Evaluation of Selected Properties of Dielectric Barrier Discharge Plasma Jet
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MEiN /2021 /DPI/179
Ministry of Education and Science as part of a targeted subsidy for the implementation of the task titled "Establishment and Coordination of the activities of the Polish Metrological Union (PMU)"
APVV-0134-12 and APVV-17-0382
Slovak Research and Development Agency
VEGA 1/0419/18
Slovak Grant Agency
2016/22/Z/ST8/00694
NCN
CEP - Centrální evidence projektů
PubMed
36770174
PubMed Central
PMC9918978
DOI
10.3390/ma16031167
PII: ma16031167
Knihovny.cz E-zdroje
- Klíčová slova
- Escherichia coli, atmospheric pressure plasma, biological materials, dielectric barrier discharge, plasma jet, plasma treatment of liquid, reactive oxygen and nitrogen species,
- Publikační typ
- časopisecké články MeSH
In the technological processes requiring mild treatment, such as soft materials processing or medical applications, an important role is played by non-equilibrium plasma reactors with dielectric barrier discharge (DBD), that when generated in noble gases allows for the effective treatment of biological material at a low temperature. The aim of this study is to determine the operating parameters of an atmospheric pressure, radio-frequency DBD plasma jet reactor for the precise treatment of biological materials. The tested parameters were the shape of the discharge (its length and volume), current and voltage signals, as well as the power consumed by the reactor for various composition and flow rates of the working gas. To determine the applicability in medicine, the temperature, pH, concentrations of H2O2, NO2- and NO3- and Escherichia coli log reduction in the plasma treated liquids were determined. The obtained results show that for certain operating parameters, a narrow shape of plasma stream can generate significant amounts of H2O2, allowing for the mild decontamination of bacteria at a relatively low power of the system, safe for the treatment of biological materials.
Zobrazit více v PubMed
Laroussi M., Akan T. Arc-Free Atmospheric Pressure Cold Plasma Jets: A Review. Plasma Process. Polym. 2007;4:777–788. doi: 10.1002/ppap.200700066. DOI
Fanelli F., Fracassi F. Atmospheric Pressure Non-Equilibrium Plasma Jet Technology: General Features, Specificities and Applications in Surface Processing of Materials. Surf. Coat. Technol. 2017;322:174–201. doi: 10.1016/j.surfcoat.2017.05.027. DOI
Penkov O., Khadem M., Lim W.-S., Kim D.-E. A Review of Recent Applications of Atmospheric Pressure Plasma Jets for Materials Processing. J. Coat. Technol. Res. 2015;12:225–235. doi: 10.1007/s11998-014-9638-z. DOI
Lu X., Laroussi M., Puech V. On Atmospheric-Pressure Non-Equilibrium Plasma Jets and Plasma Bullets. Plasma Sources Sci. Technol. 2012;21:034005. doi: 10.1088/0963-0252/21/3/034005. DOI
Weltmann K.D., Kindel E., von Woedtke T., Hähnel M., Stieber M., Brandenburg R. Atmospheric-Pressure Plasma Sources: Prospective Tools for Plasma Medicine. Pure Appl. Chem. 2010;82:1223–1237. doi: 10.1351/PAC-CON-09-10-35. DOI
Laroussi M. Low Temperature Plasma Jets: Characterization and Biomedical Applications. Plasma. 2020;3:54–58. doi: 10.3390/plasma3020006. DOI
Hensel K., Kučerová K., Tarabová B., Janda M., Machala Z., Sano K., Mihai C.T., Ciorpac M., Gorgan L.D., Jijie R., et al. Effects of Air Transient Spark Discharge and Helium Plasma Jet on Water, Bacteria, Cells, and Biomolecules. Biointerphases. 2015;10:029515. doi: 10.1116/1.4919559. PubMed DOI
Daeschlein G., Scholz S., von Woedtke T., Niggemeier M., Kindel E., Brandenburg R., Weltmann K., Jünger M. In Vitro Killing of Clinical Fungal Strains by Low-Temperature Atmospheric-Pressure Plasma Jet. IEEE Trans. Plasma Sci. 2011;39:815–821. doi: 10.1109/TPS.2010.2063441. DOI
Daeschlein G., Napp M., von Podewils S., Lutze S., Emmert S., Lange A., Klare I., Haase H., Gümbel D., von Woedtke T., et al. In Vitro Susceptibility of Multidrug Resistant Skin and Wound Pathogens Against Low Temperature Atmospheric Pressure Plasma Jet (APPJ) and Dielectric Barrier Discharge Plasma (DBD) Plasma Process. Polym. 2014;11:175–183. doi: 10.1002/ppap.201300070. DOI
Guimin X., Guanjun Z., Xingmin S., Yue M., Ning W., Yuan L. Bacteria Inactivation Using DBD Plasma Jet in Atmospheric Pressure Argon. Plasma Sci. Technol. 2009;11:83–88. doi: 10.1088/1009-0630/11/1/17. DOI
Svarnas P., Spiliopoulou A., Koutsoukos P.G., Gazeli K., Anastassiou E.D. Acinetobacter Baumannii Deactivation by Means of DBD-Based Helium Plasma Jet. Plasma. 2019;2:77–90. doi: 10.3390/plasma2020008. DOI
Mazánková V., Sťahel P., Matoušková P., Brablec A., Čech J., Prokeš L., Buršíková V., Stupavská M., Lehocký M., Ozaltin K., et al. Atmospheric Pressure Plasma Polymerized 2-Ethyl-2-Oxazoline Based Thin Films for Biomedical Purposes. Polymers. 2020;12:2679. doi: 10.3390/polym12112679. PubMed DOI PMC
Jirásek V., Koval’ová Z., Tarabová B., Lukeš P. Leucine Modifications by He/O2 Plasma Treatment in Phosphate-Buffered Saline: Bactericidal Effects and Chemical Characterization. J. Phys. D Appl. Phys. 2021;54:505206. doi: 10.1088/1361-6463/ac252e. DOI
Laroussi M., Bekeschus S., Keidar M., Bogaerts A., Fridman A., Lu X., Ostrikov K., Hori M., Stapelmann K., Miller V., et al. Low-Temperature Plasma for Biology, Hygiene, and Medicine: Perspective and Roadmap. IEEE Trans. Radiat. Plasma Med. Sci. 2022;6:127–157. doi: 10.1109/TRPMS.2021.3135118. DOI
Shahbazi Rad Z., Abbasi Davani F. Measurements of the Electrical Parameters and Wound Area for Investigation on the Effect of Different Non-Thermal Atmospheric Pressure Plasma Sources on Wound Healing Time. Measurement. 2020;155:107545. doi: 10.1016/j.measurement.2020.107545. DOI
Heinlin J., Morfill G., Landthaler M., Stolz W., Isbary G., Zimmermann J.L., Shimizu T., Karrer S. Plasma Medicine: Possible Applications in Dermatology. JDDG: J. Der Dtsch. Dermatol. Ges. 2010;8:968–976. doi: 10.1111/j.1610-0387.2010.07495.x. PubMed DOI
Yang Y., Zheng M., Yang Y., Li J., Su Y.-F., Li H.-P., Tan J.-G. Inhibition of Bacterial Growth on Zirconia Abutment with a Helium Cold Atmospheric Plasma Jet Treatment. Clin Oral Invest. 2020;24:1465–1477. doi: 10.1007/s00784-019-03179-2. PubMed DOI
Xiong Z., Cao Y., Lu X., Du T. Plasmas in Tooth Root Canal. IEEE Trans. Plasma Sci. 2011;39:2968–2969. doi: 10.1109/TPS.2011.2157533. DOI
Tomić S., Petrović A., Puač N., Škoro N., Bekić M., Petrović Z.L., Čolić M. Plasma-Activated Medium Potentiates the Immunogenicity of Tumor Cell Lysates for Dendritic Cell-Based Cancer Vaccines. Cancers. 2021;13:1626. doi: 10.3390/cancers13071626. PubMed DOI PMC
Vandamme M., Robert E., Pesnel S., Barbosa E., Dozias S., Sobilo J., Lerondel S., Pape A.L., Pouvesle J.-M. Antitumor Effect of Plasma Treatment on U87 Glioma Xenografts: Preliminary Results. Plasma Process. Polym. 2010;7:264–273. doi: 10.1002/ppap.200900080. DOI
Utsumi F., Kajiyama H., Nakamura K., Tanaka H., Mizuno M., Ishikawa K., Kondo H., Kano H., Hori M., Kikkawa F. Effect of Indirect Nonequilibrium Atmospheric Pressure Plasma on Anti-Proliferative Activity against Chronic Chemo-Resistant Ovarian Cancer Cells In Vitro and In Vivo. PLoS ONE. 2013;8:e81576. doi: 10.1371/journal.pone.0081576. PubMed DOI PMC
Cheng K.-Y., Chang C.-H., Yang Y.-W., Liao G.-C., Liu C.-T., Wu J.-S. Enhancement of Cell Growth on Honeycomb-Structured Polylactide Surface Using Atmospheric-Pressure Plasma Jet Modification. Appl. Surf. Sci. 2017;394:534–542. doi: 10.1016/j.apsusc.2016.10.093. DOI
Cheng C., Liye Z., Zhan R.-J. Surface Modification of Polymer Fibre by the New Atmospheric Pressure Cold Plasma Jet. Surf. Coat. Technol. 2006;200:6659–6665. doi: 10.1016/j.surfcoat.2005.09.033. DOI
Ma C., Nikiforov A., De Geyter N., Morent R., Ostrikov K. (Ken) Plasma for Biomedical Decontamination: From Plasma-Engineered to Plasma-Active Antimicrobial Surfaces. Curr. Opin. Chem. Eng. 2022;36:100764. doi: 10.1016/j.coche.2021.100764. DOI
Bafoil M., Jemmat A., Martinez Y., Merbahi N., Eichwald O., Dunand C., Yousfi M. Effects of Low Temperature Plasmas and Plasma Activated Waters on Arabidopsis Thaliana Germination and Growth. PLoS ONE. 2018;13:e0195512. doi: 10.1371/journal.pone.0195512. PubMed DOI PMC
Alves Junior C., de Oliveira Vitoriano J., da Silva D.L.S., de Lima Farias M., de Lima Dantas N.B. Water Uptake Mechanism and Germination of Erythrina Velutina Seeds Treated with Atmospheric Plasma. Sci. Rep. 2016;6:33722. doi: 10.1038/srep33722. PubMed DOI PMC
Pawłat J., Starek A., Sujak A., Terebun P., Kwiatkowski M., Budzeń M., Andrejko D. Effects of Atmospheric Pressure Plasma Jet Operating with DBD on Lavatera Thuringiaca L. Seeds’ Germination. PLoS ONE. 2018;13:e0194349. doi: 10.1371/journal.pone.0194349. PubMed DOI PMC
von Woedtke T., Reuter S., Masur K., Weltmann K.-D. Plasmas for Medicine. Phys. Rep. 2013;530:291–320. doi: 10.1016/j.physrep.2013.05.005. DOI
Lu X., Naidis G.V., Laroussi M., Reuter S., Graves D.B., Ostrikov K. Reactive Species in Non-Equilibrium Atmospheric-Pressure Plasmas: Generation, Transport, and Biological Effects. Phys. Rep. 2016;630:1–84. doi: 10.1016/j.physrep.2016.03.003. DOI
Reuter S., von Woedtke T., Weltmann K.-D. The KINPen—A Review on Physics and Chemistry of the Atmospheric Pressure Plasma Jet and Its Applications. J. Phys. D Appl. Phys. 2018;51:233001. doi: 10.1088/1361-6463/aab3ad. DOI
Pawłat J., Yamabe C., Pollo I. Generation of Discharges in Dynamic Foam for Oxidants Formation Using Various Types of Electrodes. Colloids Surf. A Physicochem. Eng. Asp. 2003;220:179–190. doi: 10.1016/S0927-7757(03)00076-1. DOI
De Laat J., Berger P., Poinot T., vel Leitner N.K., Doré M. Modeling the Oxidation of Atrazine by H2O2/UV. Estimation of Kinetic Parameters. Ozone Sci. Eng. 1997;19:395–408. doi: 10.1080/01919512.1997.10382867. DOI
Gehringer P., Szinovatz W., Eschweiler H., Haberl R. Oxidative Treatment of a Wastewater Stream from a Molasses Processing Using Ozone and Advanced Oxidation Technologies. Ozone Sci. Eng. 1997;19:157–168. doi: 10.1080/01919519708547312. DOI
Pawłat J., Hayashi N., Ihara S., Satoh S., Yamabe C., Pollo I. Foaming Column with a Dielectric Covered Plate-to-Metal Plate Electrode as an Oxidants’ Generator. Adv. Environ. Res. 2004;8:351–358. doi: 10.1016/S1093-0191(02)00108-9. DOI
Karimi A.A., Redman J.A., Stolarik G.F., Glaze W.H. Evaluating an Aop for Tce and Pce Removal. J. Am. Water Work. Assoc. 1997;89:41–53. doi: 10.1002/j.1551-8833.1997.tb08275.x. DOI
Sentek J., Krawczyk K., Młotek M., Kalczewska M., Kroker T., Kolb T., Schenk A., Gericke K.-H., Schmidt-Szałowski K. Plasma-Catalytic Methane Conversion with Carbon Dioxide in Dielectric Barrier Discharges. Appl. Catal. B Environ. 2010;94:19–26. doi: 10.1016/j.apcatb.2009.10.016. DOI
Pawłat J., Hensel K., Ihara S. Decomposition of Humic Acid and Methylene Blue by Electric Discharge in Foam. Acta Phys. Slovaca. 2005;55:479–485.
Bruggeman P.J., Kushner M.J., Locke B.R., Gardeniers J.G., Graham W.G., Graves D.B., Hofman-Caris R.C.H.M., Maric D., Reid J.P., Ceriani E., et al. Plasma–Liquid Interactions: A Review and Roadmap. Plasma Sources Sci. Technol. 2016;25:053002. doi: 10.1088/0963-0252/25/5/053002. DOI
Pawłat J. Electrical Discharges in Humid Environments. Generators, Effects, Application. Politechnika Lubelska; Lublin, Poland: 2013. Monografie—Politechnika Lubelska.
Dors M., Metel E., Mizeraczyk J. Phenol Degradation in Water by Pulsed Streamer Corona Discharge and Fenton Reaction. Int. J. Plasma Environ. Sci. Technol. 2007;1:76–81.
Dors M., Mizeraczyk J., Mok Y.S. Phenol Oxidation in Aqueous Solution by Gas Phase Corona Discharge. J. Adv. Oxid. Technol. 2006;9:139–143. doi: 10.1515/jaots-2006-0204. DOI
Srinivasan B., Palanki S., Grymonpré D.R., Locke B.R. Optimization of a Continuous Pulsed Corona Reactor. Chem. Eng. Sci. 2001;56:1035–1039. doi: 10.1016/S0009-2509(00)00319-5. DOI
Locke B.R., Sato M., Sunka P., Hoffmann M.R., Chang J.-S. Electrohydraulic Discharge and Nonthermal Plasma for Water Treatment. Ind. Eng. Chem. Res. 2006;45:882–905. doi: 10.1021/ie050981u. DOI
Lukes P., Appleton A.T., Locke B.R. Hydrogen Peroxide and Ozone Formation in Hybrid Gas-Liquid Electrical Discharge Reactors. IEEE Trans. Ind. Appl. 2004;40:60–67. doi: 10.1109/TIA.2003.821799. DOI
Lukes P., Clupek M., Babicky V., Sunka P., Winterova G., Janda V. Non-Thermal Plasma Induced Decomposition of 2-Chlorophenol in Water. Acta Phys. Slovaca. 2003;53:423–428.
Lukes P., Clupek M., Sunka P., Peterka F., Sano T., Negishi N., Matsuzawa S., Takeuchi K. Degradation of Phenol by Underwater Pulsed Corona Discharge in Combination with TiO2 Photocatalysis. Res. Chem. Intermed. 2005;31:285–294. doi: 10.1163/1568567053956734. DOI
Lukes P., Locke B.R. Degradation of Substituted Phenols in a Hybrid Gas−Liquid Electrical Discharge Reactor. Ind. Eng. Chem. Res. 2005;44:2921–2930. doi: 10.1021/ie0491342. DOI
Lukeš P. Water Treatment by Pulsed Streamer Corona Discharge. Institute of Plasma Physics, AS CR; Prague, Czech Republic: 2001.
Stará Z., Krčma F., Nejezchleb M., Dušan Skalný J. Organic Dye Decomposition by DC Diaphragm Discharge in Water: Effect of Solution Properties on Dye Removal. Desalination. 2009;239:283–294. doi: 10.1016/j.desal.2008.03.025. DOI
Schmidt-Szałowski K., Krawczyk K., Sentek J., Ulejczyk B., Górska A., Młotek M. Hybrid Plasma-Catalytic Systems for Converting Substances of High Stability, Greenhouse Gases and VOC. Chem. Eng. Res. Des. 2011;89:2643–2651. doi: 10.1016/j.cherd.2011.06.018. DOI
Tuhkanen T.A., Kainulainen T.K., Vartiainen T.K., Kalliokoski P.J. The Effect Of Preozonation, Ozone/Hydrogen Peroxide Treatment, And Nanofiltration On The Removal Of Organic Matter From Drinking Water. Ozone: Sci. Eng. 1994;16:367–383. doi: 10.1080/01919512.1994.10555747. DOI
Brisset J.-L., Pawlat J. Chemical Effects of Air Plasma Species on Aqueous Solutes in Direct and Delayed Exposure Modes: Discharge, Post-Discharge and Plasma Activated Water. Plasma Chem. Plasma Process. 2016;36:355–381. doi: 10.1007/s11090-015-9653-6. DOI
Kanazawa S., Kawano H., Watanabe S., Furuki T., Akamine S., Ichiki R., Ohkubo T., Kocik M., Mizeraczyk J. Observation of OH Radicals Produced by Pulsed Discharges on the Surface of a Liquid. Plasma Sources Sci. Technol. 2011;20:034010. doi: 10.1088/0963-0252/20/3/034010. DOI
Buxton G.V., Greenstock C.L., Helman W.P., Ross A.B. Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (⋅OH/⋅O− in Aqueous Solution. J. Phys. Chem. Ref. Data. 1988;17:513–886. doi: 10.1063/1.555805. DOI
Lide D.R. CRC Handbook of Chemistry and Physics. 87th ed. CRC Press; Boca Raton, FL, USA: 2006.
Siegrist R.L., Crimi M., Simpkin T.J., editors. In Situ Chemical Oxidation for Groundwater Remediation. Volume 3. Springer New York; New York, NY, USA: 2011. SERDP/ESTCP Environmental Remediation Technology.
Abdelmalek F., Gharbi S., Benstaali B., Addou A., Brisset J.L. Plasmachemical Degradation of Azo Dyes by Humid Air Plasma: Yellow Supranol 4 GL, Scarlet Red Nylosan F3 GL and Industrial Waste. Water Res. 2004;38:2339–2347. doi: 10.1016/j.watres.2004.02.015. PubMed DOI
Depenyou F., Doubla A., Laminsi S., Moussa D., Brisset J.L., Le Breton J.-M. Corrosion Resistance of AISI 1018 Carbon Steel in NaCl Solution by Plasma-Chemical Formation of a Barrier Layer. Corros. Sci. 2008;50:1422–1432. doi: 10.1016/j.corsci.2007.12.011. DOI
Njoyim-Tamungang E., Laminsi S., Ghogomu P., Njopwouo D., Brisset J.-L. Pollution Control of Surface Waters by Coupling Gliding Discharge Treatment with Incorporated Oyster Shell Powder. Chem. Eng. J. 2011;173:303–308. doi: 10.1016/j.cej.2011.07.021. DOI
Benstaali B., Addou A., Brisset J.L. Electrochemical and X-Ray Investigation of Austenitic 304L and 316L Stainless Steels Treated by a Gliding Arc in Humid Air. Mater. Chem. Phys. 2003;78:214–221. doi: 10.1016/S0254-0584(02)00229-8. DOI
Chang J.-S. The Role of H2O and NH3 on the Formation of NH4NO3 Aerosol Particles and De-NOx under the Corona Discharge Treatment of Combustion Flue Gases. J. Aerosol Sci. 1989;20:1087–1090. doi: 10.1016/0021-8502(89)90768-4. DOI
Mätzing H. Chemical Kinetics of Flue Gas Cleaning by Irradiation with Electrons. Adv. Chem. Phys. 1991;80:315–402.
Peyrous R., Pignolet P., Held B. Kinetic Simulation of Gaseous Species Created by an Electrical Discharge in Dry or Humid Oxygen. J. Phys. D Appl. Phys. 1989;22:1658. doi: 10.1088/0022-3727/22/11/015. DOI
Tsagou-Sobze E.B., Moussa D., Doubla A., Hnatiuc E., Brisset J.-L. Gliding Discharge-Induced Oxidation of a Toxic Alkaloid. J. Hazard. Mater. 2008;152:446–449. doi: 10.1016/j.jhazmat.2007.12.066. PubMed DOI
Janda M., Hensel K., Tóth P., Hassan M.E., Machala Z. The Role of HNO2 in the Generation of Plasma-Activated Water by Air Transient Spark Discharge. Appl. Sci. 2021;11:7053. doi: 10.3390/app11157053. DOI
Doubla A., Bouba Bello L., Fotso M., Brisset J.-L. Plasmachemical Decolourisation of Bromothymol Blue by Gliding Electric Discharge at Atmospheric Pressure. Dye. Pigment. 2008;77:118–124. doi: 10.1016/j.dyepig.2007.03.016. DOI
Pawłat J., Terebun P., Kwiatkowski M., Tarabová B., Kovaľová Z., Kučerová K., Machala Z., Janda M., Hensel K. Evaluation of Oxidative Species in Gaseous and Liquid Phase Generated by Mini-Gliding Arc Discharge. Plasma Chem. Plasma Process. 2019;39:627–642. doi: 10.1007/s11090-019-09974-9. DOI
Kim J.Y., Ballato J., Kim S.-O. Intense and Energetic Atmospheric Pressure Plasma Jet Arrays. Plasma Process. Polym. 2012;9:253–260. doi: 10.1002/ppap.201100190. DOI
Wan M., Liu F., Fang Z., Zhang B., Wan H. Influence of Gas Flow and Applied Voltage on Interaction of Jets in a Cross-Field Helium Plasma Jet Array. Phys. Plasmas. 2017;24:093514. doi: 10.1063/1.4991531. DOI
Qaisrani M.H., Xian Y., Li C., Pei X., Ghasemi M., Lu X. Study on Dynamics of the Influence Exerted by Plasma on Gas Flow Field in Non-Thermal Atmospheric Pressure Plasma Jet. Phys. Plasmas. 2016;23:063523. doi: 10.1063/1.4954828. DOI
Li Q., Li J.-T., Zhu W.-C., Zhu X.-M., Pu Y.-K. Effects of Gas Flow Rate on the Length of Atmospheric Pressure Nonequilibrium Plasma Jets. Appl. Phys. Lett. 2009;95:141502. doi: 10.1063/1.3243460. DOI
Borghi C.A., Cristofolini A., Grandi G., Neretti G., Seri P. A Plasma Aerodynamic Actuator Supplied by a Multilevel Generator Operating with Different Voltage Waveforms. Plasma Sources Sci. Technol. 2015;24:045018. doi: 10.1088/0963-0252/24/4/045018. DOI
Shao T., Zhou Y., Zhang C., Yang W., Niu Z., Ren C. Surface Modification of Polymethyl-Methacrylate Using Atmospheric Pressure Argon Plasma Jets to Improve Surface Flashover Performance in Vacuum. IEEE Trans. Dielectr. Electr. Insul. 2015;22:1747–1754. doi: 10.1109/TDEI.2015.7116373. DOI
Wang C. Effect of N2 Jet on Si Electrode Surface in Dielectric Barrier Discharge. IOP Conf. Ser.: Earth Environ. Sci. 2020;440:022059. doi: 10.1088/1755-1315/440/2/022059. DOI
Trunec D., Navrátil Z., Tomeková J., Mazánková V., Ďurčányová S., Zahoranová A. Chemical Composition of Gaseous Products Generated by Coplanar Barrier Discharge in Air and N2/O2 Mixtures. Plasma Sources Sci. Technol. 2022;31:115011. doi: 10.1088/1361-6595/ac9c8f. DOI
Burlica R., Locke B.R. Pulsed Plasma Gliding-Arc Discharges With Water Spray. IEEE Trans. Ind. Appl. 2008;44:482–489. doi: 10.1109/TIA.2008.916603. DOI
Royintarat T., Seesuriyachan P., Boonyawan D., Choi E.H., Wattanutchariya W. Mechanism and Optimization of Non-Thermal Plasma-Activated Water for Bacterial Inactivation by Underwater Plasma Jet and Delivery of Reactive Species Underwater by Cylindrical DBD Plasma. Curr. Appl. Phys. 2019;19:1006–1014. doi: 10.1016/j.cap.2019.05.020. DOI
Baier M., Janßen T., Wieler L.H., Ehlbeck J., Knorr D., Schlüter O. Inactivation of Shiga Toxin-Producing Escherichia Coli O104:H4 Using Cold Atmospheric Pressure Plasma. J. Biosci. Bioeng. 2015;120:275–279. doi: 10.1016/j.jbiosc.2015.01.003. PubMed DOI
Dezest M., Bulteau A.-L., Quinton D., Chavatte L., Bechec M.L., Cambus J.P., Arbault S., Nègre-Salvayre A., Clément F., Cousty S. Oxidative Modification and Electrochemical Inactivation of Escherichia Coli upon Cold Atmospheric Pressure Plasma Exposure. PLoS ONE. 2017;12:e0173618. doi: 10.1371/journal.pone.0173618. PubMed DOI PMC