Atmospheric Pressure Plasma Polymerized 2-Ethyl-2-oxazoline Based Thin Films for Biomedical Purposes

. 2020 Nov 13 ; 12 (11) : . [epub] 20201113

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33202725

Grantová podpora
GACR 19-15240S Grantová Agentura České Republiky

Polyoxazoline thin coatings were deposited on glass substrates using atmospheric pressure plasma polymerization from 2-ethyl-2-oxazoline vapours. The plasma polymerization was performed in dielectric barrier discharge burning in nitrogen at atmospheric pressure. The thin films stable in aqueous environments were obtained at the deposition with increased substrate temperature, which was changed from 20 ∘C to 150 ∘C. The thin film deposited samples were highly active against both S. aureus and E. coli strains in general. The chemical composition of polyoxazoline films was studied by FTIR and XPS, the mechanical properties of films were studied by depth sensing indentation technique and by scratch tests. The film surface properties were studied by AFM and by surface energy measurement. After tuning the deposition parameters (i.e., monomer flow rate and substrate temperature), stable films, which resist bacterial biofilm formation and have cell-repellent properties, were achieved. Such antibiofouling polyoxazoline thin films can have many potential biomedical applications.

Zobrazit více v PubMed

Trachsel L., Romio M., Ramakrishna S.N., Benetti E.M. Fabrication of Biopassive Surfaces Using Poly(2-alkyl-2-oxazoline)s: Recent Progresses and Applications. Adv. Mater. Interfaces. 2020;7:2000943. doi: 10.1002/admi.202000943. DOI

Woodle M.C., Engbers C.M., Zalipsky S. New Amphipatic Polymer Lipid Conjugates Forming Long-Circulating Reticuloendothelial System-Evading Liposomes. Bioconj. Chem. 1994;5:493–496. doi: 10.1021/bc00030a001. PubMed DOI

Zalipsky S., Hansen C.B., Oaks J.M., Allen T.M. Evaluation of Blood Clearance Rates and Biodistribution of Poly(2-oxazoline)-grafted Liposomes. J. Pharm. Sci. 1996;85:133–137. doi: 10.1021/js9504043. PubMed DOI

Goddard P., Hutchinson L.E., Brown J., Brookman L.J. Soluble Polymeric Carriers for Drug Delivery. Part 2. Preparation and in Vivo Behaviour of N-acylethylenimine Copolymers. J. Control. Release. 1989;10:5–16. doi: 10.1016/0168-3659(89)90013-8. DOI

Wang H., Li L., Tong Q., Yan M. Evaluation of Photochemically Immobilized Poly(2-ethyl-2-oxazoline) Thin Films as Protein-Resistant Surfaces. ACS Appl. Mater. Interfaces. 2011;3:3463–3471. doi: 10.1021/am200690s. PubMed DOI PMC

Pidhatika B., Rodenstein M., Chen Y., Rakhmatullina E., Mühlebach A., Acikgöz C., Textor M., Konradi R. Comparative Stability Studies of Poly(2-methyl-2-oxazoline) and Poly(ethyleneglycol) Brush Coatings. Biointerphases. 2012;7:1. doi: 10.1007/s13758-011-0001-y. PubMed DOI

Vasilev K. Nanoengineered Plasma Polymer Films for Biomaterial Applications. Plasma Chem. Plasma Process. 2014;34:545–558. doi: 10.1007/s11090-013-9506-0. DOI

Siow K.S., Britcher L., Kumar S., Griesser H.J. Plasma Methods for the Generation of Chemically Reactive Surfaces for Biomolecule Immobilization and Cell Colonization—A Review. Plasma Process. Polym. 2006;3:392–418. doi: 10.1002/ppap.200600021. DOI

Bhatt S., Pulpytel J., Mirshahi M., Arefi-Khonsari F. Cell Resistant Peptidomimetic Poly (2-ethyl-2-oxazoline) Coatings Developed by Low Pressure Inductively Excited Pulsed Plasma Polymerization for Biomedical Purpose. Plasma Process. Polym. 2015;12:519–532. doi: 10.1002/ppap.201400169. DOI

Ramiasa M., Cavallaro A., Mierczynska A., Christo S., Gleadle J., Hayball J.D., Vasilev K. Plasma Polymerised PolyOxazoline Thin Films for Biomedical Applications. Chem. Commun. 2015;51:4279–4282. doi: 10.1039/C5CC00260E. PubMed DOI

Macgregor-Ramiasa M.N., Cavallaro A.A., Vasilev K. Properties and Reactivity of Polyoxazoline Plasma Polymer Films. J. Mater. Chem. B. 2015;3:6327–6337. doi: 10.1039/C5TB00901D. PubMed DOI

Cavallaro A.A., Macgregor-Ramiasa M.N., Vasilev K. Antibiofouling Properties of Plasma-Deposited Oxazoline-Based Thin Films. ACS Appl. Mater. Interfaces. 2016;8:6354–6362. doi: 10.1021/acsami.6b00330. PubMed DOI

Zanini S., Zoia L., Dell’Orto E.C., Natalello A., Villa A.M., Della Pergola R., Riccardi C. Plasma Polymerized 2-ethyl-2-oxazoline: Chemical Characterization and Study of the Reactivity towards Different Chemical Groups. Mater. Des. 2016;108:791–800. doi: 10.1016/j.matdes.2016.07.051. DOI

Mori Y., Yoshii K., Kakiuchi H., Yasutake K. Atmospheric Pressure Plasma Chemical Vapor Deposition System for High-rate Deposition of Functional Materials. Rev. Sci. Instrum. 2000;71:3173. doi: 10.1063/1.1305510. DOI

Gherardi N., Gouda G., Gat E., Ricard A., Massines F. Transition from Glow Silent Discharge to Micro-discharges in Nitrogen Gas. Plasma Sources Sci. Technol. 2000;9:340–346. doi: 10.1088/0963-0252/9/3/312. DOI

Gherardi N., Martin S., Massines F. A New Approach to SiO2 Deposit using a N2–SiH4–N2O Glow Dielectric Barrier-Controlled Discharge at Atmospheric Pressure. J. Phys. D Appl. Phys. 2000;33:L104–L108. doi: 10.1088/0022-3727/33/19/102. DOI

Trunec D., Navratil Z., Stahel P., Zajickova L., Bursikova V., Cech J. Deposition of Thin Organosilicon Polymer Films in Atmospheric Pressure Glow Discharge. J. Phys. D Appl. Phys. 2004;37:2112–2120. doi: 10.1088/0022-3727/37/15/010. DOI

Trunec D., Zajickova L., Bursikova V., Studnicka F., Stahel P., Prysiazhnyi V., Perina V., Houdkova J., Navratil Z., Franta D. Deposition of Hard Thin Films from HMDSO in Atmospheric Pressure Dielectric Barrier Discharge. J. Phys. D Appl. Phys. 2010;43:225403. doi: 10.1088/0022-3727/43/22/225403. DOI

Yokoyama T., Kogoma M., Moriwaki T., Okazaki S. The Mechanism of the Stabilisation of Glow Plasma at Atmospheric Pressure. J. Phys. D Appl. Phys. 1990;23:1125–1128. doi: 10.1088/0022-3727/23/8/021. DOI

Trunec D., Brablec A., Buchta J. Atmospheric Pressure Glow Discharge in Neon. J. Phys. D Appl. Phys. 2001;34:1697–1699. doi: 10.1088/0022-3727/34/11/322. DOI

Al-Bataineh S.A., Cavallaro A.A., Michelmore A., Macgregor M.N., Whittle J.D., Vasilev K. Deposition of 2-oxazoline-based Plasma Polymer Coatings using Atmospheric Pressure Helium Plasma Jet. Plasma Process. Polym. 2019;16:e1900104. doi: 10.1002/ppap.201900104. DOI

Van Guyse J.F.R., Cools P., Egghe T., Asadian M., Vergaelen M., Rigole P., Yan W., Benetti E.M., Jerca V., Declercq H., et al. Influence of the Aliphatic Side Chain on the Near Atmospheric Pressure Plasma Polymerization of 2-Alkyl-2-oxazolines for Biomedical Applications. ACS Appl. Mater. Interfaces. 2019;11:31356–31366. doi: 10.1021/acsami.9b09999. PubMed DOI

Stahel P., Mazankova V., Tomeckova K., Matouskova P., Brablec A., Prokes L., Jurmanova P., Bursikova V., Pribyl R., Lehocky M., et al. Atmospheric Pressure Plasma Polymerized Oxazoline-Based Thin Films–Antibacterial Properties and Cytocompatibility Performance. Polymers. 2019;11:2069. doi: 10.3390/polym11122069. PubMed DOI PMC

Obrusnik A., Jelinek P., Zajickova L. Modelling of the Gas Flow and Plasma Co-polymerization of Two Monomers in an Atmospheric-Pressure Dielectric Barrier Discharge. Surf. Coat. Technol. 2017;314:139–147. doi: 10.1016/j.surfcoat.2016.10.068. DOI

Oliver W.C., Pharr G.M. An Improved Technique for Determining Hardness and Elastic Modulus using Load and Displacement Sensing Indentation Experiments. J. Mater. Res. 1992;7:1564–1583. doi: 10.1557/JMR.1992.1564. DOI

Katsikogianni M., Missirlis Y.F. Concise Review of Mechanisms of Bacterial Adhesion to Biomaterials and of Techniques Used in Estimating Bacteria–Material Interactions. Eur. Cells Mater. 2004;8:37–57. doi: 10.22203/eCM.v008a05. PubMed DOI

Navratil Z., Bursikova V., Stahel P., Sira M., Zverina P. On the Analysis of Surface Free Energy of DLC Coatings Deposited in Low Pressure RF Discharge. Czech J. Phys. (Suppl. C) 2004;54:C877–C882. doi: 10.1007/BF03166502. DOI

Zlotnikov I., Zolotoyabko E., Fratzl P. Nano-scale Modulus Mapping of Biological Composite Materials: Theory and Practice. Prog. Mater. Sci. 2017;87:292–320. doi: 10.1016/j.pmatsci.2017.03.002. DOI

Lerouge S., Major A., Girault-Lauriault P.-L., Raymond M.-A., Laplante P., Soulez G., Mwale F., Wertheimer M.R., Hébert M.-J. Nitrogen-Rich Coatings for Promoting Healing around Stent-Grafts after Endovascular Aneurysm Repair. Biomaterials. 2007;28:1209–1217. doi: 10.1016/j.biomaterials.2006.10.033. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...