DNA Damage Changes Distribution Pattern and Levels of HP1 Protein Isoforms in the Nucleolus and Increases Phosphorylation of HP1β-Ser88
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31533340
PubMed Central
PMC6770535
DOI
10.3390/cells8091097
PII: cells8091097
Knihovny.cz E-zdroje
- Klíčová slova
- FLIM-FRET, HP1, epigenetics, irradiation, mass spectrometry, nucleolus, phosphorylation,
- MeSH
- buněčné jadérko metabolismus MeSH
- chromozomální proteiny, nehistonové metabolismus MeSH
- fosforylace MeSH
- HeLa buňky MeSH
- homolog proteinu s chromoboxem 5 MeSH
- lidé MeSH
- nádorové buňky kultivované MeSH
- optické zobrazování MeSH
- poškození DNA MeSH
- rezonanční přenos fluorescenční energie MeSH
- serin metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CBX1 protein, human MeSH Prohlížeč
- CBX5 protein, human MeSH Prohlížeč
- chromozomální proteiny, nehistonové MeSH
- homolog proteinu s chromoboxem 5 MeSH
- serin MeSH
The family of heterochromatin protein 1 (HP1) isoforms is essential for chromatin packaging, regulation of gene expression, and repair of damaged DNA. Here we document that γ-radiation reduced the number of HP1α-positive foci, but not HP1β and HP1γ foci, located in the vicinity of the fibrillarin-positive region of the nucleolus. The additional analysis confirmed that γ-radiation has the ability to significantly decrease the level of HP1α in rDNA promoter and rDNA encoding 28S rRNA. By mass spectrometry, we showed that treatment by γ-rays enhanced the HP1β serine 88 phosphorylation (S88ph), but other analyzed modifications of HP1β, including S161ph/Y163ph, S171ph, and S174ph, were not changed in cells exposed to γ-rays or treated by the HDAC inhibitor (HDACi). Interestingly, a combination of HDACi and γ-radiation increased the level of HP1α and HP1γ. The level of HP1β remained identical before and after the HDACi/γ-rays treatment, but HDACi strengthened HP1β interaction with the KRAB-associated protein 1 (KAP1) protein. Conversely, HP1γ did not interact with KAP1, although approximately 40% of HP1γ foci co-localized with accumulated KAP1. Especially HP1γ foci at the periphery of nucleoli were mostly absent of KAP1. Together, DNA damage changed the morphology, levels, and interaction properties of HP1 isoforms. Also, γ-irradiation-induced hyperphosphorylation of the HP1β protein; thus, HP1β-S88ph could be considered as an important marker of DNA damage.
Zobrazit více v PubMed
Grewal S.I., Jia S. Heterochromatin revisited. Nat. Rev. Genet. 2007;8:35–46. doi: 10.1038/nrg2008. PubMed DOI
Kwon S.H., Workman J.L. The changing faces of hp1: From heterochromatin formation and gene silencing to euchromatic gene expression: Hp1 acts as a positive regulator of transcription. Bioessays. 2011;33:280–289. doi: 10.1002/bies.201000138. PubMed DOI
Probst A.V., Dunleavy E., Almouzni G. Epigenetic inheritance during the cell cycle. Nat. Rev. Mol. Cell Biol. 2009;10:192–206. doi: 10.1038/nrm2640. PubMed DOI
Bannister A.J., Zegerman P., Partridge J.F., Miska E.A., Thomas J.O., Allshire R.C., Kouzarides T. Selective recognition of methylated lysine 9 on histone h3 by the hp1 chromo domain. Nature. 2001;410:120–124. doi: 10.1038/35065138. PubMed DOI
Martens J.H., O’Sullivan R.J., Braunschweig U., Opravil S., Radolf M., Steinlein P., Jenuwein T. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. Embo. J. 2005;24:800–812. doi: 10.1038/sj.emboj.7600545. PubMed DOI PMC
Noma K., Allis C.D., Grewal S.I. Transitions in distinct histone h3 methylation patterns at the heterochromatin domain boundaries. Science. 2001;293:1150–1155. doi: 10.1126/science.1064150. PubMed DOI
Suka N., Luo K., Grunstein M. Sir2p and sas2p opposingly regulate acetylation of yeast histone h4 lysine16 and spreading of heterochromatin. Nat. Genet. 2002;32:378–383. doi: 10.1038/ng1017. PubMed DOI
Rea S., Eisenhaber F., O’Carroll D., Strahl B.D., Sun Z.W., Schmid M., Opravil S., Mechtler K., Ponting C.P., Allis C.D., et al. Regulation of chromatin structure by site-specific histone h3 methyltransferases. Nature. 2000;406:593–599. doi: 10.1038/35020506. PubMed DOI
Schultz D.C., Ayyanathan K., Negorev D., Maul G.G., Rauscher F.J., III Setdb1: A novel kap-1-associated histone h3, lysine 9-specific methyltransferase that contributes to hp1-mediated silencing of euchromatic genes by krab zinc-finger proteins. Genes Dev. 2002;16:919–932. doi: 10.1101/gad.973302. PubMed DOI PMC
Tachibana M. [mammalian histone methyltransferases] Seikagaku. 2006;78:50–53. PubMed
Tachibana M., Sugimoto K., Fukushima T., Shinkai Y. Set domain-containing protein, g9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone h3. J. Biol. Chem. 2001;276:25309–25317. doi: 10.1074/jbc.M101914200. PubMed DOI
Tachibana M., Sugimoto K., Nozaki M., Ueda J., Ohta T., Ohki M., Fukuda M., Takeda N., Niida H., Kato H., et al. G9a histone methyltransferase plays a dominant role in euchromatic histone h3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 2002;16:1779–1791. doi: 10.1101/gad.989402. PubMed DOI PMC
Canzio D., Chang E.Y., Shankar S., Kuchenbecker K.M., Simon M.D., Madhani H.D., Narlikar G.J., Al-Sady B. Chromodomain-mediated oligomerization of hp1 suggests a nucleosome-bridging mechanism for heterochromatin assembly. Mol. Cell. 2011;41:67–81. doi: 10.1016/j.molcel.2010.12.016. PubMed DOI PMC
Lachner M., O’Carroll D., Rea S., Mechtler K., Jenuwein T. Methylation of histone h3 lysine 9 creates a binding site for hp1 proteins. Nature. 2001;410:116–120. doi: 10.1038/35065132. PubMed DOI
Nielsen A.L., Oulad-Abdelghani M., Ortiz J.A., Remboutsika E., Chambon P., Losson R. Heterochromatin formation in mammalian cells: Interaction between histones and hp1 proteins. Mol. Cell. 2001;7:729–739. doi: 10.1016/S1097-2765(01)00218-0. PubMed DOI
Singh P.B., Miller J.R., Pearce J., Kothary R., Burton R.D., Paro R., James T.C., Gaunt S.J. A sequence motif found in a drosophila heterochromatin protein is conserved in animals and plants. Nucleic Acids Res. 1991;19:789–794. doi: 10.1093/nar/19.4.789. PubMed DOI PMC
Fischle W., Wang Y., Jacobs S.A., Kim Y., Allis C.D., Khorasanizadeh S. Molecular basis for the discrimination of repressive methyl-lysine marks in histone h3 by polycomb and hp1 chromodomains. Genes Dev. 2003;17:1870–1881. doi: 10.1101/gad.1110503. PubMed DOI PMC
Stewart M.D., Li J., Wong J. Relationship between histone h3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment. Mol. Cell Biol. 2005;25:2525–2538. doi: 10.1128/MCB.25.7.2525-2538.2005. PubMed DOI PMC
Aasland R., Stewart A.F. The chromo shadow domain, a second chromo domain in heterochromatin-binding protein 1, hp1. Nucleic Acids Res. 1995;23:3168–3173. doi: 10.1093/nar/23.16.3168. PubMed DOI PMC
Li Y., Kirschmann D.A., Wallrath L.L. Does heterochromatin protein 1 always follow code? Proc. Natl. Acad. Sci. USA. 2002;99:16462–16469. doi: 10.1073/pnas.162371699. PubMed DOI PMC
Meehan R.R., Kao C.F., Pennings S. Hp1 binding to native chromatin in vitro is determined by the hinge region and not by the chromodomain. Embo J. 2003;22:3164–3174. doi: 10.1093/emboj/cdg306. PubMed DOI PMC
Zhao T., Heyduk T., Allis C.D., Eissenberg J.C. Heterochromatin protein 1 binds to nucleosomes and DNA in vitro. J. Biol. Chem. 2000;275:28332–28338. PubMed
Badugu R., Yoo Y., Singh P.B., Kellum R. Mutations in the heterochromatin protein 1 (hp1) hinge domain affect hp1 protein interactions and chromosomal distribution. Chromosoma. 2005;113:370–384. doi: 10.1007/s00412-004-0324-2. PubMed DOI
Koike N., Maita H., Taira T., Ariga H., Iguchi-Ariga S.M. Identification of heterochromatin protein 1 (hp1) as a phosphorylation target by pim-1 kinase and the effect of phosphorylation on the transcriptional repression function of hp1(1) Febs. Lett. 2000;467:17–21. doi: 10.1016/S0014-5793(00)01105-4. PubMed DOI
Zhao T., Heyduk T., Eissenberg J.C. Phosphorylation site mutations in heterochromatin protein 1 (hp1) reduce or eliminate silencing activity. J. Biol. Chem. 2001;276:9512–9518. doi: 10.1074/jbc.M010098200. PubMed DOI
Lomberk G., Wallrath L., Urrutia R. The heterochromatin protein 1 family. Genome Biol. 2006;7:228. doi: 10.1186/gb-2006-7-7-228. PubMed DOI PMC
Dialynas G.K., Terjung S., Brown J.P., Aucott R.L., Baron-Luhr B., Singh P.B., Georgatos S.D. Plasticity of hp1 proteins in mammalian cells. J. Cell Sci. 2007;120:3415–3424. doi: 10.1242/jcs.012914. PubMed DOI
Kwon S.H., Florens L., Swanson S.K., Washburn M.P., Abmayr S.M., Workman J.L. Heterochromatin protein 1 (hp1) connects the fact histone chaperone complex to the phosphorylated ctd of rna polymerase ii. Genes Dev. 2010;24:2133–2145. doi: 10.1101/gad.1959110. PubMed DOI PMC
Lin C.H., Li B., Swanson S., Zhang Y., Florens L., Washburn M.P., Abmayr S.M., Workman J.L. Heterochromatin protein 1a stimulates histone h3 lysine 36 demethylation by the drosophila kdm4a demethylase. Mol. Cell. 2008;32:696–706. doi: 10.1016/j.molcel.2008.11.008. PubMed DOI PMC
Smothers J.F., Henikoff S. The hinge and chromo shadow domain impart distinct targeting of hp1-like proteins. Mol. Cell Biol. 2001;21:2555–2569. doi: 10.1128/MCB.21.7.2555-2569.2001. PubMed DOI PMC
Hayakawa T., Haraguchi T., Masumoto H., Hiraoka Y. Cell cycle behavior of human hp1 subtypes: Distinct molecular domains of hp1 are required for their centromeric localization during interphase and metaphase. J. Cell Sci. 2003;116:3327–3338. doi: 10.1242/jcs.00635. PubMed DOI
Minc E., Allory Y., Worman H.J., Courvalin J.C., Buendia B. Localization and phosphorylation of hp1 proteins during the cell cycle in mammalian cells. Chromosoma. 1999;108:220–234. doi: 10.1007/s004120050372. PubMed DOI
Ryu H.W., Lee D.H., Florens L., Swanson S.K., Washburn M.P., Kwon S.H. Analysis of the heterochromatin protein 1 (hp1) interactome in drosophila. J. Proteom. 2014;102:137–147. doi: 10.1016/j.jprot.2014.03.016. PubMed DOI
Cheutin T., McNairn A.J., Jenuwein T., Gilbert D.M., Singh P.B., Misteli T. Maintenance of stable heterochromatin domains by dynamic hp1 binding. Science. 2003;299:721–725. doi: 10.1126/science.1078572. PubMed DOI
Legartova S., Jugova A., Stixova L., Kozubek S., Fojtova M., Zdrahal Z., Lochmanova G., Bartova E. Epigenetic aspects of hp1 exchange kinetics in apoptotic chromatin. Biochimie. 2013;95:167–179. doi: 10.1016/j.biochi.2012.09.027. PubMed DOI
Yearim A., Gelfman S., Shayevitch R., Melcer S., Glaich O., Mallm J.P., Nissim-Rafinia M., Cohen A.H., Rippe K., Meshorer E., et al. Hp1 is involved in regulating the global impact of DNA methylation on alternative splicing. Cell Rep. 2015;10:1122–1134. doi: 10.1016/j.celrep.2015.01.038. PubMed DOI
Luco R.F., Pan Q., Tominaga K., Blencowe B.J., Pereira-Smith O.M., Misteli T. Regulation of alternative splicing by histone modifications. Science. 2010;327:996–1000. doi: 10.1126/science.1184208. PubMed DOI PMC
Sawyer I.A., Sturgill D., Dundr M. Membraneless nuclear organelles and the search for phases within phases. Wiley Interdiscip Rev. RNA. 2019;10:e1514. doi: 10.1002/wrna.1514. PubMed DOI
Yuan X., Feng W., Imhof A., Grummt I., Zhou Y. Activation of rna polymerase i transcription by cockayne syndrome group b protein and histone methyltransferase g9a. Mol. Cell. 2007;27:585–595. doi: 10.1016/j.molcel.2007.06.021. PubMed DOI
Horakova A.H., Bartova E., Galiova G., Uhlirova R., Matula P., Kozubek S. Suv39h-independent association of hp1 beta with fibrillarin-positive nucleolar regions. Chromosoma. 2010;119:227–241. doi: 10.1007/s00412-009-0252-2. PubMed DOI
Friedman J.R., Fredericks W.J., Jensen D.E., Speicher D.W., Huang X.P., Neilson E.G., Rauscher F.J., III Kap-1, a novel corepressor for the highly conserved krab repression domain. Genes Dev. 1996;10:2067–2078. doi: 10.1101/gad.10.16.2067. PubMed DOI
Sripathy S.P., Stevens J., Schultz D.C. The kap1 corepressor functions to coordinate the assembly of de novo hp1-demarcated microenvironments of heterochromatin required for krab zinc finger protein-mediated transcriptional repression. Mol. Cell Biol. 2006;26:8623–8638. doi: 10.1128/MCB.00487-06. PubMed DOI PMC
Cammas F., Oulad-Abdelghani M., Vonesch J.L., Huss-Garcia Y., Chambon P., Losson R. Cell differentiation induces TIF1-beta association with centromeric heterochromatin via an HP1 interaction. J. Cell Sci. 2002;115:3439–3448. PubMed
Cammas F., Herzog M., Lerouge T., Chambon P., Losson R. Association of the transcriptional corepressor TIF1beta with heterochromatin protein 1 (HP1): An essential role for progression through differentiation. Genes Dev. 2004;18:2147–2160. doi: 10.1101/gad.302904. PubMed DOI PMC
Bartova E., Pachernik J., Kozubik A., Kozubek S. Differentiation-specific association of hp1alpha and hp1beta with chromocentres is correlated with clustering of tif1beta at these sites. Histochem. Cell Biol. 2007;127:375–388. doi: 10.1007/s00418-006-0259-1. PubMed DOI
White D., Rafalska-Metcalf I.U., Ivanov A.V., Corsinotti A., Peng H., Lee S.C., Trono D., Janicki S.M., Rauscher F.J., III The atm substrate kap1 controls DNA repair in heterochromatin: Regulation by hp1 proteins and serine 473/824 phosphorylation. Mol. Cancer Res. 2012;10:401–414. doi: 10.1158/1541-7786.MCR-11-0134. PubMed DOI PMC
Chang C.W., Chou H.Y., Lin Y.S., Huang K.H., Chang C.J., Hsu T.C., Lee S.C. Phosphorylation at ser473 regulates heterochromatin protein 1 binding and corepressor function of tif1beta/kap1. Bmc Mol. Biol. 2008;9:61. doi: 10.1186/1471-2199-9-61. PubMed DOI PMC
Hiragami-Hamada K., Shinmyozu K., Hamada D., Tatsu Y., Uegaki K., Fujiwara S., Nakayama J. N-terminal phosphorylation of hp1{alpha} promotes its chromatin binding. Mol. Cell Biol. 2011;31:1186–1200. doi: 10.1128/MCB.01012-10. PubMed DOI PMC
Ayoub N., Jeyasekharan A.D., Bernal J.A., Venkitaraman A.R. Hp1-beta mobilization promotes chromatin changes that initiate the DNA damage response. Nature. 2008;453:682–686. doi: 10.1038/nature06875. PubMed DOI
Luijsterburg M.S., Dinant C., Lans H., Stap J., Wiernasz E., Lagerwerf S., Warmerdam D.O., Lindh M., Brink M.C., Dobrucki J.W., et al. Heterochromatin protein 1 is recruited to various types of DNA damage. J. Cell Biol. 2009;185:577–586. doi: 10.1083/jcb.200810035. PubMed DOI PMC
Sustackova G., Kozubek S., Stixova L., Legartova S., Matula P., Orlova D., Bartova E. Acetylation-dependent nuclear arrangement and recruitment of bmi1 protein to uv-damaged chromatin. J. Cell Physiol. 2012;227:1838–1850. doi: 10.1002/jcp.22912. PubMed DOI
Stixova L., Sehnalova P., Legartova S., Suchankova J., Hruskova T., Kozubek S., Sorokin D.V., Matula P., Raska I., Kovarik A., et al. Hp1beta-dependent recruitment of ubf1 to irradiated chromatin occurs simultaneously with cpds. Epigenetics Chromatin. 2014;7:39. doi: 10.1186/1756-8935-7-39. PubMed DOI PMC
Morgenstern J.P., Land H. A series of mammalian expression vectors and characterisation of their expression of a reporter gene in stably and transiently transfected cells. Nucleic Acids Res. 1990;18:1068. doi: 10.1093/nar/18.4.1068. PubMed DOI PMC
Legartova S., Suchankova J., Krejci J., Kovarikova A., Bartova E. Advanced confocal microscopy techniques to study protein-protein interactions and kinetics at DNA lesions. J. Vis. Exp. 2017 doi: 10.3791/55999. PubMed DOI PMC
LeRoy G., Weston J.T., Zee B.M., Young N.L., Plazas-Mayorca M.D., Garcia B.A. Heterochromatin protein 1 is extensively decorated with histone code-like post-translational modifications. Mol. Cell Proteom. 2009;8:2432–2442. doi: 10.1074/mcp.M900160-MCP200. PubMed DOI PMC
Lakowicz J.R., Gryczynski I.I., Gryczynski Z. High throughput screening with multiphoton excitation. J. Biomol. Screen. 1999;4:355–362. doi: 10.1177/108705719900400610. PubMed DOI PMC
Sillen A., Engelborghs Y. The correct use of “average” fluorescence parameters. Photochem. Photobiol. 1998;67:475–486.
Vizcaino J.A., Csordas A., Del-Toro N., Dianes J.A., Griss J., Lavidas I., Mayer G., Perez-Riverol Y., Reisinger F., Ternent T., et al. 2016 update of the pride database and its related tools. Nucleic Acids Res. 2016;44:11033. doi: 10.1093/nar/gkw880. PubMed DOI PMC
Strasak L., Bartova E., Harnicarova A., Galiova G., Krejci J., Kozubek S. H3k9 acetylation and radial chromatin positioning. J. Cell Physiol. 2009;220:91–101. doi: 10.1002/jcp.21734. PubMed DOI
Santoro R., Grummt I. Epigenetic mechanism of rrna gene silencing: Temporal order of norc-mediated histone modification, chromatin remodeling, and DNA methylation. Mol. Cell Biol. 2005;25:2539–2546. doi: 10.1128/MCB.25.7.2539-2546.2005. PubMed DOI PMC
Jugova A., Sustackova G., Legartova S., Stixova L., Kozubek S., Bartova E. Effects of epigenetic-based anti-cancer drugs in leukaemia and multiple myeloma cells. Cell Biol. Int. 2011;35:1195–1203. doi: 10.1042/CBI20100820. PubMed DOI
Morgenstern H., Greenland S. Graphing ratio measures of effect. J. Clin. Epidemiol. 1990;43:539–542. doi: 10.1016/0895-4356(90)90157-K. PubMed DOI
Lomberk G., Bensi D., Fernandez-Zapico M.E., Urrutia R. Evidence for the existence of an hp1-mediated subcode within the histone code. Nat. Cell Biol. 2006;8:407–415. doi: 10.1038/ncb1383. PubMed DOI
Lechner M.S., Begg G.E., Speicher D.W., Rauscher F.J., III Molecular determinants for targeting heterochromatin protein 1-mediated gene silencing: Direct chromoshadow domain-kap-1 corepressor interaction is essential. Mol. Cell Biol. 2000;20:6449–6465. doi: 10.1128/MCB.20.17.6449-6465.2000. PubMed DOI PMC
Bartova E., Pachernik J., Harnicarova A., Kovarik A., Kovarikova M., Hofmanova J., Skalnikova M., Kozubek M., Kozubek S. Nuclear levels and patterns of histone h3 modification and hp1 proteins after inhibition of histone deacetylases. J. Cell Sci. 2005;118:5035–5046. doi: 10.1242/jcs.02621. PubMed DOI
Minc E., Allory Y., Courvalin J.C., Buendia B. Immunolocalization of hp1 proteins in metaphasic mammalian chromosomes. Methods Cell Sci. 2001;23:171–174. doi: 10.1023/A:1013168323754. PubMed DOI
Minc E., Courvalin J.C., Buendia B. Hp1gamma associates with euchromatin and heterochromatin in mammalian nuclei and chromosomes. Cytogenet Cell Genet. 2000;90:279–284. doi: 10.1159/000056789. PubMed DOI
Foltankova V., Legartova S., Kozubek S., Hofer M., Bartova E. DNA-damage response in chromatin of ribosomal genes and the surrounding genome. Gene. 2013;522:156–167. doi: 10.1016/j.gene.2013.03.108. PubMed DOI
Zarebski M., Wiernasz E., Dobrucki J.W. Recruitment of heterochromatin protein 1 to DNA repair sites. Cytom. A. 2009;75:619–625. doi: 10.1002/cyto.a.20734. PubMed DOI
Cell differentiation and aging accompanied by depletion of the ACE2 protein