Fast Surface Hydrophilization via Atmospheric Pressure Plasma Polymerization for Biological and Technical Applications

. 2019 Oct 04 ; 11 (10) : . [epub] 20191004

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31590313

Grantová podpora
GACR 19-15240S Grantová Agentura České Republiky
LO1411 (NPU I) Ministry of Education Youth and Sports of Czech Republic

Polymeric surfaces can benefit from functional modifications prior to using them for biological and/or technical applications. Surfaces considered for biocompatibility studies can be modified to gain beneficiary hydrophilic properties. For such modifications, the preparation of highly hydrophilic surfaces by means of plasma polymerization can be a good alternative to classical wet chemistry or plasma activation in simple atomic or molecular gasses. Atmospheric pressure plasma polymerization makes possible rapid, simple, and time-stable hydrophilic surface preparation, regardless of the type and properties of the material whose surface is to be modified. In this work, the surface of polypropylene was coated with a thin nanolayer of plasma-polymer which was prepared from a low-concentration mixture of propane-butane in nitrogen using atmospheric pressure plasma. A deposition time of only 1 second was necessary to achieve satisfactory hydrophilic properties. Highly hydrophilic, stable surfaces were obtained when the deposition time was 10 seconds. The thin layers of the prepared plasma-polymer exhibit highly stable wetting properties, they are smooth, homogeneous, flexible, and have good adhesion to the surface of polypropylene substrates. Moreover, they are constituted from essential elements only (C, H, N, O). This makes the presented modified plasma-polymer surfaces interesting for further studies in biological and/or technical applications.

Zobrazit více v PubMed

Young R.J., Lovell P.A. Introduction to Polymers. CRC Press; Boca Raton, FL, USA: 2011.

Olatujni O. In: Natural Polymers. Olatunji O., editor. Springer International Publishing; Cham, Switzerland: 2016.

Mascia L. Polymers in Industry from A to Z: A Concise Encyclopedia. WILEY-VCH Verlag; Weinheim, Germany: 2012.

Nemani S.K., Annavarapu R.K., Mohammadian B., Raiyan A., Heil J., Haque M.A., Abdelaal A., Sojoudi H. Surface Modification of Polymers: Methods and Applications. Adv. Mater. Interfaces. 2018;5:1801247. doi: 10.1002/admi.201801247. DOI

Fabbri P., Messori M. Surface Modification of Polymers. In: Jasso-Gastinel C.F., Kenny J.M., editors. Modification of Polymer Properties. Elsevier; Amsterdam, The Netherlands: 2017. pp. 109–130.

Iqbal M., Dinh D.K., Abbas Q., Imran M., Sattar H., Ul Ahmad A. Controlled Surface Wettability by Plasma Polymer Surface Modification. Surfaces. 2019;2:349–371. doi: 10.3390/surfaces2020026. DOI

Gotoh K., Yasukawa A., Kobayashi Y. Wettability characteristics of poly(ethylene terephthalate) films treated by atmospheric pressure plasma and ultraviolet excimer light. Polym. J. 2011;43:545–551. doi: 10.1038/pj.2011.20. DOI

Šimor M., Ráhel’ J., Černák M., Imahori Y., Štefečka M., Kando M. Atmospheric-pressure plasma treatment of polyester nonwoven fabrics for electroless plating. Surf. Coatings Technol. 2003;172:1–6. doi: 10.1016/S0257-8972(03)00313-X. DOI

Messori M., Toselli M., Pilati F., Fabbri E., Fabbri P., Pasquali L., Nannarone S. Prevention of plasticizer leaching from PVC medical devices by using organic–inorganic hybrid coatings. Polymer (Guildf) 2004;45:805–813. doi: 10.1016/j.polymer.2003.12.006. DOI

Oehr C. Plasma surface modification of polymers for biomedical use. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2003;208:40–47. doi: 10.1016/S0168-583X(03)00650-5. DOI

Klee D., Höcker H. Polymers for Biomedical Applications: Improvement of the Interface Compatibility. In: Eastmond G.C., Höcker H., Klee D., editors. Biomedical Applications Polymer Blends. Advances in Polymer Science. Volume 149. Springer Berlin Heidelberg; Berlin, Heidelberg: 1999. pp. 1–57.

Yoshida S., Hagiwara K., Hasebe T., Hotta A. Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release. Surf. Coatings Technol. 2013;233:99–107. doi: 10.1016/j.surfcoat.2013.02.042. DOI

Kulshrestha A.S., Mahapatro A. Polymers for Biomedical Applications. American Chemical Society.; Washington, DC, USA: 2008. pp. 1–7.

Lin P., Lin C.-W., Mansour R., Gu F. Improving biocompatibility by surface modification techniques on implantable bioelectronics. Biosens. Bioelectron. 2013;47:451–460. doi: 10.1016/j.bios.2013.01.071. PubMed DOI

Irfan M., Idris A. Overview of PES biocompatible/hemodialysis membranes: PES–blood interactions and modification techniques. Mater. Sci. Eng. C. 2015;56:574–592. doi: 10.1016/j.msec.2015.06.035. PubMed DOI

Macgregor M., Vasilev K. Perspective on Plasma Polymers for Applied Biomaterials Nanoengineering and the Recent Rise of Oxazolines. Materials (Basel) 2019;12:191. doi: 10.3390/ma12010191. PubMed DOI PMC

Tihan T.G., Ionita M.D., Popescu R.G., Iordachescu D. Effect of hydrophilic–hydrophobic balance on biocompatibility of poly(methyl methacrylate) (PMMA)–hydroxyapatite (HA) composites. Mater. Chem. Phys. 2009;118:265–269. doi: 10.1016/j.matchemphys.2009.03.019. DOI

Stallard C.P., McDonnell K.A., Onayemi O.D., O’Gara J.P., Dowling D.P. Evaluation of Protein Adsorption on Atmospheric Plasma Deposited Coatings Exhibiting Superhydrophilic to Superhydrophobic Properties. Biointerphases. 2012;7:31. doi: 10.1007/s13758-012-0031-0. PubMed DOI

Mredha M.T.I., Pathak S.K., Tran V.T., Cui J., Jeon I. Hydrogels with superior mechanical properties from the synergistic effect in hydrophobic–hydrophilic copolymers. Chem. Eng. J. 2019;362:325–338. doi: 10.1016/j.cej.2018.12.023. DOI

Kocijan A., Conradi M., Hočevar M. The Influence of Surface Wettability and Topography on the Bioactivity of TiO2/Epoxy Coatings on AISI 316L Stainless Steel. Materials (Basel) 2019;12:1877. doi: 10.3390/ma12111877. PubMed DOI PMC

Schmalz G., Galler K.M. Biocompatibility of biomaterials—Lessons learned and considerations for the design of novel materials. Dent. Mater. 2017;33:382–393. doi: 10.1016/j.dental.2017.01.011. PubMed DOI

Wan Y., Qu X., Lu J., Zhu C., Wan L., Yang J., Bei J., Wang S. Characterization of surface property of poly(lactide-co-glycolide) after oxygen plasma treatment. Biomaterials. 2004;25:4777–4783. doi: 10.1016/j.biomaterials.2003.11.051. PubMed DOI

Francolini I., Vuotto C., Piozzi A., Donelli G. Antifouling and antimicrobial biomaterials: An overview. APMIS. 2017;125:392–417. doi: 10.1111/apm.12675. PubMed DOI

Utrata-Wesolek A. Antifouling surfaces in medical application. Polimery. 2013;58:685–695. doi: 10.14314/polimery.2013.685. DOI

Jiménez-Pardo I., van der Ven L., van Benthem R., de With G., Esteves A. Hydrophilic Self-Replenishing Coatings with Long-Term Water Stability for Anti-Fouling Applications. Coatings. 2018;8:184. doi: 10.3390/coatings8050184. DOI

Buskens P., Wouters M., Rentrop C., Vroon Z. A brief review of environmentally benign antifouling and foul-release coatings for marine applications. J. Coatings Technol. Res. 2013;10:29–36. doi: 10.1007/s11998-012-9456-0. DOI

Donnelly B., Bedwell I., Dimas J., Scardino A., Tang Y., Sammut K. Effects of Various Antifouling Coatings and Fouling on Marine Sonar Performance. Polymers (Basel) 2019;11:663. doi: 10.3390/polym11040663. PubMed DOI PMC

Černák M., Kováčik D., Ráhel’ J., St’ahel P., Zahoranová A., Kubincová J., Tóth A., Černáková L. Generation of a high-density highly non-equilibrium air plasma for high-speed large-area flat surface processing. Plasma Phys. Control. Fusion. 2011;53:124031. doi: 10.1088/0741-3335/53/12/124031. DOI

Palumbo F., Di Mundo R., Cappelluti D., D’Agostino R. SuperHydrophobic and SuperHydrophilic Polycarbonate by Tailoring Chemistry and Nano-texture with Plasma Processing. Plasma Process. Polym. 2011;8:118–126. doi: 10.1002/ppap.201000098. DOI

Pappas D. Status and potential of atmospheric plasma processing of materials. J. Vac. Sci. Technol. A Vac. Surf. Film. 2011;29:020801. doi: 10.1116/1.3559547. DOI

Noeske M., Degenhardt J., Strudthoff S., Lommatzsch U. Plasma jet treatment of five polymers at atmospheric pressure: Surface modifications and the relevance for adhesion. Int. J. Adhes. Adhes. 2004;24:171–177. doi: 10.1016/j.ijadhadh.2003.09.006. DOI

Lehocký M., Drnovská H., Lapčíková B., Barros-Timmons A.M., Trindade T., Zembala M., Lapčík L. Plasma surface modification of polyethylene. Colloid. Surf. A. 2003;222:125–131. doi: 10.1016/S0927-7757(03)00242-5. DOI

Dorai R., Kushner M.J. A model for plasma modification of polypropylene using atmospheric pressure discharge. J. Phys. D Appl. Phys. 2003;36:666. doi: 10.1088/0022-3727/36/6/309. DOI

Fricke K., Steffen H., von Woedtke T., Schröder K., Weltmann K.-D. High Rate Etching of Polymers by Means of an Atmospheric Pressure Plasma Jet. Plasma Process. Polym. 2011;8:51–58. doi: 10.1002/ppap.201000093. DOI

Egitto F.D. Plasma etching and modification of organic polymers. Pure Appl. Chem. 1990;62:1699–1708. doi: 10.1351/pac199062091699. DOI

Cho J.S., Kim K.H., Han S., Beag Y.W., Koh S.K. Hydrophilic surface formation on polymers by ion-assisted reaction. Prog. Org. Coat. 2003;48:251–258. doi: 10.1016/S0300-9440(03)00098-5. DOI

Gerenser L.J. XPS studies of in situ plasma-modified polymer surfaces. J. Adhes. Sci. Technol. 1993;7:1019–1040. doi: 10.1163/156856193X00556. DOI

Tsougeni K., Petrou P.S., Tserepi A., Kakabakos S.E., Gogolides E. Nano-texturing of poly (methyl methacrylate) polymer using plasma processes and applications in wetting control and protein adsorption. Microelectron. Eng. 2009;86:1424–1427. doi: 10.1016/j.mee.2008.11.082. DOI

Skarmoutsou A., Charitidis C.A., Gnanappa A.K., Tserepi A., Gogolides E. Nanomechanical and nanotribological properties of plasma nanotextured superhydrophilic and superhydrophobic polymeric surfaces. Nanotechnology. 2012;23:505711. doi: 10.1088/0957-4484/23/50/505711. PubMed DOI

Gupta B., Plummer C., Bisson I., Frey P., Hilborn J. Plasma-induced graft polymerization of acrylic acid onto poly (ethylene terephthalate) films: Characterization and human smooth muscle cell growth on grafted films. Biomaterials. 2002;23:863–871. doi: 10.1016/S0142-9612(01)00195-8. PubMed DOI

Qiu Y.X., Klee D., Plüster W., Severich B., Höcker H. Surface modification of polyurethane by plasma-induced graft polymerization of poly (ethylene glycol) methacrylate. J. Appl. Polym. Sci. 1996;61:2373–2382. doi: 10.1002/(SICI)1097-4628(19960926)61:13<2373::AID-APP17>3.0.CO;2-5. DOI

Wavhal D.S., Fisher E.R. Hydrophilic modification of polyethersulfone membranes by low temperature plasma-induced graft polymerization. J. Membrane Sci. 2002;209:255–269. doi: 10.1016/S0376-7388(02)00352-6. DOI

Ulbricht M., Belfort G. Surface modification of ultrafiltration membranes by low temperature plasma II. Graft polymerization onto polyacrylonitrile and polysulfone. J. Membrane Sci. 1996;111:193–215. doi: 10.1016/0376-7388(95)00207-3. DOI

Sun J., Yao L., Sun S., Gao Z.Q., Qiu Y.P. Effect of storage condition and aging on acrylic acid inverse emulsion surface-grafting polymerization of PET films initiated by atmospheric pressure plasmas. Surf. Coat. Technol. 2011;205:2799–2805. doi: 10.1016/j.surfcoat.2010.10.048. DOI

Johnsen K., Kirkhorn S., Olafsen K., Redford K., Stori A. Modification of polyolefin surfaces by plasma-induced grafting. J. Appl. Polym. Sci. 1996;59:1651–1657. doi: 10.1002/(SICI)1097-4628(19960307)59:10<1651::AID-APP17>3.0.CO;2-Z. DOI

Bahners T., Prager L., Pender A., Gutmann J.S. Super-wetting surfaces by plasma- and UV-based grafting of micro-rough acrylate coating. Prog. Org. Coat. 2013;76:1356–1362. doi: 10.1016/j.porgcoat.2013.04.007. DOI

Sciarratta V., Vohrer U., Hegemann D., Müller M., Oehr C. Plasma functionalization of polypropylene with acrylic acid. Surf. Coat. Technol. 2003;174:805–810. doi: 10.1016/S0257-8972(03)00564-4. DOI

Biederman H. Plasma Polymer Films. Imperial College Press; London, UK: 2004.

Foest R., Kindel E., Ohl A., Stieber M., Weltmann K.D. Non-thermal atmospheric pressure discharges for surface modification. Plasma Phys. Contr. F. 2005;47:B525. doi: 10.1088/0741-3335/47/12B/S38. DOI

Malmsten M., Johansson J.-Å., Burns N.L., Yasuda H.K. Protein adsorption at n-butane plasma polymer surfaces. Colloid. Surface. B. 1996;6:191–199. doi: 10.1016/0927-7765(95)01255-9. DOI

Merche D., Vandencasteele N., Reniers F. Atmospheric plasmas for thin film deposition: A critical review. Thin Solid Films. 2012;520:4219–4236. doi: 10.1016/j.tsf.2012.01.026. DOI

Morent R., De Geyter N., Trentesaux M., Gengembre L., Dubruel P., Leys C., Payen E. Stability study of polyacrylic acid films plasma-polymerized on polypropylene substrates at medium pressure. Appl. Surf. Sci. 2010;257:372–380. doi: 10.1016/j.apsusc.2010.06.080. DOI

Ward L.J., Schofield W.C.E., Badyal J.P.S., Goodwin A.J., Merlin P.J. Atmospheric pressure plasma deposition of structurally well-defined polyacrylic acid films. Chem. Mater. 2003;15:1466–1469. doi: 10.1021/cm020289e. DOI

Beck A.J., Short R.D., Matthews A. Deposition of functional coatings from acrylic acid and octamethylcyclotetrasiloxane onto steel using an atmospheric pressure dielectric barrier discharge. Surf. Coat. Technol. 2008;203:822–825. doi: 10.1016/j.surfcoat.2008.05.017. DOI

Topala I., Dumitrascu N., Popa G. Properties of the acrylic acid polymers obtained by atmospheric pressure plasma polymerization. Nucl. Instrum. Meth. B. 2009;267:442–445. doi: 10.1016/j.nimb.2008.10.029. DOI

Morent R., De Geyter N., Van Vlierberghe S., Dubruel P., Leys C., Gengembre L., Schacht E., Payen E. Deposition of HMDSO-based coatings on PET substrates using an atmospheric pressure dielectric barrier discharge. Prog. Org. Coat. 2009;64:304–310. doi: 10.1016/j.porgcoat.2008.07.030. DOI

Yasuda H., Bumgarner M.O., Marsh H.C., Morosoff N. Plasma polymerization of some organic compounds and properties of the polymers. J. Polym. Sci. Pol. Chem. Edition. 1976;14:195–224. doi: 10.1002/pol.1976.170140118. DOI

Heyse P., Dams R., Paulussen S., Houthoofd K., Janssen K., Jacobs P.A., Sels B.F. Dielectric barrier discharge at atmospheric pressure as a tool to deposit versatile organic coatings at moderate power input. Plasma Process. Polym. 2007;4:145–157. doi: 10.1002/ppap.200600087. DOI

Hossain M.M., Hegemann D., Fortunato G., Herrmann A.S., Heuberger M. Plasma Deposition of Permanent Superhydrophilic a-C: H: N Films on Textiles. Plasma Process. Polym. 2007;4:471–481. doi: 10.1002/ppap.200600214. DOI

Shen M., Bell A.T. A Review of Recent Advances in Plasma Polymerization. ACS Sym. Ser. 1979;108:1–33.

Friedrich J. Mechanisms of plasma polymerization-reviewed from a chemical point of view. Plasma Process. Polym. 2011;8:783–802. doi: 10.1002/ppap.201100038. DOI

Biederman H. Polymer films prepared by plasma polymerization and their potential application. Vacuum. 1987;37:367–373. doi: 10.1016/0042-207X(87)90027-3. DOI

Serra R., Zheludkevich M.L., Ferreira M.G.S. Influence of the RF plasma polymerization process on the barrier properties of coil-coating. Prog. Org. Coat. 2005;53:225–234. doi: 10.1016/j.porgcoat.2005.03.006. DOI

Lee H.R., Kim D.J., Lee K.H. Anti-reflective coating for the deep coloring of PET fabrics using an atmospheric pressure plasma technique. Surf. Coat. Tech. 2001;142:468–473. doi: 10.1016/S0257-8972(01)01137-9. DOI

Múgica-Vidal R., Alba-Elías F., Sainz-García E., Ordieres-Meré J. Atmospheric plasma-polymerization of hydrophobic and wear-resistant coatings on glass substrates. Surf. Coat. Tech. 2014;259:374–385. doi: 10.1016/j.surfcoat.2014.10.067. DOI

Vautrin-Ul C., Boisse-Laporte C., Benissad N., Chausse A., Leprince P., Messina R. Plasma-polymerized coatings using HMDSO precursor for iron protection. Prog. Org. Coat. 2000;38:9–15. doi: 10.1016/S0300-9440(99)00077-6. DOI

Ko Y.M., Choe H.C., Jung S.C., Kim B.H. Plasma deposition of a silicone-like layer for the corrosion protection of magnesium. Prog. Org. Coat. 2013;76:1827–1832. doi: 10.1016/j.porgcoat.2013.05.024. DOI

Massines F., Sarra-Bournet C., Fanelli F., Naudé N., Gherardi N. Atmospheric pressure low temperature direct plasma technology: Status and challenges for thin film deposition. Plasma Process. Polym. 2012;9:1041–1073. doi: 10.1002/ppap.201200029. DOI

Amir I., Hudec I., Volovič M. Surface modification of textile reinforming material by plasma treatment and plasma polymerization. Chem. Listy. 2009;103:s100–s101.

Šimor M., Ráheľ J., Vojtek P., Černák M., Brablec A. Atmospheric-pressure diffuse coplanar surface discharge for surface treatments. Appl.Phys. Lett. 2002;81:2716–2718. doi: 10.1063/1.1513185. DOI

Kaelble D.H. Dispersion-Polar Surface Tension Properties of Organic Solids. J. Adhesion. 1970;2:66–81. doi: 10.1080/0021846708544582. DOI

Owens D.K., Wendt R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969;13:1741–1747. doi: 10.1002/app.1969.070130815. DOI

Drelich J., Chibowski E. Superhydrophilic and superwetting surfaces: Definition and mechanisms of control. Langmuir. 2010;26:18621–18623. doi: 10.1021/la1039893. PubMed DOI

Jaleh B., Parvin P., Wanichapichart P., Saffar A.P., Reyhani A. Induced super hydrophilicity due to surface modification of polypropylene membrane treated by O2 plasma. Appl. Surf. Sci. 2010;257:1655–1659. doi: 10.1016/j.apsusc.2010.08.117. DOI

Okabe Y., Kurihara S., Yajima T., Seki Y., Nakamura I., Takano I. Formation of super-hydrophilic surface of hydroxyapatite by ion implantation and plasma treatment. Surf. Coat. Technol. 2005;196:303–306. doi: 10.1016/j.surfcoat.2004.08.190. DOI

Carrino L., Moroni G., Polini W. Cold plasma treatment of polypropylene surface: A study on wettability and adhesion. J. Mater. Process. Tech. 2002;121:373–382. doi: 10.1016/S0924-0136(01)01221-3. DOI

Terpilowski K., Rymuszka D., Holysz L., Chibowski E. Changes in wettability of polycarbonate and polypropylene pretreated with oxygen and argon plasma. In: Zinigrad M., editor. Proceedings of the 8th International Conference on Material Technologies and Modeling MMT-2014; Ariel, Izrael. 28 July 2014; 2014. pp. 155–165.

Slepička P., Vasina A., Kolská Z., Luxbacher T., Malinský P., Macková A., Švorčík V. Argon plasma irradiation of polypropylene. Nucl. Instrum. Meth. B. 2010;268:2111–2114. doi: 10.1016/j.nimb.2010.02.012. DOI

Pandiyaraj K.N., Selvarajan V., Deshmukh R.R., Gao C. Modification of surface properties of polypropylene (PP) film using DC glow discharge air plasma. Appl. Surf. Sci. 2009;255:3965–3971. doi: 10.1016/j.apsusc.2008.10.090. DOI

Kwon O.J., Myung S.W., Lee C.S., Choi H.S. Comparison of the surface characteristics of polypropylene films treated by Ar and mixed gas (Ar/O2) atmospheric pressure plasma. J. Colloid Interf. Sci. 2006;295:409–416. doi: 10.1016/j.jcis.2005.11.007. PubMed DOI

Harth K., Hibst H. Surface modification of polypropylene in oxygen and nitrogen plasmas. Surf. Coat. Technol. 1993;59:350–355. doi: 10.1016/0257-8972(93)90111-Z. DOI

Kwon O.J., Tang S., Myung S.W., Lu N., Choi H.S. Surface characteristics of polypropylene film treated by an atmospheric pressure plasma. Surf. Coat. Technol. 2005;192:1–10. doi: 10.1016/j.surfcoat.2004.09.018. DOI

Massines F., Gouda G., Gherardi N., Duran M., Croquesel E. The role of dielectric barrier discharge atmosphere and physics on polypropylene surface treatment. Plasmas Polym. 2001;6:35–49. doi: 10.1023/A:1011365306501. DOI

Carrino L., Polini W., Sorrentino L. Ageing time of wettability on polypropylene surfaces processed by cold plasma. J. Mater. Process. Tech. 2004;153:519–525. doi: 10.1016/j.jmatprotec.2004.04.134. DOI

Massines F., Gouda G. A comparison of polypropylene-surface treatment by filamentary, homogeneous and glow discharges in helium at atmospheric pressure. J. Phys. D Appl. Phys. 1998;31:3411. doi: 10.1088/0022-3727/31/24/003. DOI

Morent R., De Geyter N., Leys C., Gengembre L., Payen E. Study of the ageing behaviour of polymer films treated with a dielectric barrier discharge in air, helium and argon at medium pressure. Surf. Coat. Technol. 2007;201:7847–7854. doi: 10.1016/j.surfcoat.2007.03.018. DOI

Johansson K.S. Surface Modification of Plastics. In: Kutz M., editor. Applied Plastics Engineering Handbook. Elsevier; Amsterdam, The Netherlands: 2017. pp. 443–487. Plastics Design Library.

Shao T., Zhang C., Long K., Zhang D., Wang J., Yan P., Zhou Y. Surface modification of polyimide films using unipolar nanosecond-pulse DBD in atmospheric air. Appl. Surf. Sci. 2010;256:3888–3894. doi: 10.1016/j.apsusc.2010.01.045. DOI

Zhang C., Zhou Y., Shao T., Xie Q., Xu J., Yang W. Hydrophobic treatment on polymethylmethacrylate surface by nanosecond-pulse DBDs in CF4 at atmospheric pressure. Appl. Surf. Sci. 2014;311:468–477. doi: 10.1016/j.apsusc.2014.05.091. DOI

Yablokov M., Gilman A., Kuznetsov A. MODIFICATION OF WETTABILITY OF POLYMER SURFACES BY PLASMA. In: Medvecká V., Országh J., Papp P., Matějčík Š., editors. Proceedings of the 21st Symposium on Application of Plasma Processes Book of Contributed Papers. Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava; Society for Plasma Research and Applications in cooperation with Library and Publishing Centre CU; Bratislava, Slovakia: 2017. pp. 19–26.

Kong F., Chang C., Ma Y., Zhang C., Ren C., Shao T. Surface modifications of polystyrene and their stability: A comparison of DBD plasma deposition and direct fluorination. Appl. Surf. Sci. 2018;459:300–308. doi: 10.1016/j.apsusc.2018.07.211. DOI

Zhang C., Lin H., Zhang S., Xie Q., Ren C., Shao T. Plasma surface treatment to improve surface charge accumulation and dissipation of epoxy resin exposed to DC and nanosecond-pulse voltages. J. Phys. D. Appl. Phys. 2017;50:405203. doi: 10.1088/1361-6463/aa829b. DOI

Zhang C., Ma Y., Kong F., Yan P., Chang C., Shao T. Atmospheric pressure plasmas and direct fluorination treatment of Al2O3-filled epoxy resin: A comparison of surface charge dissipation. Surf. Coatings Technol. 2019;362:1–11. doi: 10.1016/j.surfcoat.2019.01.081. DOI

Luongo J.P. Infrared study of polypropylene. J. Appl. Polym. Sci. 1960;3:302–309. doi: 10.1002/app.1960.070030907. DOI

Urbaniak-Domagala W. Advanced Aspects of Spectroscopy. INTECH Open Access Publisher; Rijeka, Croatia: 2012. The use of the spectrometric technique FTIR-ATR to examine the polymers surface.

Wexler A.S. Integrated Intensities of Absorption Bands in Infrared Spectroscopy. Appl. Spectrosc. Rev. 1967;1:29–98. doi: 10.1080/05704926708547581. DOI

Klages C.P., Hinze A., Khosravi Z. Nitrogen Plasma Modification and Chemical Derivatization of Polyethylene Surfaces—An In Situ Study Using FTIR-ATR Spectroscopy. Plasma Process. Polym. 2013;10:948–958. doi: 10.1002/ppap.201300033. DOI

Sellin N., de C., Campos J.S. Surface composition analysis of PP films treated by corona discharge. Mater. Res. 2003;6:163–166. doi: 10.1590/S1516-14392003000200009. DOI

Morent R., De Geyter N., Leys C., Gengembre L., Payen E. Comparison between XPS- and FTIR-analysis of plasma-treated polypropylene film surfaces. Surf. Interface Anal. 2008;40:597–600. doi: 10.1002/sia.2619. DOI

Urbaniak-Domagała W., Wrzosek H., Szymanowski H., Majchrzycka K., Brochocka A. Plasma Modification of Filter Nonwovens Used for the Protection of Respiratory Tracts. Fibres Tex. East. Eur. 2010;18:94–99.

Tsai C.Y., Juang R.S., Huang C. Surface Modification of Polypropylene Membrane by RF Methane/Oxygen Mixture Plasma Treatment. Jpn. J. Appl. Phys. 2011;50:08KA02. doi: 10.7567/JJAP.50.08KA02. DOI

Guruvenket S., Rao G.M., Komath M., Raichur A.M. Plasma surface modification of polystyrene and polyethylene. Appl. Surf. Sci. 2004;236:278–284. doi: 10.1016/j.apsusc.2004.04.033. DOI

Mutel B., Grimblot J., Dessaux O., Goudmand P. XPS investigations of nitrogen-plasma-treated polypropylene in a reactor coupled to the spectrometer. Surf. Interface Anal. 2000;30:401–406. doi: 10.1002/1096-9918(200008)30:1<401::AID-SIA826>3.0.CO;2-G. DOI

Klemberg-Sapieha J.E., Küttel O.M., Martinu L., Wertheimer M.R. Dual-frequency N2 and NH3 plasma modification of polyethylene and polyimide. J. Vac. Sci. Technol. A. 1991;9:2975–2981. doi: 10.1116/1.577158. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Antibacterial Thin Films Deposited from Propane-Butane Mixture in Atmospheric Pressure Discharge

. 2023 Jan 15 ; 24 (2) : . [epub] 20230115

Polymer Biointerfaces

. 2020 Apr 02 ; 12 (4) : . [epub] 20200402

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...