Recruitment of Oct4 protein to UV-damaged chromatin in embryonic stem cells
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
22164208
PubMed Central
PMC3229488
DOI
10.1371/journal.pone.0027281
PII: PONE-D-11-08876
Knihovny.cz E-resources
- MeSH
- Tumor Suppressor p53-Binding Protein 1 MeSH
- Adenosine Triphosphate metabolism MeSH
- Cell Nucleus metabolism MeSH
- Chromatin metabolism MeSH
- Chromosomal Proteins, Non-Histone metabolism MeSH
- DNA-Binding Proteins metabolism MeSH
- Embryonic Stem Cells cytology MeSH
- Fibroblasts metabolism MeSH
- Phosphorylation MeSH
- Transcription, Genetic MeSH
- Histones chemistry MeSH
- Kinetics MeSH
- Mice MeSH
- Octamer Transcription Factor-3 metabolism MeSH
- DNA Damage MeSH
- Regenerative Medicine methods MeSH
- Gene Expression Regulation * MeSH
- Ultraviolet Rays MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Tumor Suppressor p53-Binding Protein 1 MeSH
- Adenosine Triphosphate MeSH
- Chromatin MeSH
- Chromosomal Proteins, Non-Histone MeSH
- DNA-Binding Proteins MeSH
- Histones MeSH
- Octamer Transcription Factor-3 MeSH
- Pou5f1 protein, mouse MeSH Browser
- Trp53bp1 protein, mouse MeSH Browser
BACKGROUND: Oct4 is a specific marker of embryonic stem cell (ESC) pluripotency. However, little is known regarding how Oct4 responds to DNA damage. Here, we investigated whether Oct4 recognizes damaged chromatin in mouse ESCs stably expressing GFP-Oct4. These experiments should contribute to the knowledge of how ESC genomic integrity is maintained, which is crucial for potential application of human ESCs in regenerative medicine. METHODOLOGY/PRINCIPAL FINDINGS: We used time-lapse confocal microscopy, microirradiation by UV laser (355 nm), induction of DNA lesions by specific agents, and GFP technology to study the Oct4 response to DNA damage. We found that Oct4 accumulates in UV-damaged regions immediately after irradiation in an adenosine triphosphate-dependent manner. Intriguingly, this event was not accompanied by pronounced Nanog and c-MYC recruitment to the UV-damaged sites. The accumulation of Oct4 to UV-damaged chromatin occurred simultaneously with H3K9 deacetylation and H2AX phosphorylation (γH2AX). Moreover, we observed an ESC-specific nuclear distribution of γH2AX after interference to cellular processes, including histone acetylation, transcription, and cell metabolism. Inhibition of histone deacetylases mostly prevented pronounced Oct4 accumulation at UV-irradiated chromatin. CONCLUSIONS/SIGNIFICANCE: Our studies demonstrate pluripotency-specific events that accompany DNA damage responses. Here, we discuss how ESCs might respond to DNA damage caused by genotoxic injury that might lead to unwanted genomic instability.
See more in PubMed
de Waard H, Sonneveld E, de Wit J, Esveldt-van Lange R, Hoeijmakers JH, et al. Cell-type-specific consequences of nucleotide excision repair deficiencies: Embryonic stem cells versus fibroblasts. DNA Repair (Amst) 2008;7:1659–1669. PubMed
Giglia-Mari G, Zotter A, Vermeulen W. DNA Damage Response. Cold Spring Harb Perspect Biol The Nucleus. 2010:361–379. PubMed PMC
Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet. 2000;24:372–376. PubMed
Niwa H, Masui S, Chambers I, Smith AG, Miyazaki J. Phenotypic complementation establishes requirements for specific POU domain and generic transactivation function of Oct-3/4 in embryonic stem cells. Mol Cell Biol. 2002;22:1526–1536. PubMed PMC
Shimozaki K, Nakashima K, Niwa H, Taga T. Involvement of Oct3/4 in the enhancement of neuronal differentiation of ES cells in neurogenesis-inducing cultures. Development. 2003;130:2505–2512. PubMed
Reim G, Mizoguchi T, Stainier DY, Kikuchi Y, Brand M. The POU domain protein spg (pou2/Oct4) is essential for endoderm formation in cooperation with the HMG domain protein casanova. Dev Cell. 2004;6:91–101. PubMed
Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122:947–956. PubMed PMC
Loh YH, Wu Q, Cheb JL, Vega VB, Zhang W, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet. 2006;38:431–440. PubMed
Levasseur DN, Wang J, Dorschner MO, Stamatoyannopoulos JA, Orkin SH. Oct4 dependence of chromatin structure within the extended Nanog locus in ES cells. Genes Dev. 2008;22:575–580. PubMed PMC
Jiang J, Ng HH. TGF beta and SMADs talk to NANOG in human embryonic stem cells. Cell Stem Cell. 2008;3:127–128. PubMed
Niwa H, Ogawa K, Shimosato D, Adachi K. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature. 2009;460:118–122. PubMed
Savarese F, Dávila A, Nechanitzky R, De La Rosa-Velazquez I, Pereira CF, et al. Satb1 and Satb2 regulate embryonic stem cell differentiation and Nanog expression. Genes Dev. 2009;23:2625–2638. PubMed PMC
Hochedlinger K, Jaenisch R. Nuclear reprogramming and pluripotency. Nature. 2006;441:1061–1067. PubMed
Bakkenist CJ, Kastan MB. Initiating cellular stress responses. Cell. 2004;118:9–17. PubMed
Peterson CL, Côté J. Cellular machineries for chromosomal DNA repair. Genes Dev. 2004;18:602–616. PubMed
Misteli T, Soutoglou E. The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat Rev Mol Cell Biol. 2009;10:243–254. PubMed PMC
Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998;273:5858–5868. PubMed
Celeste A, Fernandez-Capetillo O, Kruhlak MJ, Pilch DR, Staudt DW, et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol. 2003;5:675–679. PubMed
Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A. H2AX: the histone guardian of the genome. DNA Repair (Amst) 2004;3:959–967. PubMed
Ayoub N, Jeyasekharan AD, Bernal JA, Venkitaraman AR. HP1-beta mobilization promotes chromatin changes that initiate the DNA damage response. Nature. 2008;453:682–686. PubMed
Luijsterburg MS, Dinant C, Lans H, Stap J, Wiernasz E, et al. Heterochromatin protein 1 is recruited to various types of DNA damage. J Cell Biol. 2009;185:577–586. PubMed PMC
Chou DM, Adamson B, Dephoure NE, Tan X, Mottle AC, et al. A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage. Proc Natl Acad Sci USA. 2010;107:18475–18480. PubMed PMC
Larsen DH, Poinsignon C, Gudjonsson T, Dinant C, Payne MR, et al. The chromatin-remodeling factor CHD4 coordinates signaling and repair after DNA damage. J Cell Biol. 2010;190:731–740. PubMed PMC
Brimble SN, Zeng X, Weiler DA, Luo Y, Liu Y, et al. Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines derived prior to August 9, 2001. Stem Cells Dev. 2004;13:585–597. PubMed
Cowan CA, Klimanskaya I, McMahon J, Atienza J, Witmyer J, et al. Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med. 2004;350:1353–1356. PubMed
Mitalipova MM, Rao RR, Hoyer DM, Johnson JA, Meisner LF, et al. Preserving the genetic integrity of human embryonic stem cells. Nat Biotechnol. 2005;23:19–20. PubMed
Allegrucci C, Young LE. Differences between human embryonic stem cell lines. Hum Reprod Update. 2007;13:103–120. PubMed
Kuijk EW, Du Puy L, Van Tol HT, Oei CH, Haagsman HP, et al. Differences in early lineage segregation between mammals. Dev Dyn. 2008;237:918–927. PubMed
Takeda J, Seino S, Bell GI. Human Oct3 gene family: cDNA sequences, alternative splicing, gene organization, chromosomal location, and expression at low levels in adult tissues. Nucleic Acids Res. 1992;20:4613–4620. PubMed PMC
Kirchhof N, Carnwath JW, Lemme E, Anastassiadis K, Schöler H, et al. Expression pattern of Oct4 in preimplantation embryos of different species. Repris. 2000;63:1698–1705. PubMed
Kong X, Mohanty SK, Stephens J, Heale JT, Gomez-Godinez V, et al. Comparative analysis of different laser systems to study cellular responses to DNA damage in mammalian cells. Nucleic Acids Res. 2009;37:e68. PubMed PMC
Šustáčková G, Legartová S, Kozubek S, Stixová L, Pacherník J, et al. Differentiation-independent fluctuation of pluripotency-related transcription factors and other epigenetic markers in embryonic stem cell colonies. Stem Cells Dev PMID. 2011:21609209. PubMed PMC
Hong Z, Jiang J, Lan L, Nakajima S, Kanno S, et al. A polycomb group protein, PHF1, is involved in the response to DNA double-strand breaks in human cell. Nucleic Acids Res. 2008;36:2939–2947. PubMed PMC
Suzuki K, Yamauchi M, Oka Y, Suzuki M, Yamashita A novel and simple micro-irradiation technique for creating localized DNA double-strand breaks. Nucleic Acids Res. 2010;38:e129. PubMed PMC
Kruhlak MJ, Celeste A, Dellaire G, Fernandez-Capetillo O, Müller WG, et al. Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J Cell Biol. 2006;172:823–834. PubMed PMC
Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature. 2003;421:499–506. PubMed
Bártová E, Krejčí J, Harničarová A, Kozubek S. Differentiation of human embryonic stem cells induces condensation of chromosome territories and formation of heterochromatin protein 1 foci. Differentiation. 2008;76:24–32. PubMed
Momcilovic O, Knobloch L, Fornsaglio J, Varum S, Easley C, et al. DNA damage responses in human induced pluripotent stem cells and embryonic stem cells. PLoS One. 2010;5:e13410. PubMed PMC
Dinant C, Houtsmuller AB, Vermeulen W. Chromatin structure and DNA damage repair. Epigenetics & Chromatin. 2008;1:9. PubMed PMC
Ramanathan B, Smerdon MJ. Changes in nuclear protein acetylation in UV-damaged human cells. Carcinogenesis. 1986;7:1087–1094. PubMed
Ramanathan B, Smerdon MJ. Enhanced DNA repair synthesis in hyperacetylated nucleosomes. J Biol Chem. 1989;264:11026–11034. PubMed
Kruhlak MJ, Celeste A, Nussenzweig A. Spatio-temporal dynamics of chromatin containing DNA breaks. Cell Cycle. 2006;5:1910–1912. PubMed
Šustáčková G, Kozubek S, Stixová L, Legartová S, Matula P, et al. Acetylation-dependent nuclear arrangement and recruitment of BMI1 protein to UV-damaged chromatin. J Cell Physiol PMID. 2011;21732356 PubMed
Banáth JP, Bañuelos CA, Klokov D, MacPhail SM, Lansdorp PM, et al. Explanation for excessive DNA single-strand breaks and endogenous repair foci in pluripotent mouse embryonic stem cells. Exp Cell Res. 2009;315:1505–1520. PubMed
Meshorer E, Yellajoshula D, George E, Scambler PJ, Brown DT, et al. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell. 2006;10:105–116. PubMed PMC
Krejčí J, Uhlířová R, Galiová G, Kozubek S, Šmigová J, et al. Genome-wide reduction in H3K9 acetylation during human embryonic stem cell differentiation. J Cell Physiol. 2009;219:677–687. PubMed
Jin T, Branch DR, Zhang X, Qi S, Youngson B, et al. Examination of POU homeobox gene expression in human breast cancer cells. Int J Cancer. 1999;81:104–112. PubMed
Bártová E, Kozubek S, Kozubek M, Jirsová P, Lukášová E, et al. The influence of the cell cycle, differentiation and irradiation on the nuclear location of the abl, bcr and c-myc genes in human leukemic cells. Leuk Res. 2000;24:233–241. PubMed
Bártová E, Stixová L, Galiová G, Harničarová Horáková A, Legartová S, et al. Mutant genetic background affects the functional rearrangement and kinetic properties of JMJD2b histone demethylase. J Mol Biol. 2011;405:679–695. PubMed
Stixová L, Bártová E, Matula P, Daněk O, Legartová S, et al. Heterogeneity in the kinetics of nuclear proteins and trajectories of substructures associated with heterochromatin. Epigenetics & Chromatin. 2011;4:5. PubMed PMC
HP1β-dependent recruitment of UBF1 to irradiated chromatin occurs simultaneously with CPDs
Epigenetics and chromatin plasticity in embryonic stem cells