DNA Damage Changes Distribution Pattern and Levels of HP1 Protein Isoforms in the Nucleolus and Increases Phosphorylation of HP1β-Ser88

. 2019 Sep 17 ; 8 (9) : . [epub] 20190917

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31533340

The family of heterochromatin protein 1 (HP1) isoforms is essential for chromatin packaging, regulation of gene expression, and repair of damaged DNA. Here we document that γ-radiation reduced the number of HP1α-positive foci, but not HP1β and HP1γ foci, located in the vicinity of the fibrillarin-positive region of the nucleolus. The additional analysis confirmed that γ-radiation has the ability to significantly decrease the level of HP1α in rDNA promoter and rDNA encoding 28S rRNA. By mass spectrometry, we showed that treatment by γ-rays enhanced the HP1β serine 88 phosphorylation (S88ph), but other analyzed modifications of HP1β, including S161ph/Y163ph, S171ph, and S174ph, were not changed in cells exposed to γ-rays or treated by the HDAC inhibitor (HDACi). Interestingly, a combination of HDACi and γ-radiation increased the level of HP1α and HP1γ. The level of HP1β remained identical before and after the HDACi/γ-rays treatment, but HDACi strengthened HP1β interaction with the KRAB-associated protein 1 (KAP1) protein. Conversely, HP1γ did not interact with KAP1, although approximately 40% of HP1γ foci co-localized with accumulated KAP1. Especially HP1γ foci at the periphery of nucleoli were mostly absent of KAP1. Together, DNA damage changed the morphology, levels, and interaction properties of HP1 isoforms. Also, γ-irradiation-induced hyperphosphorylation of the HP1β protein; thus, HP1β-S88ph could be considered as an important marker of DNA damage.

Zobrazit více v PubMed

Grewal S.I., Jia S. Heterochromatin revisited. Nat. Rev. Genet. 2007;8:35–46. doi: 10.1038/nrg2008. PubMed DOI

Kwon S.H., Workman J.L. The changing faces of hp1: From heterochromatin formation and gene silencing to euchromatic gene expression: Hp1 acts as a positive regulator of transcription. Bioessays. 2011;33:280–289. doi: 10.1002/bies.201000138. PubMed DOI

Probst A.V., Dunleavy E., Almouzni G. Epigenetic inheritance during the cell cycle. Nat. Rev. Mol. Cell Biol. 2009;10:192–206. doi: 10.1038/nrm2640. PubMed DOI

Bannister A.J., Zegerman P., Partridge J.F., Miska E.A., Thomas J.O., Allshire R.C., Kouzarides T. Selective recognition of methylated lysine 9 on histone h3 by the hp1 chromo domain. Nature. 2001;410:120–124. doi: 10.1038/35065138. PubMed DOI

Martens J.H., O’Sullivan R.J., Braunschweig U., Opravil S., Radolf M., Steinlein P., Jenuwein T. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. Embo. J. 2005;24:800–812. doi: 10.1038/sj.emboj.7600545. PubMed DOI PMC

Noma K., Allis C.D., Grewal S.I. Transitions in distinct histone h3 methylation patterns at the heterochromatin domain boundaries. Science. 2001;293:1150–1155. doi: 10.1126/science.1064150. PubMed DOI

Suka N., Luo K., Grunstein M. Sir2p and sas2p opposingly regulate acetylation of yeast histone h4 lysine16 and spreading of heterochromatin. Nat. Genet. 2002;32:378–383. doi: 10.1038/ng1017. PubMed DOI

Rea S., Eisenhaber F., O’Carroll D., Strahl B.D., Sun Z.W., Schmid M., Opravil S., Mechtler K., Ponting C.P., Allis C.D., et al. Regulation of chromatin structure by site-specific histone h3 methyltransferases. Nature. 2000;406:593–599. doi: 10.1038/35020506. PubMed DOI

Schultz D.C., Ayyanathan K., Negorev D., Maul G.G., Rauscher F.J., III Setdb1: A novel kap-1-associated histone h3, lysine 9-specific methyltransferase that contributes to hp1-mediated silencing of euchromatic genes by krab zinc-finger proteins. Genes Dev. 2002;16:919–932. doi: 10.1101/gad.973302. PubMed DOI PMC

Tachibana M. [mammalian histone methyltransferases] Seikagaku. 2006;78:50–53. PubMed

Tachibana M., Sugimoto K., Fukushima T., Shinkai Y. Set domain-containing protein, g9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone h3. J. Biol. Chem. 2001;276:25309–25317. doi: 10.1074/jbc.M101914200. PubMed DOI

Tachibana M., Sugimoto K., Nozaki M., Ueda J., Ohta T., Ohki M., Fukuda M., Takeda N., Niida H., Kato H., et al. G9a histone methyltransferase plays a dominant role in euchromatic histone h3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 2002;16:1779–1791. doi: 10.1101/gad.989402. PubMed DOI PMC

Canzio D., Chang E.Y., Shankar S., Kuchenbecker K.M., Simon M.D., Madhani H.D., Narlikar G.J., Al-Sady B. Chromodomain-mediated oligomerization of hp1 suggests a nucleosome-bridging mechanism for heterochromatin assembly. Mol. Cell. 2011;41:67–81. doi: 10.1016/j.molcel.2010.12.016. PubMed DOI PMC

Lachner M., O’Carroll D., Rea S., Mechtler K., Jenuwein T. Methylation of histone h3 lysine 9 creates a binding site for hp1 proteins. Nature. 2001;410:116–120. doi: 10.1038/35065132. PubMed DOI

Nielsen A.L., Oulad-Abdelghani M., Ortiz J.A., Remboutsika E., Chambon P., Losson R. Heterochromatin formation in mammalian cells: Interaction between histones and hp1 proteins. Mol. Cell. 2001;7:729–739. doi: 10.1016/S1097-2765(01)00218-0. PubMed DOI

Singh P.B., Miller J.R., Pearce J., Kothary R., Burton R.D., Paro R., James T.C., Gaunt S.J. A sequence motif found in a drosophila heterochromatin protein is conserved in animals and plants. Nucleic Acids Res. 1991;19:789–794. doi: 10.1093/nar/19.4.789. PubMed DOI PMC

Fischle W., Wang Y., Jacobs S.A., Kim Y., Allis C.D., Khorasanizadeh S. Molecular basis for the discrimination of repressive methyl-lysine marks in histone h3 by polycomb and hp1 chromodomains. Genes Dev. 2003;17:1870–1881. doi: 10.1101/gad.1110503. PubMed DOI PMC

Stewart M.D., Li J., Wong J. Relationship between histone h3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment. Mol. Cell Biol. 2005;25:2525–2538. doi: 10.1128/MCB.25.7.2525-2538.2005. PubMed DOI PMC

Aasland R., Stewart A.F. The chromo shadow domain, a second chromo domain in heterochromatin-binding protein 1, hp1. Nucleic Acids Res. 1995;23:3168–3173. doi: 10.1093/nar/23.16.3168. PubMed DOI PMC

Li Y., Kirschmann D.A., Wallrath L.L. Does heterochromatin protein 1 always follow code? Proc. Natl. Acad. Sci. USA. 2002;99:16462–16469. doi: 10.1073/pnas.162371699. PubMed DOI PMC

Meehan R.R., Kao C.F., Pennings S. Hp1 binding to native chromatin in vitro is determined by the hinge region and not by the chromodomain. Embo J. 2003;22:3164–3174. doi: 10.1093/emboj/cdg306. PubMed DOI PMC

Zhao T., Heyduk T., Allis C.D., Eissenberg J.C. Heterochromatin protein 1 binds to nucleosomes and DNA in vitro. J. Biol. Chem. 2000;275:28332–28338. PubMed

Badugu R., Yoo Y., Singh P.B., Kellum R. Mutations in the heterochromatin protein 1 (hp1) hinge domain affect hp1 protein interactions and chromosomal distribution. Chromosoma. 2005;113:370–384. doi: 10.1007/s00412-004-0324-2. PubMed DOI

Koike N., Maita H., Taira T., Ariga H., Iguchi-Ariga S.M. Identification of heterochromatin protein 1 (hp1) as a phosphorylation target by pim-1 kinase and the effect of phosphorylation on the transcriptional repression function of hp1(1) Febs. Lett. 2000;467:17–21. doi: 10.1016/S0014-5793(00)01105-4. PubMed DOI

Zhao T., Heyduk T., Eissenberg J.C. Phosphorylation site mutations in heterochromatin protein 1 (hp1) reduce or eliminate silencing activity. J. Biol. Chem. 2001;276:9512–9518. doi: 10.1074/jbc.M010098200. PubMed DOI

Lomberk G., Wallrath L., Urrutia R. The heterochromatin protein 1 family. Genome Biol. 2006;7:228. doi: 10.1186/gb-2006-7-7-228. PubMed DOI PMC

Dialynas G.K., Terjung S., Brown J.P., Aucott R.L., Baron-Luhr B., Singh P.B., Georgatos S.D. Plasticity of hp1 proteins in mammalian cells. J. Cell Sci. 2007;120:3415–3424. doi: 10.1242/jcs.012914. PubMed DOI

Kwon S.H., Florens L., Swanson S.K., Washburn M.P., Abmayr S.M., Workman J.L. Heterochromatin protein 1 (hp1) connects the fact histone chaperone complex to the phosphorylated ctd of rna polymerase ii. Genes Dev. 2010;24:2133–2145. doi: 10.1101/gad.1959110. PubMed DOI PMC

Lin C.H., Li B., Swanson S., Zhang Y., Florens L., Washburn M.P., Abmayr S.M., Workman J.L. Heterochromatin protein 1a stimulates histone h3 lysine 36 demethylation by the drosophila kdm4a demethylase. Mol. Cell. 2008;32:696–706. doi: 10.1016/j.molcel.2008.11.008. PubMed DOI PMC

Smothers J.F., Henikoff S. The hinge and chromo shadow domain impart distinct targeting of hp1-like proteins. Mol. Cell Biol. 2001;21:2555–2569. doi: 10.1128/MCB.21.7.2555-2569.2001. PubMed DOI PMC

Hayakawa T., Haraguchi T., Masumoto H., Hiraoka Y. Cell cycle behavior of human hp1 subtypes: Distinct molecular domains of hp1 are required for their centromeric localization during interphase and metaphase. J. Cell Sci. 2003;116:3327–3338. doi: 10.1242/jcs.00635. PubMed DOI

Minc E., Allory Y., Worman H.J., Courvalin J.C., Buendia B. Localization and phosphorylation of hp1 proteins during the cell cycle in mammalian cells. Chromosoma. 1999;108:220–234. doi: 10.1007/s004120050372. PubMed DOI

Ryu H.W., Lee D.H., Florens L., Swanson S.K., Washburn M.P., Kwon S.H. Analysis of the heterochromatin protein 1 (hp1) interactome in drosophila. J. Proteom. 2014;102:137–147. doi: 10.1016/j.jprot.2014.03.016. PubMed DOI

Cheutin T., McNairn A.J., Jenuwein T., Gilbert D.M., Singh P.B., Misteli T. Maintenance of stable heterochromatin domains by dynamic hp1 binding. Science. 2003;299:721–725. doi: 10.1126/science.1078572. PubMed DOI

Legartova S., Jugova A., Stixova L., Kozubek S., Fojtova M., Zdrahal Z., Lochmanova G., Bartova E. Epigenetic aspects of hp1 exchange kinetics in apoptotic chromatin. Biochimie. 2013;95:167–179. doi: 10.1016/j.biochi.2012.09.027. PubMed DOI

Yearim A., Gelfman S., Shayevitch R., Melcer S., Glaich O., Mallm J.P., Nissim-Rafinia M., Cohen A.H., Rippe K., Meshorer E., et al. Hp1 is involved in regulating the global impact of DNA methylation on alternative splicing. Cell Rep. 2015;10:1122–1134. doi: 10.1016/j.celrep.2015.01.038. PubMed DOI

Luco R.F., Pan Q., Tominaga K., Blencowe B.J., Pereira-Smith O.M., Misteli T. Regulation of alternative splicing by histone modifications. Science. 2010;327:996–1000. doi: 10.1126/science.1184208. PubMed DOI PMC

Sawyer I.A., Sturgill D., Dundr M. Membraneless nuclear organelles and the search for phases within phases. Wiley Interdiscip Rev. RNA. 2019;10:e1514. doi: 10.1002/wrna.1514. PubMed DOI

Yuan X., Feng W., Imhof A., Grummt I., Zhou Y. Activation of rna polymerase i transcription by cockayne syndrome group b protein and histone methyltransferase g9a. Mol. Cell. 2007;27:585–595. doi: 10.1016/j.molcel.2007.06.021. PubMed DOI

Horakova A.H., Bartova E., Galiova G., Uhlirova R., Matula P., Kozubek S. Suv39h-independent association of hp1 beta with fibrillarin-positive nucleolar regions. Chromosoma. 2010;119:227–241. doi: 10.1007/s00412-009-0252-2. PubMed DOI

Friedman J.R., Fredericks W.J., Jensen D.E., Speicher D.W., Huang X.P., Neilson E.G., Rauscher F.J., III Kap-1, a novel corepressor for the highly conserved krab repression domain. Genes Dev. 1996;10:2067–2078. doi: 10.1101/gad.10.16.2067. PubMed DOI

Sripathy S.P., Stevens J., Schultz D.C. The kap1 corepressor functions to coordinate the assembly of de novo hp1-demarcated microenvironments of heterochromatin required for krab zinc finger protein-mediated transcriptional repression. Mol. Cell Biol. 2006;26:8623–8638. doi: 10.1128/MCB.00487-06. PubMed DOI PMC

Cammas F., Oulad-Abdelghani M., Vonesch J.L., Huss-Garcia Y., Chambon P., Losson R. Cell differentiation induces TIF1-beta association with centromeric heterochromatin via an HP1 interaction. J. Cell Sci. 2002;115:3439–3448. PubMed

Cammas F., Herzog M., Lerouge T., Chambon P., Losson R. Association of the transcriptional corepressor TIF1beta with heterochromatin protein 1 (HP1): An essential role for progression through differentiation. Genes Dev. 2004;18:2147–2160. doi: 10.1101/gad.302904. PubMed DOI PMC

Bartova E., Pachernik J., Kozubik A., Kozubek S. Differentiation-specific association of hp1alpha and hp1beta with chromocentres is correlated with clustering of tif1beta at these sites. Histochem. Cell Biol. 2007;127:375–388. doi: 10.1007/s00418-006-0259-1. PubMed DOI

White D., Rafalska-Metcalf I.U., Ivanov A.V., Corsinotti A., Peng H., Lee S.C., Trono D., Janicki S.M., Rauscher F.J., III The atm substrate kap1 controls DNA repair in heterochromatin: Regulation by hp1 proteins and serine 473/824 phosphorylation. Mol. Cancer Res. 2012;10:401–414. doi: 10.1158/1541-7786.MCR-11-0134. PubMed DOI PMC

Chang C.W., Chou H.Y., Lin Y.S., Huang K.H., Chang C.J., Hsu T.C., Lee S.C. Phosphorylation at ser473 regulates heterochromatin protein 1 binding and corepressor function of tif1beta/kap1. Bmc Mol. Biol. 2008;9:61. doi: 10.1186/1471-2199-9-61. PubMed DOI PMC

Hiragami-Hamada K., Shinmyozu K., Hamada D., Tatsu Y., Uegaki K., Fujiwara S., Nakayama J. N-terminal phosphorylation of hp1{alpha} promotes its chromatin binding. Mol. Cell Biol. 2011;31:1186–1200. doi: 10.1128/MCB.01012-10. PubMed DOI PMC

Ayoub N., Jeyasekharan A.D., Bernal J.A., Venkitaraman A.R. Hp1-beta mobilization promotes chromatin changes that initiate the DNA damage response. Nature. 2008;453:682–686. doi: 10.1038/nature06875. PubMed DOI

Luijsterburg M.S., Dinant C., Lans H., Stap J., Wiernasz E., Lagerwerf S., Warmerdam D.O., Lindh M., Brink M.C., Dobrucki J.W., et al. Heterochromatin protein 1 is recruited to various types of DNA damage. J. Cell Biol. 2009;185:577–586. doi: 10.1083/jcb.200810035. PubMed DOI PMC

Sustackova G., Kozubek S., Stixova L., Legartova S., Matula P., Orlova D., Bartova E. Acetylation-dependent nuclear arrangement and recruitment of bmi1 protein to uv-damaged chromatin. J. Cell Physiol. 2012;227:1838–1850. doi: 10.1002/jcp.22912. PubMed DOI

Stixova L., Sehnalova P., Legartova S., Suchankova J., Hruskova T., Kozubek S., Sorokin D.V., Matula P., Raska I., Kovarik A., et al. Hp1beta-dependent recruitment of ubf1 to irradiated chromatin occurs simultaneously with cpds. Epigenetics Chromatin. 2014;7:39. doi: 10.1186/1756-8935-7-39. PubMed DOI PMC

Morgenstern J.P., Land H. A series of mammalian expression vectors and characterisation of their expression of a reporter gene in stably and transiently transfected cells. Nucleic Acids Res. 1990;18:1068. doi: 10.1093/nar/18.4.1068. PubMed DOI PMC

Legartova S., Suchankova J., Krejci J., Kovarikova A., Bartova E. Advanced confocal microscopy techniques to study protein-protein interactions and kinetics at DNA lesions. J. Vis. Exp. 2017 doi: 10.3791/55999. PubMed DOI PMC

LeRoy G., Weston J.T., Zee B.M., Young N.L., Plazas-Mayorca M.D., Garcia B.A. Heterochromatin protein 1 is extensively decorated with histone code-like post-translational modifications. Mol. Cell Proteom. 2009;8:2432–2442. doi: 10.1074/mcp.M900160-MCP200. PubMed DOI PMC

Lakowicz J.R., Gryczynski I.I., Gryczynski Z. High throughput screening with multiphoton excitation. J. Biomol. Screen. 1999;4:355–362. doi: 10.1177/108705719900400610. PubMed DOI PMC

Sillen A., Engelborghs Y. The correct use of “average” fluorescence parameters. Photochem. Photobiol. 1998;67:475–486.

Vizcaino J.A., Csordas A., Del-Toro N., Dianes J.A., Griss J., Lavidas I., Mayer G., Perez-Riverol Y., Reisinger F., Ternent T., et al. 2016 update of the pride database and its related tools. Nucleic Acids Res. 2016;44:11033. doi: 10.1093/nar/gkw880. PubMed DOI PMC

Strasak L., Bartova E., Harnicarova A., Galiova G., Krejci J., Kozubek S. H3k9 acetylation and radial chromatin positioning. J. Cell Physiol. 2009;220:91–101. doi: 10.1002/jcp.21734. PubMed DOI

Santoro R., Grummt I. Epigenetic mechanism of rrna gene silencing: Temporal order of norc-mediated histone modification, chromatin remodeling, and DNA methylation. Mol. Cell Biol. 2005;25:2539–2546. doi: 10.1128/MCB.25.7.2539-2546.2005. PubMed DOI PMC

Jugova A., Sustackova G., Legartova S., Stixova L., Kozubek S., Bartova E. Effects of epigenetic-based anti-cancer drugs in leukaemia and multiple myeloma cells. Cell Biol. Int. 2011;35:1195–1203. doi: 10.1042/CBI20100820. PubMed DOI

Morgenstern H., Greenland S. Graphing ratio measures of effect. J. Clin. Epidemiol. 1990;43:539–542. doi: 10.1016/0895-4356(90)90157-K. PubMed DOI

Lomberk G., Bensi D., Fernandez-Zapico M.E., Urrutia R. Evidence for the existence of an hp1-mediated subcode within the histone code. Nat. Cell Biol. 2006;8:407–415. doi: 10.1038/ncb1383. PubMed DOI

Lechner M.S., Begg G.E., Speicher D.W., Rauscher F.J., III Molecular determinants for targeting heterochromatin protein 1-mediated gene silencing: Direct chromoshadow domain-kap-1 corepressor interaction is essential. Mol. Cell Biol. 2000;20:6449–6465. doi: 10.1128/MCB.20.17.6449-6465.2000. PubMed DOI PMC

Bartova E., Pachernik J., Harnicarova A., Kovarik A., Kovarikova M., Hofmanova J., Skalnikova M., Kozubek M., Kozubek S. Nuclear levels and patterns of histone h3 modification and hp1 proteins after inhibition of histone deacetylases. J. Cell Sci. 2005;118:5035–5046. doi: 10.1242/jcs.02621. PubMed DOI

Minc E., Allory Y., Courvalin J.C., Buendia B. Immunolocalization of hp1 proteins in metaphasic mammalian chromosomes. Methods Cell Sci. 2001;23:171–174. doi: 10.1023/A:1013168323754. PubMed DOI

Minc E., Courvalin J.C., Buendia B. Hp1gamma associates with euchromatin and heterochromatin in mammalian nuclei and chromosomes. Cytogenet Cell Genet. 2000;90:279–284. doi: 10.1159/000056789. PubMed DOI

Foltankova V., Legartova S., Kozubek S., Hofer M., Bartova E. DNA-damage response in chromatin of ribosomal genes and the surrounding genome. Gene. 2013;522:156–167. doi: 10.1016/j.gene.2013.03.108. PubMed DOI

Zarebski M., Wiernasz E., Dobrucki J.W. Recruitment of heterochromatin protein 1 to DNA repair sites. Cytom. A. 2009;75:619–625. doi: 10.1002/cyto.a.20734. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...