The SC-35 Splicing Factor Interacts with RNA Pol II and A-Type Lamin Depletion Weakens This Interaction

. 2021 Feb 01 ; 10 (2) : . [epub] 20210201

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33535591

Grantová podpora
18-07384S Grantová Agentura České Republiky
68081707 Czech Academy of Science

The essential components of splicing are the splicing factors accumulated in nuclear speckles; thus, we studied how DNA damaging agents and A-type lamin depletion affect the properties of these regions, positive on the SC-35 protein. We observed that inhibitor of PARP (poly (ADP-ribose) polymerase), and more pronouncedly inhibitors of RNA polymerases, caused DNA damage and increased the SC35 protein level. Interestingly, nuclear blebs, induced by PARP inhibitor and observed in A-type lamin-depleted or senescent cells, were positive on both the SC-35 protein and another component of the spliceosome, SRRM2. In the interphase cell nuclei, SC-35 interacted with the phosphorylated form of RNAP II, which was A-type lamin-dependent. In mitotic cells, especially in telophase, the SC35 protein formed a well-visible ring in the cytoplasmic fraction and colocalized with β-catenin, associated with the plasma membrane. The antibody against the SRRM2 protein showed that nuclear speckles are already established in the cytoplasm of the late telophase and at the stage of early cytokinesis. In addition, we observed the occurrence of splicing factors in the nuclear blebs and micronuclei, which are also sites of both transcription and splicing. This conclusion supports the fact that splicing proceeds transcriptionally. According to our data, this process is A-type lamin-dependent. Lamin depletion also reduces the interaction between SC35 and β-catenin in mitotic cells.

Zobrazit více v PubMed

Misteli T., Spector D.L. RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo. Mol. Cell. 1999;3:697–705. doi: 10.1016/S1097-2765(01)80002-2. PubMed DOI

Misteli T., Caceres J.F., Spector D.L. The dynamics of a pre-mRNA splicing factor in living cells. Nature. 1997;387:523–527. doi: 10.1038/387523a0. PubMed DOI

Fakan S. Perichromatin fibrils are in situ forms of nascent transcripts. Trends Cell Biol. 1994;4:86–90. doi: 10.1016/0962-8924(94)90180-5. PubMed DOI

Lamond A.I., Spector D.L. Nuclear speckles: A model for nuclear organelles. Nat. Rev. Mol. Cell Biol. 2003;4:605–612. doi: 10.1038/nrm1172. PubMed DOI

Spector D.L. Nuclear organization of pre-mRNA processing. Curr. Opin. Cell Biol. 1993;5:442–447. doi: 10.1016/0955-0674(93)90009-F. PubMed DOI

Prasanth K.V., Sacco-Bubulya P.A., Prasanth S.G., Spector D.L. Sequential entry of components of the gene expression machinery into daughter nuclei. Mol. Biol. Cell. 2003;14:1043–1057. doi: 10.1091/mbc.e02-10-0669. PubMed DOI PMC

Tripathi K., Parnaik V.K. Differential dynamics of splicing factor SC35 during the cell cycle. J. Biosci. 2008;33:345–354. doi: 10.1007/s12038-008-0054-3. PubMed DOI

Dorn R., Reuter G., Loewendorf A. Transgene analysis proves mRNA trans-splicing at the complex mod(mdg4) locus in Drosophila. Proc. Natl. Acad. Sci. USA. 2001;98:9724–9729. doi: 10.1073/pnas.151268698. PubMed DOI PMC

Horiuchi T., Giniger E., Aigaki T. Alternative trans-splicing of constant and variable exons of a Drosophila axon guidance gene, lola. Genes Dev. 2003;17:2496–2501. doi: 10.1101/gad.1137303. PubMed DOI PMC

McManus C.J., Duff M.O., Eipper-Mains J., Graveley B.R. Global analysis of trans-splicing in Drosophila. Proc. Natl. Acad. Sci. USA. 2010;107:12975–12979. doi: 10.1073/pnas.1007586107. PubMed DOI PMC

Li H., Wang J., Ma X., Sklar J. Gene fusions and RNA trans-splicing in normal and neoplastic human cells. Cell Cycle. 2009;8:218–222. doi: 10.4161/cc.8.2.7358. PubMed DOI

Yu L., Heere-Ress E., Boucher B., Defesche J.C., Kastelein J., Lavoie M.A., Genest J., Jr. Familial hypercholesterolemia. Acceptor splice site (G-->C) mutation in intron 7 of the LDL-R gene: Alternate RNA editing causes exon 8 skipping or a premature stop codon in exon 8. LDL-R(Honduras-1) [LDL-R1061(-1) G-->C] Atherosclerosis. 1999;146:125–131. doi: 10.1016/S0021-9150(99)00109-4. PubMed DOI

Reid D.W., Nicchitta C.V. Diversity and selectivity in mRNA translation on the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol. 2015;16:221–231. doi: 10.1038/nrm3958. PubMed DOI PMC

Wang Y., Liu J., Huang B.O., Xu Y.M., Li J., Huang L.F., Lin J., Zhang J., Min Q.H., Yang W.M., et al. Mechanism of alternative splicing and its regulation. Biomed. Rep. 2015;3:152–158. doi: 10.3892/br.2014.407. PubMed DOI PMC

Luco R.F., Pan Q., Tominaga K., Blencowe B.J., Pereira-Smith O.M., Misteli T. Regulation of alternative splicing by histone modifications. Science. 2010;327:996–1000. doi: 10.1126/science.1184208. PubMed DOI PMC

Zhu L.Y., Zhu Y.R., Dai D.J., Wang X., Jin H.C. Epigenetic regulation of alternative splicing. Am. J. Cancer Res. 2018;8:2346–2358. PubMed PMC

Luco R.F., Misteli T. More than a splicing code: Integrating the role of RNA, chromatin and non-coding RNA in alternative splicing regulation. Curr. Opin. Genet. Dev. 2011;21:366–372. doi: 10.1016/j.gde.2011.03.004. PubMed DOI PMC

Adhikari S., Xiao W., Zhao Y.L., Yang Y.G. m(6)A: Signaling for mRNA splicing. RNA Biol. 2016;13:756–759. doi: 10.1080/15476286.2016.1201628. PubMed DOI PMC

Kim M., Patel B., Schroeder K.E., Raza A., Dejong J. Organization and transcriptional output of a novel mRNA-like piRNA gene (mpiR) located on mouse chromosome 10. RNA. 2008;14:1005–1011. doi: 10.1261/rna.974608. PubMed DOI PMC

Gruenbaum Y., Foisner R. Lamins: Nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu. Rev. Biochem. 2015;84:131–164. doi: 10.1146/annurev-biochem-060614-034115. PubMed DOI

Ilik I.A., Malszycki M., Lubke A.K., Schade C., Meierhofer D., Aktas T. SON and SRRM2 are essential for nuclear speckle formation. eLife. 2020;9 doi: 10.7554/eLife.60579. PubMed DOI PMC

Rein I.D., Landsverk K.S., Micci F., Patzke S., Stokke T. Replication-induced DNA damage after PARP inhibition causes G2 delay, and cell line-dependent apoptosis, necrosis and multinucleation. Cell Cycle. 2015;14:3248–3260. doi: 10.1080/15384101.2015.1085137. PubMed DOI PMC

Singh M., Hunt C.R., Pandita R.K., Kumar R., Yang C.R., Horikoshi N., Bachoo R., Serag S., Story M.D., Shay J.W., et al. Lamin A/C depletion enhances DNA damage-induced stalled replication fork arrest. Mol. Cell Biol. 2013;33:1210–1222. doi: 10.1128/MCB.01676-12. PubMed DOI PMC

Bartova E., Malyskova B., Komurkova D., Legartova S., Suchankova J., Krejci J., Kozubek S. Function of heterochromatin protein 1 during DNA repair. Protoplasma. 2017;254:1233–1240. doi: 10.1007/s00709-017-1090-3. PubMed DOI

Essers J., Theil A.F., Baldeyron C., van Cappellen W.A., Houtsmuller A.B., Kanaar R., Vermeulen W. Nuclear dynamics of PCNA in DNA replication and repair. Mol. Cell Biol. 2005;25:9350–9359. doi: 10.1128/MCB.25.21.9350-9359.2005. PubMed DOI PMC

Stixova L., Sehnalova P., Legartova S., Suchankova J., Hruskova T., Kozubek S., Sorokin D.V., Matula P., Raska I., Kovarik A., et al. HP1beta-dependent recruitment of UBF1 to irradiated chromatin occurs simultaneously with CPDs. Epigenetics Chromatin. 2014;7:39. doi: 10.1186/1756-8935-7-39. PubMed DOI PMC

McCrea P.D., Turck C.W., Gumbiner B. A homolog of the armadillo protein in Drosophila (plakoglobin) associated with E-cadherin. Science. 1991;254:1359–1361. doi: 10.1126/science.1962194. PubMed DOI

Sullivan T., Escalante-Alcalde D., Bhatt H., Anver M., Bhat N., Nagashima K., Stewart C.L., Burke B. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol. 1999;147:913–920. doi: 10.1083/jcb.147.5.913. PubMed DOI PMC

Stixova L., Matula P., Kozubek S., Gombitova A., Cmarko D., Raska I., Bartova E. Trajectories and nuclear arrangement of PML bodies are influenced by A-type lamin deficiency. Biol. Cell. 2012;104:418–432. doi: 10.1111/boc.201100053. PubMed DOI

Bartova E., Pachernik J., Harnicarova A., Kovarik A., Kovarikova M., Hofmanova J., Skalnikova M., Kozubek M., Kozubek S. Nuclear levels and patterns of histone H3 modification and HP1 proteins after inhibition of histone deacetylases. J. Cell Sci. 2005;118:5035–5046. doi: 10.1242/jcs.02621. PubMed DOI

Bartova E., Krejci J., Harnicarova A., Kozubek S. Differentiation of human embryonic stem cells induces condensation of chromosome territories and formation of heterochromatin protein 1 foci. Differentiation. 2008;76:24–32. doi: 10.1111/j.1432-0436.2007.00192.x. PubMed DOI

Bartova E., Harnicarova A., Pachernik J., Kozubek S. Nuclear topography and expression of the BCR/ABL fusion gene and its protein level influenced by cell differentiation and RNA interference. Leuk. Res. 2005;29:901–913. doi: 10.1016/j.leukres.2005.01.011. PubMed DOI

Lukasova E., Kovarˇík A., Bac ikova A., Falk M., Kozubek S. Loss of lamin B receptor is necessary to induce cellular senescence. Biochem. J. 2017;474:281–300. doi: 10.1042/BCJ20160459. PubMed DOI

Krejci J., Harnicarova A., Kurova J., Uhlirova R., Kozubek S., Legartova S., Hajek R., Bartova E. Nuclear organization of PML bodies in leukaemic and multiple myeloma cells. Leuk. Res. 2008;32:1866–1877. doi: 10.1016/j.leukres.2008.04.021. PubMed DOI

Ismail I.H., Andrin C., McDonald D., Hendzel M.J. BMI1-mediated histone ubiquitylation promotes DNA double-strand break repair. J. Cell Biol. 2010;191:45–60. doi: 10.1083/jcb.201003034. PubMed DOI PMC

Svobodova Kovarikova A., Stixova L., Kovarik A., Komurkova D., Legartova S., Fagherazzi P., Bartova E. N(6)-Adenosine Methylation in RNA and a Reduced m3G/TMG Level in Non-Coding RNAs Appear at Microirradiation-Induced DNA Lesions. Cells. 2020;9:360. doi: 10.3390/cells9020360. PubMed DOI PMC

Suchankova J., Legartova S., Ruckova E., Vojtesek B., Kozubek S., Bartova E. Mutations in the TP53 gene affected recruitment of 53BP1 protein to DNA lesions, but level of 53BP1 was stable after gamma-irradiation that depleted MDC1 protein in specific TP53 mutants. Histochem. Cell Biol. 2017;148:239–255. doi: 10.1007/s00418-017-1567-3. PubMed DOI

Dundr M., Hoffmann-Rohrer U., Hu Q., Grummt I., Rothblum L.I., Phair R.D., Misteli T. A kinetic framework for a mammalian RNA polymerase in vivo. Science. 2002;298:1623–1626. doi: 10.1126/science.1076164. PubMed DOI

Bartova E., Sustackova G., Stixova L., Kozubek S., Legartova S., Foltankova V. Recruitment of Oct4 protein to UV-damaged chromatin in embryonic stem cells. PLoS ONE. 2011;6:e27281. doi: 10.1371/journal.pone.0027281. PubMed DOI PMC

Eriksson S., Kim S.K., Kubista M., Norden B. Binding of 4’,6-diamidino-2-phenylindole (DAPI) to AT regions of DNA: Evidence for an allosteric conformational change. Biochemistry. 1993;32:2987–2998. doi: 10.1021/bi00063a009. PubMed DOI

Legartova S., Jugova A., Stixova L., Kozubek S., Fojtova M., Zdrahal Z., Lochmanova G., Bartova E. Epigenetic aspects of HP1 exchange kinetics in apoptotic chromatin. Biochimie. 2013;95:167–179. doi: 10.1016/j.biochi.2012.09.027. PubMed DOI

Legartova S., Lochmanova G., Zdrahal Z., Kozubek S., Sponer J., Krepl M., Pokorna P., Bartova E. DNA Damage Changes Distribution Pattern and Levels of HP1 Protein Isoforms in the Nucleolus and Increases Phosphorylation of HP1beta-Ser88. Cells. 2019;8:1097. doi: 10.3390/cells8091097. PubMed DOI PMC

Edmond V., Moysan E., Khochbin S., Matthias P., Brambilla C., Brambilla E., Gazzeri S., Eymin B. Acetylation and phosphorylation of SRSF2 control cell fate decision in response to cisplatin. EMBO J. 2011;30:510–523. doi: 10.1038/emboj.2010.333. PubMed DOI PMC

Kumar S., Alibhai D., Margineanu A., Laine R., Kennedy G., McGinty J., Warren S., Kelly D., Alexandrov Y., Munro I., et al. FLIM FRET technology for drug discovery: Automated multiwell-plate high-content analysis, multiplexed readouts and application in situ. Chemphyschem. 2011;12:609–626. doi: 10.1002/cphc.201000874. PubMed DOI PMC

Lakowicz J.R., Gryczynski I.I., Gryczynski Z. High Throughput Screening with Multiphoton Excitation. J. Biomol. Screen. 1999;4:355–362. doi: 10.1177/108705719900400610. PubMed DOI PMC

Sillen A., Engelborghs Y. The correct use of “average” fluorescence parameters. Photochem. Photobiol. 1998;67:475–486. doi: 10.1111/j.1751-1097.1998.tb09443.x. DOI

Daubner G.M., Clery A., Jayne S., Stevenin J., Allain F.H. A syn-anti conformational difference allows SRSF2 to recognize guanines and cytosines equally well. EMBO J. 2012;31:162–174. doi: 10.1038/emboj.2011.367. PubMed DOI PMC

Legartova S., Sehnalova P., Malyskova B., Kuntziger T., Collas P., Cmarko D., Raska I., Sorokin D.V., Kozubek S., Bartova E. Localized Movement and Levels of 53BP1 Protein Are Changed by gamma-irradiation in PML Deficient Cells. J. Cell Biochem. 2016;117:2583–2596. doi: 10.1002/jcb.25551. PubMed DOI

Bubulya P.A., Prasanth K.V., Deerinck T.J., Gerlich D., Beaudouin J., Ellisman M.H., Ellenberg J., Spector D.L. Hypophosphorylated SR splicing factors transiently localize around active nucleolar organizing regions in telophase daughter nuclei. J. Cell Biol. 2004;167:51–63. doi: 10.1083/jcb.200404120. PubMed DOI PMC

Spector D.L., Lamond A.I. Nuclear speckles. Cold Spring Harb. Perspect. Biol. 2011;3 doi: 10.1101/cshperspect.a000646. PubMed DOI PMC

Galganski L., Urbanek M.O., Krzyzosiak W.J. Nuclear speckles: Molecular organization, biological function and role in disease. Nucleic Acids Res. 2017;45:10350–10368. doi: 10.1093/nar/gkx759. PubMed DOI PMC

Fu X.D., Maniatis T. The 35-kDa mammalian splicing factor SC35 mediates specific interactions between U1 and U2 small nuclear ribonucleoprotein particles at the 3′ splice site. Proc. Natl. Acad. Sci. USA. 1992;89:1725–1729. doi: 10.1073/pnas.89.5.1725. PubMed DOI PMC

Neugebauer K.M. On the importance of being co-transcriptional. J. Cell Sci. 2002;115:3865–3871. doi: 10.1242/jcs.00073. PubMed DOI

Shimi T., Pfleghaar K., Kojima S., Pack C.G., Solovei I., Goldman A.E., Adam S.A., Shumaker D.K., Kinjo M., Cremer T., et al. The A- and B-type nuclear lamin networks: Microdomains involved in chromatin organization and transcription. Genes Dev. 2008;22:3409–3421. doi: 10.1101/gad.1735208. PubMed DOI PMC

Bercht Pfleghaar K., Taimen P., Butin-Israeli V., Shimi T., Langer-Freitag S., Markaki Y., Goldman A.E., Wehnert M., Goldman R.D. Gene-rich chromosomal regions are preferentially localized in the lamin B deficient nuclear blebs of atypical progeria cells. Nucleus. 2015;6:66–76. doi: 10.1080/19491034.2015.1004256. PubMed DOI PMC

Funkhouser C.M., Sknepnek R., Shimi T., Goldman A.E., Goldman R.D., Olvera de la Cruz M. Mechanical model of blebbing in nuclear lamin meshworks. Proc. Natl. Acad. Sci. USA. 2013;110:3248–3253. doi: 10.1073/pnas.1300215110. PubMed DOI PMC

Gonzalez-Suarez I., Redwood A.B., Gonzalo S. Loss of A-type lamins and genomic instability. Cell Cycle. 2009;8:3860–3865. doi: 10.4161/cc.8.23.10092. PubMed DOI

Caruso R.A., Fedele F., Crisafulli C., Paparo D., Parisi A., Luciano R., Cavallari V. Abnormal nuclear structures (micronuclei, nuclear blebs, strings, and pockets) in a case of anaplastic giant cell carcinoma of the thyroid: An immunohistochemical and ultrastructural study. Ultrastruct. Pathol. 2011;35:14–18. doi: 10.3109/01913123.2010.517899. PubMed DOI

Utani K., Okamoto A., Shimizu N. Generations of micronuclei during interphase by coupling between cytoplasmic membrane blebbing and nuclear budding. PLoS ONE. 2011;6:e27233. doi: 10.1371/journal.pone.0027233. PubMed DOI PMC

Rai A.K., Chen J.X., Selbach M., Pelkmans L. Kinase-controlled phase transition of membraneless organelles in mitosis. Nature. 2018;559:211–216. doi: 10.1038/s41586-018-0279-8. PubMed DOI

Dundr M., Misteli T. Biogenesis of nuclear bodies. Cold Spring Harb. Perspect. Biol. 2010;2:a000711. doi: 10.1101/cshperspect.a000711. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace