Atmospheric Pressure Plasma Polymerized 2-Ethyl-2-oxazoline Based Thin Films for Biomedical Purposes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GACR 19-15240S
Grantová Agentura České Republiky
PubMed
33202725
PubMed Central
PMC7697250
DOI
10.3390/polym12112679
PII: polym12112679
Knihovny.cz E-zdroje
- Klíčová slova
- antibiofouling, oxazoline, plasma polymer,
- Publikační typ
- časopisecké články MeSH
Polyoxazoline thin coatings were deposited on glass substrates using atmospheric pressure plasma polymerization from 2-ethyl-2-oxazoline vapours. The plasma polymerization was performed in dielectric barrier discharge burning in nitrogen at atmospheric pressure. The thin films stable in aqueous environments were obtained at the deposition with increased substrate temperature, which was changed from 20 ∘C to 150 ∘C. The thin film deposited samples were highly active against both S. aureus and E. coli strains in general. The chemical composition of polyoxazoline films was studied by FTIR and XPS, the mechanical properties of films were studied by depth sensing indentation technique and by scratch tests. The film surface properties were studied by AFM and by surface energy measurement. After tuning the deposition parameters (i.e., monomer flow rate and substrate temperature), stable films, which resist bacterial biofilm formation and have cell-repellent properties, were achieved. Such antibiofouling polyoxazoline thin films can have many potential biomedical applications.
Zobrazit více v PubMed
Trachsel L., Romio M., Ramakrishna S.N., Benetti E.M. Fabrication of Biopassive Surfaces Using Poly(2-alkyl-2-oxazoline)s: Recent Progresses and Applications. Adv. Mater. Interfaces. 2020;7:2000943. doi: 10.1002/admi.202000943. DOI
Woodle M.C., Engbers C.M., Zalipsky S. New Amphipatic Polymer Lipid Conjugates Forming Long-Circulating Reticuloendothelial System-Evading Liposomes. Bioconj. Chem. 1994;5:493–496. doi: 10.1021/bc00030a001. PubMed DOI
Zalipsky S., Hansen C.B., Oaks J.M., Allen T.M. Evaluation of Blood Clearance Rates and Biodistribution of Poly(2-oxazoline)-grafted Liposomes. J. Pharm. Sci. 1996;85:133–137. doi: 10.1021/js9504043. PubMed DOI
Goddard P., Hutchinson L.E., Brown J., Brookman L.J. Soluble Polymeric Carriers for Drug Delivery. Part 2. Preparation and in Vivo Behaviour of N-acylethylenimine Copolymers. J. Control. Release. 1989;10:5–16. doi: 10.1016/0168-3659(89)90013-8. DOI
Wang H., Li L., Tong Q., Yan M. Evaluation of Photochemically Immobilized Poly(2-ethyl-2-oxazoline) Thin Films as Protein-Resistant Surfaces. ACS Appl. Mater. Interfaces. 2011;3:3463–3471. doi: 10.1021/am200690s. PubMed DOI PMC
Pidhatika B., Rodenstein M., Chen Y., Rakhmatullina E., Mühlebach A., Acikgöz C., Textor M., Konradi R. Comparative Stability Studies of Poly(2-methyl-2-oxazoline) and Poly(ethyleneglycol) Brush Coatings. Biointerphases. 2012;7:1. doi: 10.1007/s13758-011-0001-y. PubMed DOI
Vasilev K. Nanoengineered Plasma Polymer Films for Biomaterial Applications. Plasma Chem. Plasma Process. 2014;34:545–558. doi: 10.1007/s11090-013-9506-0. DOI
Siow K.S., Britcher L., Kumar S., Griesser H.J. Plasma Methods for the Generation of Chemically Reactive Surfaces for Biomolecule Immobilization and Cell Colonization—A Review. Plasma Process. Polym. 2006;3:392–418. doi: 10.1002/ppap.200600021. DOI
Bhatt S., Pulpytel J., Mirshahi M., Arefi-Khonsari F. Cell Resistant Peptidomimetic Poly (2-ethyl-2-oxazoline) Coatings Developed by Low Pressure Inductively Excited Pulsed Plasma Polymerization for Biomedical Purpose. Plasma Process. Polym. 2015;12:519–532. doi: 10.1002/ppap.201400169. DOI
Ramiasa M., Cavallaro A., Mierczynska A., Christo S., Gleadle J., Hayball J.D., Vasilev K. Plasma Polymerised PolyOxazoline Thin Films for Biomedical Applications. Chem. Commun. 2015;51:4279–4282. doi: 10.1039/C5CC00260E. PubMed DOI
Macgregor-Ramiasa M.N., Cavallaro A.A., Vasilev K. Properties and Reactivity of Polyoxazoline Plasma Polymer Films. J. Mater. Chem. B. 2015;3:6327–6337. doi: 10.1039/C5TB00901D. PubMed DOI
Cavallaro A.A., Macgregor-Ramiasa M.N., Vasilev K. Antibiofouling Properties of Plasma-Deposited Oxazoline-Based Thin Films. ACS Appl. Mater. Interfaces. 2016;8:6354–6362. doi: 10.1021/acsami.6b00330. PubMed DOI
Zanini S., Zoia L., Dell’Orto E.C., Natalello A., Villa A.M., Della Pergola R., Riccardi C. Plasma Polymerized 2-ethyl-2-oxazoline: Chemical Characterization and Study of the Reactivity towards Different Chemical Groups. Mater. Des. 2016;108:791–800. doi: 10.1016/j.matdes.2016.07.051. DOI
Mori Y., Yoshii K., Kakiuchi H., Yasutake K. Atmospheric Pressure Plasma Chemical Vapor Deposition System for High-rate Deposition of Functional Materials. Rev. Sci. Instrum. 2000;71:3173. doi: 10.1063/1.1305510. DOI
Gherardi N., Gouda G., Gat E., Ricard A., Massines F. Transition from Glow Silent Discharge to Micro-discharges in Nitrogen Gas. Plasma Sources Sci. Technol. 2000;9:340–346. doi: 10.1088/0963-0252/9/3/312. DOI
Gherardi N., Martin S., Massines F. A New Approach to SiO2 Deposit using a N2–SiH4–N2O Glow Dielectric Barrier-Controlled Discharge at Atmospheric Pressure. J. Phys. D Appl. Phys. 2000;33:L104–L108. doi: 10.1088/0022-3727/33/19/102. DOI
Trunec D., Navratil Z., Stahel P., Zajickova L., Bursikova V., Cech J. Deposition of Thin Organosilicon Polymer Films in Atmospheric Pressure Glow Discharge. J. Phys. D Appl. Phys. 2004;37:2112–2120. doi: 10.1088/0022-3727/37/15/010. DOI
Trunec D., Zajickova L., Bursikova V., Studnicka F., Stahel P., Prysiazhnyi V., Perina V., Houdkova J., Navratil Z., Franta D. Deposition of Hard Thin Films from HMDSO in Atmospheric Pressure Dielectric Barrier Discharge. J. Phys. D Appl. Phys. 2010;43:225403. doi: 10.1088/0022-3727/43/22/225403. DOI
Yokoyama T., Kogoma M., Moriwaki T., Okazaki S. The Mechanism of the Stabilisation of Glow Plasma at Atmospheric Pressure. J. Phys. D Appl. Phys. 1990;23:1125–1128. doi: 10.1088/0022-3727/23/8/021. DOI
Trunec D., Brablec A., Buchta J. Atmospheric Pressure Glow Discharge in Neon. J. Phys. D Appl. Phys. 2001;34:1697–1699. doi: 10.1088/0022-3727/34/11/322. DOI
Al-Bataineh S.A., Cavallaro A.A., Michelmore A., Macgregor M.N., Whittle J.D., Vasilev K. Deposition of 2-oxazoline-based Plasma Polymer Coatings using Atmospheric Pressure Helium Plasma Jet. Plasma Process. Polym. 2019;16:e1900104. doi: 10.1002/ppap.201900104. DOI
Van Guyse J.F.R., Cools P., Egghe T., Asadian M., Vergaelen M., Rigole P., Yan W., Benetti E.M., Jerca V., Declercq H., et al. Influence of the Aliphatic Side Chain on the Near Atmospheric Pressure Plasma Polymerization of 2-Alkyl-2-oxazolines for Biomedical Applications. ACS Appl. Mater. Interfaces. 2019;11:31356–31366. doi: 10.1021/acsami.9b09999. PubMed DOI
Stahel P., Mazankova V., Tomeckova K., Matouskova P., Brablec A., Prokes L., Jurmanova P., Bursikova V., Pribyl R., Lehocky M., et al. Atmospheric Pressure Plasma Polymerized Oxazoline-Based Thin Films–Antibacterial Properties and Cytocompatibility Performance. Polymers. 2019;11:2069. doi: 10.3390/polym11122069. PubMed DOI PMC
Obrusnik A., Jelinek P., Zajickova L. Modelling of the Gas Flow and Plasma Co-polymerization of Two Monomers in an Atmospheric-Pressure Dielectric Barrier Discharge. Surf. Coat. Technol. 2017;314:139–147. doi: 10.1016/j.surfcoat.2016.10.068. DOI
Oliver W.C., Pharr G.M. An Improved Technique for Determining Hardness and Elastic Modulus using Load and Displacement Sensing Indentation Experiments. J. Mater. Res. 1992;7:1564–1583. doi: 10.1557/JMR.1992.1564. DOI
Katsikogianni M., Missirlis Y.F. Concise Review of Mechanisms of Bacterial Adhesion to Biomaterials and of Techniques Used in Estimating Bacteria–Material Interactions. Eur. Cells Mater. 2004;8:37–57. doi: 10.22203/eCM.v008a05. PubMed DOI
Navratil Z., Bursikova V., Stahel P., Sira M., Zverina P. On the Analysis of Surface Free Energy of DLC Coatings Deposited in Low Pressure RF Discharge. Czech J. Phys. (Suppl. C) 2004;54:C877–C882. doi: 10.1007/BF03166502. DOI
Zlotnikov I., Zolotoyabko E., Fratzl P. Nano-scale Modulus Mapping of Biological Composite Materials: Theory and Practice. Prog. Mater. Sci. 2017;87:292–320. doi: 10.1016/j.pmatsci.2017.03.002. DOI
Lerouge S., Major A., Girault-Lauriault P.-L., Raymond M.-A., Laplante P., Soulez G., Mwale F., Wertheimer M.R., Hébert M.-J. Nitrogen-Rich Coatings for Promoting Healing around Stent-Grafts after Endovascular Aneurysm Repair. Biomaterials. 2007;28:1209–1217. doi: 10.1016/j.biomaterials.2006.10.033. PubMed DOI
Evaluation of Selected Properties of Dielectric Barrier Discharge Plasma Jet
Antibacterial Thin Films Deposited from Propane-Butane Mixture in Atmospheric Pressure Discharge