Atmospheric Pressure Plasma Polymerized Oxazoline-Based Thin Films-Antibacterial Properties and Cytocompatibility Performance
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LO1411 (NPU I)
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
31842276
PubMed Central
PMC6960831
DOI
10.3390/polym11122069
PII: polym11122069
Knihovny.cz E-zdroje
- Klíčová slova
- antibiofouling, oxazoline, plasma polymer,
- Publikační typ
- časopisecké články MeSH
Polyoxazolines are a new promising class of polymers for biomedical applications. Antibiofouling polyoxazoline coatings can suppress bacterial colonization of medical devices, which can cause infections to patients. However, the creation of oxazoline-based films using conventional methods is difficult. This study presents a new way to produce plasma polymerized oxazoline-based films with antibiofouling properties and good biocompatibility. The films were created via plasma deposition from 2-methyl-2-oxazoline vapors in nitrogen atmospheric pressure dielectric barrier discharge. Diverse film properties were achieved by increasing the substrate temperature at the deposition. The physical and chemical properties of plasma polymerized polyoxazoline films were studied by SEM, EDX, FTIR, AFM, depth-sensing indentation technique, and surface energy measurement. After tuning of the deposition parameters, films with a capacity to resist bacterial biofilm formation were achieved. Deposited films also promote cell viability.
Zobrazit více v PubMed
Woodle M.C., Engbers C.M., Zalipsky S. New Amphipatic Polymer Lipid Conjugates Forming Long-Circulating Reticuloendothelial System-Evading Liposomes. Bioconj. Chem. 1994;5:493–496. doi: 10.1021/bc00030a001. PubMed DOI
Zalipsky S., Hansen C.B., Oaks J.M., Allen T.M. Evaluation of Blood Clearance Rates and Biodistribution of Poly(2-oxazoline)-grafted Liposomes. J. Pharm. Sci. 1996;85:133–137. doi: 10.1021/js9504043. PubMed DOI
Goddard P., Hutchinson L.E., Brown J., Brookman L.J. Soluble Polymeric Carriers for Drug Delivery. Part 2. Preparation and in Vivo Behaviour of N-acylethylenimine Copolymers. J. Control. Release. 1989;10:5–16. doi: 10.1016/0168-3659(89)90013-8. DOI
Jordan R., Ulman A. Surface Initiated Living Cationic Polymerization of 2-Oxazolines. J. Am. Chem. Soc. 1998;120:243–247. doi: 10.1021/ja973392r. DOI
Bouten P.J.M., Hertsen D., Vergaelen M., Monnery B.D., Boerman M.A., Goossens H., Catak S., van Hest J.C.M., Van Speybroeck V., Hoogenboom R. Accelerated Living Cationic Ringopening Polymerization of a Methyl Ester Functionalized 2-Oxazoline Monomer. Polym. Chem. 2015;6:514–518. doi: 10.1039/C4PY01373E. DOI
Wang H., Li L., Tong Q., Yan M. Evaluation of Photochemically Immobilized Poly(2-ethyl-2-oxazoline) Thin Films as Protein-Resistant Surfaces. ACS Appl. Mater. Interfaces. 2011;3:3463–3471. doi: 10.1021/am200690s. PubMed DOI PMC
Pidhatika B., Rodenstein M., Chen Y., Rakhmatullina E., Mühlebach A., Acikgöz C., Textor M., Konradi R. Comparative Stability Studies of Poly(2-methyl-2-oxazoline) and Poly(ethyleneglycol) Brush Coatings. Biointerphases. 2012;7 doi: 10.1007/s13758-011-0001-y. PubMed DOI
Vasilev K. Nanoengineered Plasma Polymer Films for Biomaterial Applications. Plasma Chem. Plasma Process. 2014;34:545–558. doi: 10.1007/s11090-013-9506-0. DOI
Siow K.S., Britcher L., Kumar S., Griesser H.J. Plasma Methods for the Generation of Chemically Reactive Surfaces for Biomolecule Immobilization and Cell Colonization—A Review. Plasma Processes Polym. 2006;3:392–418. doi: 10.1002/ppap.200600021. DOI
Lieberman M.A., Lichtenberg A.J. Principles of Plasma Discharges and Materials Processing. 2nd ed. John Wiley & Sons; Hoboken, NJ, USA: 2005.
Duan S., Liu X., Wang Y., Meng Y., Alsaedi A., Hayat T., Li J. Plasma Surface Modification of Materials and Their Entrapment of Water Contaminant: A Review. Plasma Process Polym. 2017;14:e1600218. doi: 10.1002/ppap.201600218. DOI
Yue M., Zhou B., Jiao K., Qian X., Xu Z., Teng K., Zhao L., Wang J., Jiao Y. Switchable Hydrophobic/Hydrophilic Surface of Electrospun Poly(l-lactide) Membranes Obtained by CF4 Microwave Plasma Treatment. Appl. Surf. Sci. 2015;327:93–99. doi: 10.1016/j.apsusc.2014.11.149. DOI
Wu H., Zhou Z., Chen L., Li W., Han Q., Li C., Xu Z., Qian X. PECVD-Induced Growing of Diverse Nanomaterials on Carbon Nanofibers under Various Conditions. Mater. Lett. 2018;216:291–294. doi: 10.1016/j.matlet.2018.01.075. DOI
Zhang C., Liu L., Xu Z., Lv H., Wu N., Zhou B., Mai W., Zhao L., Tian X., Guo X. Improvement for Interface Adhesion of Epoxy/Carbon Fibers Endowed With Carbon Nanotubes via Microwave Plasma-Enhanced Chemical Vapor Deposition. Polym. Compos. 2018;39:E1262–E1268. doi: 10.1002/pc.24843. DOI
Elias M., Kloc P., Jasek O., Mazankova V., Trunec D., Hrdy R., Zajickova L. Atmospheric Pressure Barrier Discharge at High Temperature: Diagnostics and Carbon Nanotubes Deposition. J. Appl. Phys. 2015;117:103301. doi: 10.1063/1.4914062. DOI
Ramiasa M., Cavallaro A., Mierczynska A., Christo S., Gleadle J., Hayball J.D., Vasilev K. Plasma Polymerised PolyOxazoline Thin Films for Biomedical Applications. Chem. Commun. 2015;51:4279–4282. doi: 10.1039/C5CC00260E. PubMed DOI
Macgregor-Ramiasa M.N., Cavallaro A.A., Vasilev K. Properties and Reactivity of Polyoxazoline Plasma Polymer Films. J. Mater. Chem. B. 2015;3:6327–6337. doi: 10.1039/C5TB00901D. PubMed DOI
Cavallaro A.A., Macgregor-Ramiasa M.N., Vasilev K. Antibiofouling Properties of Plasma-Deposited Oxazoline-Based Thin Films. ACS Appl. Mater. Interfaces. 2016;8:6354–6362. doi: 10.1021/acsami.6b00330. PubMed DOI
Gherardi N., Gouda G., Gat E., Ricard A., Massines F. Transition from Glow Silent Discharge to Micro-discharges in Nitrogen Gas. Plasma Sources Sci. Technol. 2000;9:340–346. doi: 10.1088/0963-0252/9/3/312. DOI
Gherardi N., Martin S., Massines F. A New Approach to SiO2 Deposit using a N2–SiH4–N2O Glow Dielectric Barrier-Controlled Discharge at Atmospheric Pressure. J. Phys. D Appl. Phys. 2000;33:L104–L108. doi: 10.1088/0022-3727/33/19/102. DOI
Trunec D., Navratil Z., Stahel P., Zajickova L., Bursikova V., Cech J. Deposition of Thin Organosilicon Polymer Films in Atmospheric Pressure Glow Discharge. J. Phys. D Appl. Phys. 2004;37:2112–2120. doi: 10.1088/0022-3727/37/15/010. DOI
Trunec D., Zajickova L., Bursikova V., Studnicka F., Stahel P., Prysiazhnyi V., Perina V., Houdkova J., Navratil Z., Franta D. Deposition of Hard Thin Films from HMDSO in Atmospheric Pressure Dielectric Barrier Discharge. J. Phys. D Appl. Phys. 2010;43:225403. doi: 10.1088/0022-3727/43/22/225403. DOI
Al-Bataineh S.A., Cavallaro A.A., Michelmore A., Macgregor M.N., Whittle J.D., Vasilev K. Deposition of 2-oxazoline- based Plasma Polymer Coatings using Atmospheric Pressure Helium Plasma Jet. Plasma Process Polym. 2019;16:e1900104. doi: 10.1002/ppap.201900104. DOI
Van Guyse J.F.R., Cools P., Egghe T., Asadian M., Vergaelen M., Rigole P., Yan W., Benetti E.M., Jerca V., Declercq H., et al. Influence of the Aliphatic Side Chain on the Near Atmospheric Pressure Plasma Polymerization of 2-Alkyl-2-oxazolines for Biomedical Applications. ACS Appl. Mater. Interfaces. 2019;11:31356–31366. doi: 10.1021/acsami.9b09999. PubMed DOI
Obrusnik A., Jelinek P., Zajickova L. Modelling of the Gas Flow and Plasma Co-polymerization of Two Monomers in an Atmospheric-Pressure Dielectric Barrier Discharge. Surf. Coat. Technol. 2017;314:139–147. doi: 10.1016/j.surfcoat.2016.10.068. DOI
Oliver W.C., Pharr G.M. An Improved Technique for Determining Hardness and Elastic Modulus using Load and Displacement Sensing Indentation Experiments. J. Mater. Res. 1992;7:1564–1583. doi: 10.1557/JMR.1992.1564. DOI
Zlotnikov I., Zolotoyabko E., Fratzl P. Nano-scale Modulus Mapping of Biological Composite Materials: Theory and Practice. Prog. Mater. Sci. 2017;87:292–320. doi: 10.1016/j.pmatsci.2017.03.002. DOI
Navratil Z., Bursikova V., Stahel P., Sira M., Zverina P. On the Analysis of Surface Free Energy of DLC Coatings Deposited in Low Pressure RF Discharge. Czech. J. Phys. (Suppl. C) 2004;54:C877–C882. doi: 10.1007/BF03166502. DOI
Deltombe R., Kubiak K.J., Bigerelle M. How to Select the Most Relevant 3D Roughness Parameters of a Surface. Scanning. 2014;36:150–160. doi: 10.1002/sca.21113. PubMed DOI
Katsikogianni M., Missirlis Y.F. Concise Review of Mechanisms of Bacterial Adhesion to Biomaterials and of Techniques Used in Estimating Bacteria–Material Interactions. Eur. Cells Mater. 2004;8:37–57. doi: 10.22203/eCM.v008a05. PubMed DOI
Lerouge S., Major A., Girault-Lauriault P.-L., Raymond M.-A., Laplante P., Soulez G., Mwale F., Wertheimer M.R., Hébert M.-J. Nitrogen-Rich Coatings for Promoting Healing around Stent-Grafts after Endovascular Aneurysm Repair. Biomaterials. 2007;28:1209–1217. doi: 10.1016/j.biomaterials.2006.10.033. PubMed DOI
Antibacterial Thin Films Deposited from Propane-Butane Mixture in Atmospheric Pressure Discharge
Atmospheric Pressure Plasma Polymerized 2-Ethyl-2-oxazoline Based Thin Films for Biomedical Purposes