Comparison of Plasma-Polymerized Thin Films Deposited from 2-Methyl-2-oxazoline and 2-Ethyl-2-oxazoline: I Film Properties

. 2023 Dec 14 ; 24 (24) : . [epub] 20231214

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38139283

Grantová podpora
DKRVO RP/CPS/2022/005, DKRVO RP/CPS/2022/001, DKRVO RP/CPS/2022/002 ministry of education, youth and sports
DKRVO Ministry of Defence

Poly(2-oxazoline) is a promising new class of polymeric materials due to their antibiofouling properties and good biocompatibility. Poly(2-oxazoline) coatings can be deposited on different substrates via plasma polymerization, which can be more advantageous than other coating methods. The aim of this study is to deposit poly(2-oxazoline) coatings using a surface dielectric barrier discharge burning in nitrogen at atmospheric pressure using 2-methyl-2-oxazoline and 2-ethyl-2-oxazoline vapours as monomers and compare the film properties. For the comparison, the antibacterial and cytocompatibility tests were peformed according to ISO norms. The antibacterial tests showed that all the deposited films were highly active against Staphylococcus aureus and Escherichia coli bacteria. The chemical composition of the films was studied using FTIR and XPS, and the film surface's properties were studied using AFM and surface energy measurement. The cytocompatibility tests showed good cytocompatibility of all the deposited films. However, the films deposited from 2-methyl-2-oxazoline exhibit better cytocompatibility. This difference can be explained by the different chemical compositions and surface morphologies of the films deposited from different monomers.

Zobrazit více v PubMed

Jana S., Hoogenboom R. Poly(2-oxazoline)s: A comprehensive overview of polymer structures and their physical properties—An update. Polym. Int. 2022;71:935–949. doi: 10.1002/pi.6426. DOI

Nemati Mahand S., Aliakbarzadeh S., Moghaddam A., Salehi Moghaddam A., Kruppke B., Nasrollahzadeh M., Khonakdar H.A. Polyoxazoline: A review article from polymerization to smart behaviors and biomedical applications. Eur. Polym. J. 2022;178:111484. doi: 10.1016/j.eurpolymj.2022.111484. DOI

Leiske M.N. Poly(2-oxazoline)-derived star-shaped polymers as potential materials for biomedical applications: A review. Eur. Polym. J. 2023;185:111832. doi: 10.1016/j.eurpolymj.2023.111832. DOI

Maan A.M.C., Hofman A.H., de Vos W.M., Kamperman M. Recent Developments and Practical Feasibility of Polymer-Based Antifouling Coatings. Adv. Funct. Mater. 2020;30:2000936. doi: 10.1002/adfm.202000936. DOI

Trachsel L., Romio M., Ramakrishna S.N., Benetti E.M. Fabrication of Biopassive Surfaces Using Poly(2-alkyl-2-oxazoline)s: Recent Progresses and Applications. Adv. Mater. Interfaces. 2020;7:2000943. doi: 10.1002/admi.202000943. DOI

Alkattan N., Alasmael N., Ladelta V., Khashab N.M., Hadjichristidis N. Poly(2-oxazoline)-based core cross-linked star polymers: Synthesis and drug delivery applications. Nanoscale Adv. 2023;5:2794–2803. doi: 10.1039/D3NA00116D. PubMed DOI PMC

Alvarez de Eulate E., Gheorghiu A., Amoura C., Whiteley A., Priest C., MacGregor M.N. Plasma Deposited Polyoxazoline Thin Films for the Biofunctionalization of Electrochemical Sensors. Adv. Mater. Technol. 2021;6:2001292. doi: 10.1002/admt.202001292. DOI

Gheorghiu A., Yang D., Delcheva I., Priest C., MacGregor M. Electrochemical behavior of oxazoline-based plasma polymers for biosensing applications. Plasma Process. Polym. 2023;20:2200233. doi: 10.1002/ppap.202200233. DOI

Yang L., Wang F., Ren P., Zhang T., Zhang Q. Poly(2-oxazoline)s: Synthesis and biomedical applications. Macromol. Res. 2023;31:413–426. doi: 10.1007/s13233-023-00116-x. DOI

Chistyakov E.M., Filatov S.N., Sulyanova E.A., Volkov V.V. Determination of the Degree of Crystallinity of Poly(2-methyl-2-oxazoline) Polymers. 2021;13:4356. doi: 10.3390/polym13244356. PubMed DOI PMC

Sramkova P., Kucka J., Kronekova Z., Lobaz V., Slouf M., Micusik M., Sepitka J., Kleinova A., Chorvat D., Mateasik A., et al. Electron beam irradiation as a straightforward way to produce tailorable non-biofouling poly(2-methyl-2-oxazoline) hydrogel layers on different substrates. Appl. Surf. Sci. 2023;625:157061. doi: 10.1016/j.apsusc.2023.157061. DOI

Akdogan E., Sirin H.T. Plasma surface modification strategies for the preparation of antibacterial biomaterials: A review of the recent literature. Mater. Sci. Eng. C Mater. Biol. Appl. 2021;131:112474. doi: 10.1016/j.msec.2021.112474. PubMed DOI

Jang H.J., Jung E.Y., Parsons T., Tae H.S., Park C.S. A Review of Plasma Synthesis Methods for Polymer Films and Nanoparticles under Atmospheric Pressure Conditions. Polymers. 2021;13:2267. doi: 10.3390/polym13142267. PubMed DOI PMC

Bhatt S., Pulpytel J., Mirshahi M., Arefi-Khonsari F. Cell Resistant Peptidomimetic Poly (2-ethyl-2-oxazoline) Coatings Developed by Low Pressure Inductively Excited Pulsed Plasma Polymerization for Biomedical Purpose. Plasma Process. Polym. 2015;12:519–532. doi: 10.1002/ppap.201400169. DOI

Ramiasa M.N., Cavallaro A.A., Mierczynska A., Christo S.N., Gleadle J.M., Hayball J.D., Vasilev K. Plasma polymerised polyoxazoline thin films for biomedical applications. Chem. Commun. 2015;51:4279–4282. doi: 10.1039/C5CC00260E. PubMed DOI

Macgregor-Ramiasa M.N., Cavallaro A.A., Vasilev K. Properties and reactivity of polyoxazoline plasma polymer films. J. Mater. Chem. B. 2015;3:6327–6337. doi: 10.1039/C5TB00901D. PubMed DOI

Cavallaro A.A., Macgregor-Ramiasa M.N., Vasilev K. Antibiofouling Properties of Plasma-Deposited Oxazoline-Based Thin Films. ACS Appl. Mater. Interfaces. 2016;8:6354–6362. doi: 10.1021/acsami.6b00330. PubMed DOI

Zanini S., Zoia L., Dell’Orto E.C., Natalello A., Villa A.M., Della Pergola R., Riccardi C. Plasma polymerized 2-ethyl-2-oxazoline: Chemical characterization and study of the reactivity towards different chemical groups. Mater. Des. 2016;108:791–800. doi: 10.1016/j.matdes.2016.07.051. DOI

Stahel P., Mazankova V., Tomeckova K., Matouskova P., Brablec A., Prokes L., Jurmanova J., Bursikova V., Pribyl R., Lehocky M., et al. Atmospheric Pressure Plasma Polymerized Oxazoline-Based Thin Films-Antibacterial Properties and Cytocompatibility Performance. Polymers. 2019;11:2069. doi: 10.3390/polym11122069. PubMed DOI PMC

Mazankova V., Stahel P., Matouskova P., Brablec A., Cech J., Prokes L., Bursikova V., Stupavska M., Lehocky M., Ozaltin K., et al. Atmospheric Pressure Plasma Polymerized 2-Ethyl-2-oxazoline Based Thin Films for Biomedical Purposes. Polymers. 2020;12:2679. doi: 10.3390/polym12112679. PubMed DOI PMC

Stahel P., Mazankova V., Podzemna D., Podzemna E., Pizurova V., Jurmanova J., Prokes L., Lehocky M., Ozaltin K., Pistekova H., et al. Antibacterial Thin Films Deposited from Propane-Butane Mixture in Atmospheric Pressure Discharge. Int. J. Mol. Sci. 2023;24:1706. doi: 10.3390/ijms24021706. PubMed DOI PMC

ISO 22196:2011; Measurement of Antibacterial Activity on Plastics and Other Non-Porous Surfaces. [(accessed on 11 December 2023)]. Available online: https://www.iso.org/standard/54431.html.

Navratil Z., Bursikova V., Stahel P., Sira M., Zverina P. On the analysis of surface free energy of DLC coatings deposited in low pressure RF discharge. Czech. J. Phys. 2004;54:C877–C882. doi: 10.1007/BF03166502. DOI

Dai C., Zhou M., Jiang W., Xiao X., Zou J., Qian Y., Cong Z., Ji Z., Liu L., Xie J., et al. Breaking or following the membrane-targeting mechanism: Exploring the antibacterial mechanism of host defense peptide mimicking poly(2-oxazoline)s. J. Mater. Sci. Technol. 2020;59:220–226. doi: 10.1016/j.jmst.2020.06.006. DOI

Concilio M., Garcia Maset R., Lemonche L.P., Kontrimas V., Song J.I., Rajendrakumar S.K., Harrison F., Becer C.R., Perrier S. Mechanism of Action of Oxazoline-Based Antimicrobial Polymers Against Staphylococcus aureus: In Vivo Antimicrobial Activity Evaluation. Adv. Healthc. Mater. 2023;12:2301961. doi: 10.1002/adhm.202301961. PubMed DOI PMC

Lerouge S., Major A., Girard-Lauriault P.L., Raymond M.A., Laplante P., Soulez G., Mwale F., Wertheimer M.R., Hebert M.J. Nitrogen-rich coatings for promoting healing around stent-grafts after endovascular aneurysm repair. Biomaterials. 2007;28:1209–1217. doi: 10.1016/j.biomaterials.2006.10.033. PubMed DOI

ISO 10993-5:2009; Biological Evaluation of Medical Devices. Part 5: Tests for In Vitro Cytotoxicity. [(accessed on 11 December 2023)]. Available online: https://www.iso.org/standard/36406.html.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace