett. 2002;81:2716–2718. doi: 10.1063/1.1513185. DOI
Kaelble D.H. Dispersion-Polar Surface Tension Properties of Organic Solids. J. Adhesion. 1970;2:66–81. doi: 10.1080/0021846708544582. DOI
Owens D.K., Wendt R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969;13:1741–1747. doi: 10.1002/app.1969.070130815. DOI
Drelich J., Chibowski E. Superhydrophilic and superwetting surfaces: Definition and mechanisms of control. Langmuir. 2010;26:18621–18623. doi: 10.1021/la1039893. PubMed DOI
Jaleh B., Parvin P., Wanichapichart P., Saffar A.P., Reyhani A. Induced super hydrophilicity due to surface modification of polypropylene membrane treated by O2 plasma. Appl. Surf. Sci. 2010;257:1655–1659. doi: 10.1016/j.apsusc.2010.08.117. DOI
Okabe Y., Kurihara S., Yajima T., Seki Y., Nakamura I., Takano I. Formation of super-hydrophilic surface of hydroxyapatite by ion implantation and plasma treatment. Surf. Coat. Technol. 2005;196:303–306. doi: 10.1016/j.surfcoat.2004.08.190. DOI
Carrino L., Moroni G., Polini W. Cold plasma treatment of polypropylene surface: A study on wettability and adhesion. J. Mater. Process. Tech. 2002;121:373–382. doi: 10.1016/S0924-0136(01)01221-3. DOI
Terpilowski K., Rymuszka D., Holysz L., Chibowski E. Changes in wettability of polycarbonate and polypropylene pretreated with oxygen and argon plasma. In: Zinigrad M., editor. Proceedings of the 8th International Conference on Material Technologies and Modeling MMT-2014; Ariel, Izrael. 28 July 2014; 2014. pp. 155–165.
Slepička P., Vasina A., Kolská Z., Luxbacher T., Malinský P., Macková A., Švorčík V. Argon plasma irradiation of polypropylene. Nucl. Instrum. Meth. B. 2010;268:2111–2114. doi: 10.1016/j.nimb.2010.02.012. DOI
Pandiyaraj K.N., Selvarajan V., Deshmukh R.R., Gao C. Modification of surface properties of polypropylene (PP) film using DC glow discharge air plasma. Appl. Surf. Sci. 2009;255:3965–3971. doi: 10.1016/j.apsusc.2008.10.090. DOI
Kwon O.J., Myung S.W., Lee C.S., Choi H.S. Comparison of the surface characteristics of polypropylene films treated by Ar and mixed gas (Ar/O2) atmospheric pressure plasma. J. Colloid Interf. Sci. 2006;295:409–416. doi: 10.1016/j.jcis.2005.11.007. PubMed DOI
Harth K., Hibst H. Surface modification of polypropylene in oxygen and nitrogen plasmas. Surf. Coat. Technol. 1993;59:350–355. doi: 10.1016/0257-8972(93)90111-Z. DOI
Kwon O.J., Tang S., Myung S.W., Lu N., Choi H.S. Surface characteristics of polypropylene film treated by an atmospheric pressure plasma. Surf. Coat. Technol. 2005;192:1–10. doi: 10.1016/j.surfcoat.2004.09.018. DOI
Massines F., Gouda G., Gherardi N., Duran M., Croquesel E. The role of dielectric barrier discharge atmosphere and physics on polypropylene surface treatment. Plasmas Polym. 2001;6:35–49. doi: 10.1023/A:1011365306501. DOI
Carrino L., Polini W., Sorrentino L. Ageing time of wettability on polypropylene surfaces processed by cold plasma. J. Mater. Process. Tech. 2004;153:519–525. doi: 10.1016/j.jmatprotec.2004.04.134. DOI
Massines F., Gouda G. A comparison of polypropylene-surface treatment by filamentary, homogeneous and glow discharges in helium at atmospheric pressure. J. Phys. D Appl. Phys. 1998;31:3411. doi: 10.1088/0022-3727/31/24/003. DOI
Morent R., De Geyter N., Leys C., Gengembre L., Payen E. Study of the ageing behaviour of polymer films treated with a dielectric barrier discharge in air, helium and argon at medium pressure. Surf. Coat. Technol. 2007;201:7847–7854. doi: 10.1016/j.surfcoat.2007.03.018. DOI
Johansson K.S. Surface Modification of Plastics. In: Kutz M., editor. Applied Plastics Engineering Handbook. Elsevier; Amsterdam, The Netherlands: 2017. pp. 443–487. Plastics Design Library.
Shao T., Zhang C., Long K., Zhang D., Wang J., Yan P., Zhou Y. Surface modification of polyimide films using unipolar nanosecond-pulse DBD in atmospheric air. Appl. Surf. Sci. 2010;256:3888–3894. doi: 10.1016/j.apsusc.2010.01.045. DOI
Zhang C., Zhou Y., Shao T., Xie Q., Xu J., Yang W. Hydrophobic treatment on polymethylmethacrylate surface by nanosecond-pulse DBDs in CF4 at atmospheric pressure. Appl. Surf. Sci. 2014;311:468–477. doi: 10.1016/j.apsusc.2014.05.091. DOI
Yablokov M., Gilman A., Kuznetsov A. MODIFICATION OF WETTABILITY OF POLYMER SURFACES BY PLASMA. In: Medvecká V., Országh J., Papp P., Matějčík Š., editors. Proceedings of the 21st Symposium on Application of Plasma Processes Book of Contributed Papers. Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava; Society for Plasma Research and Applications in cooperation with Library and Publishing Centre CU; Bratislava, Slovakia: 2017. pp. 19–26.
Kong F., Chang C., Ma Y., Zhang C., Ren C., Shao T. Surface modifications of polystyrene and their stability: A comparison of DBD plasma deposition and direct fluorination. Appl. Surf. Sci. 2018;459:300–308. doi: 10.1016/j.apsusc.2018.07.211. DOI
Zhang C., Lin H., Zhang S., Xie Q., Ren C., Shao T. Plasma surface treatment to improve surface charge accumulation and dissipation of epoxy resin exposed to DC and nanosecond-pulse voltages. J. Phys. D. Appl. Phys. 2017;50:405203. doi: 10.1088/1361-6463/aa829b. DOI
Zhang C., Ma Y., Kong F., Yan P., Chang C., Shao T. Atmospheric pressure plasmas and direct fluorination treatment of Al2O3-filled epoxy resin: A comparison of surface charge dissipation. Surf. Coatings Technol. 2019;362:1–11. doi: 10.1016/j.surfcoat.2019.01.081. DOI
Luongo J.P. Infrared study of polypropylene. J. Appl. Polym. Sci. 1960;3:302–309. doi: 10.1002/app.1960.070030907. DOI
Urbaniak-Domagala W. Advanced Aspects of Spectroscopy. INTECH Open Access Publisher; Rijeka, Croatia: 2012. The use of the spectrometric technique FTIR-ATR to examine the polymers surface.
Wexler A.S. Integrated Intensities of Absorption Bands in Infrared Spectroscopy. Appl. Spectrosc. Rev. 1967;1:29–98. doi: 10.1080/05704926708547581. DOI
Klages C.P., Hinze A., Khosravi Z. Nitrogen Plasma Modification and Chemical Derivatization of Polyethylene Surfaces—An In Situ Study Using FTIR-ATR Spectroscopy. Plasma Process. Polym. 2013;10:948–958. doi: 10.1002/ppap.201300033. DOI
Sellin N., de C., Campos J.S. Surface composition analysis of PP films treated by corona discharge. Mater. Res. 2003;6:163–166. doi: 10.1590/S1516-14392003000200009. DOI
Morent R., De Geyter N., Leys C., Gengembre L., Payen E. Comparison between XPS- and FTIR-analysis of plasma-treated polypropylene film surfaces. Surf. Interface Anal. 2008;40:597–600. doi: 10.1002/sia.2619. DOI
Urbaniak-Domagała W., Wrzosek H., Szymanowski H., Majchrzycka K., Brochocka A. Plasma Modification of Filter Nonwovens Used for the Protection of Respiratory Tracts. Fibres Tex. East. Eur. 2010;18:94–99.
Tsai C.Y., Juang R.S., Huang C. Surface Modification of Polypropylene Membrane by RF Methane/Oxygen Mixture Plasma Treatment. Jpn. J. Appl. Phys. 2011;50:08KA02. doi: 10.7567/JJAP.50.08KA02. DOI
Guruvenket S., Rao G.M., Komath M., Raichur A.M. Plasma surface modification of polystyrene and polyethylene. Appl. Surf. Sci. 2004;236:278–284. doi: 10.1016/j.apsusc.2004.04.033. DOI
Mutel B., Grimblot J., Dessaux O., Goudmand P. XPS investigations of nitrogen-plasma-treated polypropylene in a reactor coupled to the spectrometer. Surf. Interface Anal. 2000;30:401–406. doi: 10.1002/1096-9918(200008)30:1<401::AID-SIA826>3.0.CO;2-G. DOI
Klemberg-Sapieha J.E., Küttel O.M., Martinu L., Wertheimer M.R. Dual-frequency N2 and NH3 plasma modification of polyethylene and polyimide. J. Vac. Sci. Technol. A. 1991;9:2975–2981. doi: 10.1116/1.577158. DOI
Antibacterial Thin Films Deposited from Propane-Butane Mixture in Atmospheric Pressure Discharge