Antibacterial Thin Films Deposited from Propane-Butane Mixture in Atmospheric Pressure Discharge
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RP/CPS/2022/001 and RP/CPS/2022/002
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
36675219
PubMed Central
PMC9864540
DOI
10.3390/ijms24021706
PII: ijms24021706
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial thin films, plasma polymer, propane–butane mixture,
- MeSH
- antibakteriální látky farmakologie MeSH
- atmosférický tlak MeSH
- butany MeSH
- dusík MeSH
- Escherichia coli MeSH
- propan * MeSH
- Staphylococcus aureus * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- butany MeSH
- dusík MeSH
- propan * MeSH
Antibacterial coatings on biomedical instruments are of great interest because they can suppress bacterial colonization on these instruments. In this study, antibacterial polymeric thin coatings were deposited on teflon substrates using atmospheric pressure plasma polymerization from a propane-butane mixture. The plasma polymerization was performed by means of surface dielectric barrier discharge burning in nitrogen at atmospheric pressure. The chemical composition of plasma polymerized propane-butane films was studied by energy-dispersive X-ray spectroscopy (EDX) and FTIR. The film surface properties were studied by SEM and by surface energy measurement. The EDX analysis showed that the films consisted of carbon, nitrogen and oxygen from ambient air. The FTIR analysis confirmed, in particular, the presence of alkyl, nitrile, acetylene, imide and amine groups. The deposited films were hydrophilic with a water contact angle in the range of 13-23°. The thin film deposited samples were highly active against both S. aureus and E. coli strains in general. On the other hand, the films were cytocompatible, reaching more than 80% of the cell viability threshold compared to reference polystyrene tissue.
Zobrazit více v PubMed
Cloutier M., Mantovani D., Rosei F. Antibacterial Coatings: Challenges, Perspectives, and Opportunities. Trends Biotechnol. 2015;33:637–652. doi: 10.1016/j.tibtech.2015.09.002. PubMed DOI
Mitra D., Kang E.T., Neoh K.G. Polymer-Based Coatings with Integrated Antifouling and Bactericidal Properties for Targeted Biomedical Applications. ACS Appl. Polym. Mater. 2021;3:2233–2263. doi: 10.1021/acsapm.1c00125. DOI
Rostami S., Garipcan B. Evolution of antibacterial and antibiofouling properties of sharkskin-patterned surfaces. Surf. Innov. 2022;10:165–190. doi: 10.1680/jsuin.21.00055. DOI
Wang T., Huang L., Liu Y., Li X., Liu C., Handschuh-Wang S., Xu Y., Zhao Y., Tang Y. Robust Biomimetic Hierarchical Diamond Architecture with a Self-Cleaning, Antibacterial, and Antibiofouling Surface. ACS Appl. Mater. Interfaces. 2020;12:24432–24441. doi: 10.1021/acsami.0c02460. PubMed DOI
Miola M., Perero S., Ferraris S., Battiato A., Manfredotti C., Vittone E., Del Vento D., Vada S., Fucale G., Ferraris M. Silver nanocluster-silica composite antibacterial coatings for materials to be used in mobile telephones. Appl. Surf. Sci. 2014;313:107–115. doi: 10.1016/j.apsusc.2014.05.151. DOI
Huang Z., Ghasemi H. Hydrophilic polymer-based anti-biofouling coatings: Preparation, mechanism, and durability. Adv. Colloid Interface Sci. 2020;284 doi: 10.1016/j.cis.2020.102264. PubMed DOI
Leng C., Hung H.C., Sun S., Wang D., Li Y., Jiang S., Chen Z. Probing the Surface Hydration of Nonfouling Zwitterionic and PEG Materials in Contact with Proteins. ACS Appl. Mater. Interfaces. 2015;7:16881–16888. doi: 10.1021/acsami.5b05627. PubMed DOI
Zanini S., Müller M., Riccardi C., Orlandi M. Polyethylene Glycol Grafting on Polypropylene Membranes for Anti-fouling Properties. Plasma Chem. Plasma Process. 2007;27:446–457. doi: 10.1007/s11090-007-9094-y. DOI
Branch D.W., Wheeler B.C., Brewer G.J., Leckband D.E. Long-term stability of grafted polyethylene glycol surfaces for use with microstamped substrates in neuronal cell culture. Biomaterials. 2001;22:1035–1047. doi: 10.1016/S0142-9612(00)00343-4. PubMed DOI
Maan A.M.C., Hofman A.H., de Vos W.M., Kamperman M. Recent Developments and Practical Feasibility of Polymer-Based Antifouling Coatings. Adv. Funct. Mater. 2020;30 doi: 10.1002/adfm.202000936. DOI
Siow K.S., Britcher L., Kumar S., Griesser H.J. Plasma Methods for the Generation of Chemically Reactive Surfaces for Biomolecule Immobilization and Cell Colonization—A Review. Plasma Process. Polym. 2006;3:392–418. doi: 10.1002/ppap.200600021. DOI
Biederman H. Plasma Polymer Films. Imperial College Press; London, UK: 2004.
Stahel P., Mazankova V., Tomeckova K., Matouskova P., Brablec A., Prokes L., Jurmanova J., Bursikova V., Pribyl R., Lehocky M., et al. Atmospheric Pressure Plasma Polymerized Oxazoline-Based Thin Films-Antibacterial Properties and Cytocompatibility Performance. Polymers. 2019;11:2069. doi: 10.3390/polym11122069. PubMed DOI PMC
Mazankova V., Stahel P., Matouskova P., Brablec A., Cech J., Prokes L., Bursikova V., Stupavska M., Lehocky M., Ozaltin K., et al. Atmospheric Pressure Plasma Polymerized 2-Ethyl-2-oxazoline Based Thin Films for Biomedical Purposes. Polymers. 2020;12:2679. doi: 10.3390/polym12112679. PubMed DOI PMC
Hays H.L., Spiller H. Fluoropolymer-associated illness. Clin. Toxicol. 2014;52:848–855. doi: 10.3109/15563650.2014.946610. PubMed DOI
Dvorakova H., Cech J., Stupavska M., Prokes L., Jurmanova J., Bursikova V., Rahel J., Stahel P. Fast Surface Hydrophilization via Atmospheric Pressure Plasma Polymerization for Biological and Technical Applications. Polymers. 2019;11:1613. doi: 10.3390/polym11101613. PubMed DOI PMC
Navratil Z., Bursikova V., Stahel P., Sira M., Zverina P. On the analysis of surface free energy of DLC coatings deposited in low pressure RF discharge. Czech. J. Phys. 2004;54:C877–C882. doi: 10.1007/BF03166502. DOI
Stuart B.H. Infrared Spectroscopy: Fundamentals and Applications. John Wiley & Sons; Chichester, UK: 2004.
Coates J. Interpretation of Infrared Spectra, A Practical Approach. In: Meyers R., editor. Encyclopedia of Analytical Chemistry. John Wiley & Sons; Chichester, UK: 2000. pp. 10815–10837.
Horňák R. Bachelor’s Thesis. [(accessed on 10 January 2023)]. Available online: https://is.muni.cz/th/rda5f/?lang=en.
Mazankova V., Torokova L., Moravsky L., Matejcik S., Trunec D., Navratil Z., Mason N.J. Analysis of the products of a negative corona discharge in a N2-CH4 mixture with added CO2 used as a laboratory mimic of a prebiotic atmosphere. Contrib. Plasma Phys. 2018;58:995–1004. doi: 10.1002/ctpp.201700089. DOI
Torokova L., Watson J., Krcma F., Mazankova V., Mason N.J., Horvath G., Matejcik S. Gas Chromatography Analysis of Discharge Products in N2-CH4 Gas Mixture at Atmospheric Pressure: Study of Mimic Titan’s Atmosphere. Contrib. Plasma Phys. 2015;55:470–480. doi: 10.1002/ctpp.201400052. DOI
Mazankova V., Manduchova I., Krcma F., Prokes L., Trunec D. GC-MS and GC-FID analysis of products from glow discharge in N2 + CH4 mixture. Plasma Phys. Technol. 2018;5:103–106. doi: 10.14311/ppt.2018.3.103. DOI
Kado S., Sekine Y., Fujimoto K. Direct synthesis of acetylene from methane by direct current pulse discharge. Chem. Commun. 1999:2485–2486. doi: 10.1039/a906914c. DOI
Jauberteau J.L., Jauberteau I. Synthesis of cyanides in N2 - CH4 discharge afterglow. J. Phys. D Appl. Phys. 2018;51:315201. doi: 10.1088/1361-6463/aaccc2. DOI
Sanchez-Gonzalez R., Kim Y., Rosocha L.A., Abbate S. Methane and ethane decomposition in an atmospheric-pressure plasma jet. IEEE Trans. Plasma Sci. 2007;35:1669–1676. doi: 10.1109/TPS.2007.910743. DOI
Baidin V., Owens T.W., Lazarus M.B., Kahne D. Simple Secondary Amines Inhibit Growth of Gram-Negative Bacteria through Highly Selective Binding to Phenylalanyl-tRNA Synthetase. J. Am. Chem. Soc. 2021;143:623–627. doi: 10.1021/jacs.0c11113. PubMed DOI PMC
Endo Y., Tani T., Kodama M. Antimicrobial Activity of Tertiary Amine Covalently Bonded to a Polystyrene Fiber. Appl. Environ. Microbiol. 1987;53:2050–2055. doi: 10.1128/aem.53.9.2050-2055.1987. PubMed DOI PMC
Nadagouda M.N., Vijayasarathy P., Sin A., Nam H., Khan S., Parambath J.B.M., Mohamed A.A., Han C. Antimicrobial activity of quaternary ammonium salts: Structure-activity relationship. Med. Chem. Res. 2022;31:1663–1678. doi: 10.1007/s00044-022-02924-9. DOI
Zhou M., Jiang W., Xie J., Zhang W., Ji Z., Zou J., Cong Z., Xiao X., Gu J., Liu R. Peptide-Mimicking Poly(2-oxazoline)s Displaying Potent Antimicrobial Properties. ChemMedChem. 2021;16:309–315. doi: 10.1002/cmdc.202000530. PubMed DOI
Mazankova V., Kostyleva K., Hornak R., Stahel P. Deposition of Polymeric Thin Films from Propane-Butane in Atmospheric Pressure Discharge. Plasma Phys. Technol. 2022;9:1–5. doi: 10.14311/ppt.2022.1.1. DOI