Transgenic expression of artificial microRNA targeting soybean mosaic virus P1 gene confers virus resistance in plant
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
32370158
National Natural Science Foundation of China
JSSCTD202142
Jiangsu Province's Innovation Program
PubMed
38842603
DOI
10.1007/s11248-024-00388-8
PII: 10.1007/s11248-024-00388-8
Knihovny.cz E-zdroje
- Klíčová slova
- P1 gene, MicroRNA, Potyvirus, SMV, Transgenic, Virus resistance,
- MeSH
- geneticky modifikované rostliny * genetika virologie imunologie MeSH
- Glycine max genetika virologie imunologie MeSH
- mikro RNA * genetika MeSH
- nemoci rostlin * virologie genetika imunologie MeSH
- odolnost vůči nemocem * genetika MeSH
- Potyvirus * patogenita genetika MeSH
- RNA interference MeSH
- tabák * genetika virologie imunologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mikro RNA * MeSH
RNA silencing is an innate immune mechanism of plants against invasion by viral pathogens. Artificial microRNA (amiRNA) can be engineered to specifically induce RNA silencing against viruses in transgenic plants and has great potential for disease control. Here, we describe the development and application of amiRNA-based technology to induce resistance to soybean mosaic virus (SMV), a plant virus with a positive-sense single-stranded RNA genome. We have shown that the amiRNA targeting the SMV P1 coding region has the highest antiviral activity than those targeting other SMV genes in a transient amiRNA expression assay. We transformed the gene encoding the P1-targeting amiRNA and obtained stable transgenic Nicotiana benthamiana lines (amiR-P1-3-1-2-1 and amiR-P1-4-1-2-1). Our results have demonstrated the efficient suppression of SMV infection in the P1-targeting amiRNA transgenic plants in an expression level-dependent manner. In particular, the amiR-P1-3-1-2-1 transgenic plant showed high expression of amiR-P1 and low SMV accumulation after being challenged with SMV. Thus, a transgenic approach utilizing the amiRNA technology appears to be effective in generating resistance to SMV.
Zobrazit více v PubMed
Bassett M, Salemi M, Rife Magalis B (2022) Lessons learned and yet-to-be learned on the importance of RNA structure in SARS-CoV-2 replication. Microbiol Mol Biol Rev 86:e0005721. https://doi.org/10.1128/mmbr.00057-21 DOI
Carbonell A, Lopez C, Daros JA (2019) Fast-forward identification of highly effective artificial small RNAs against different tomato spotted wilt virus isolates. Mol Plant Microbe Interact 32:142–156. https://doi.org/10.1094/MPMI-05-18-0117-TA DOI
Chatzi A, Doody O (2023) The one-way ANOVA test explained. Nurse Res 31:8–14. https://doi.org/10.7748/nr.2023.e1885 DOI
Duan CG, Wang CH, Fang RX, Guo HS (2008) Artificial microRNAs highly accessible to targets confer efficient virus resistance in plants. J Virol 82:11084–11095. https://doi.org/10.1128/JVI.01377-08 DOI
Gallois P, Marinho P (1995) Leaf disk transformation using Agrobacterium tumefaciens-expression of heterologous genes in tobacco. Methods Mol Biol 49:39–48. https://doi.org/10.1385/0-89603-321-X:39 DOI
Gao L, Ding X, Li K, Liao W, Zhong Y, Ren R, Liu Z, Adhimoolam K, Zhi H (2015) Characterization of Soybean mosaic virus resistance derived from inverted repeat-SMV-HC-Pro genes in multiple soybean cultivars. Theor Appl Genet 128:1489–1505. https://doi.org/10.1007/s00122-015-2522-0 DOI
Hajimorad MR, Domier LL, Tolin SA, Whitham SA, Saghai Maroof MA (2018) Soybean mosaic virus: a successful potyvirus with a wide distribution but restricted natural host range. Mol Plant Pathol 19:1563–1579. https://doi.org/10.1111/mpp.12644 DOI
Hong X, Li S, Cheng X, Zhi H, Yin J, Xu K (2024) Searching for plant NLR immune receptors conferring resistance to potyviruses. Crop J 12:28–44. https://doi.org/10.1016/j.cj.2023.11.010 DOI
Ishibashi K, Saruta M, Shimizu T, Shu M, Anai T, Komatsu K, Yamada N, Katayose Y, Ishikawa M, Ishimoto M, Kaga A (2019) Soybean antiviral immunity conferred by dsRNase targets the viral replication complex. Nat Commun 10:4033. https://doi.org/10.1038/s41467-019-12052-5 DOI
Jian C, Han R, Chi Q, Wang S, Ma M, Liu X, Zhao H (2017) Virus-based microRNA silencing and overexpressing in common wheat (Triticum aestivum L.). Front Plant Sci 8:500. https://doi.org/10.3389/fpls.2017.00500 DOI
Kim HJ, Kim M-J, Pak JH, Im HH, Lee DH, Kim K-H, Lee J-H, Kim D-H, Choi HK, Jung HW, Chung Y-S (2016) RNAi-mediated Soybean mosaic virus (SMV) resistance of a Korean soybean cultivar. Plant Biotechnol Rep 10:257–267. https://doi.org/10.1007/s11816-016-0402-y DOI
Kis A, Tholt G, Ivanics M, Varallyay E, Jenes B, Havelda Z (2016) Polycistronic artificial miRNA-mediated resistance to wheat dwarf virus in barley is highly efficient at low temperature. Mol Plant Pathol 17:427–437. https://doi.org/10.1111/mpp.12291 DOI
Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP (2004) MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5’ region. EMBO J 23:3356–3364. https://doi.org/10.1038/sj.emboj.7600340 DOI
Miao S, Liang C, Li J, Baker B, Luo L (2021) Polycistronic artificial microrna-mediated resistance to cucumber green mottle mosaic virus in cucumber. Int J Mol Sci. https://doi.org/10.3390/ijms222212237 DOI
Mitter N, Dietzgen RG (2012) Use of hairpin RNA constructs for engineering plant virus resistance. Methods Mol Biol 894:191–208. https://doi.org/10.1007/978-1-61779-882-5_13 DOI
Park W, Zhai J, Lee JY (2009) Highly efficient gene silencing using perfect complementary artificial miRNA targeting AP1 or heteromeric artificial miRNA targeting AP1 and CAL genes. Plant Cell Rep 28:469–480. https://doi.org/10.1007/s00299-008-0651-5 DOI
Qu J, Ye J, Fang R (2007) Artificial microRNA-mediated virus resistance in plants. J Virol 81:6690–6699. https://doi.org/10.1128/JVI.02457-06 DOI
Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133. https://doi.org/10.1105/tpc.105.039834 DOI
Simon AE (2015) 3’UTRs of carmoviruses. Virus Res 206:27–36. https://doi.org/10.1016/j.virusres.2015.01.023 DOI
Szittya G, Silhavy D, Molnar A, Havelda Z, Lovas A, Lakatos L, Banfalvi Z, Burgyan J (2003) Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. EMBO J 22:633–640. https://doi.org/10.1093/emboj/cdg74 DOI
Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:12. https://doi.org/10.1186/1746-4811-3-12 DOI
Vu TV, Choudhury NR, Mukherjee SK (2013) Transgenic tomato plants expressing artificial microRNAs for silencing the pre-coat and coat proteins of a begomovirus, tomato leaf curl New Delhi virus, show tolerance to virus infection. Virus Res 172:35–45. https://doi.org/10.1016/j.virusres.2012.12.008 DOI
Xu B, Zhu Y, Cao C, Chen H, Jin Q, Li G, Ma J, Yang SL, Zhao J, Zhu J, Ding Y, Fang X, Jin Y, Kwok CK, Ren A, Wan Y, Wang Z, Xue Y, Zhang H, Zhang QC, Zhou Y (2022) Recent advances in RNA structurome. Sci China Life Sci 65:1285–1324. https://doi.org/10.1007/s11427-021-2116-2 DOI
Yin J, Wang L, Jin T, Nie Y, Liu H, Qiu Y, Yang Y, Li B, Zhang J, Wang D, Li K, Xu K, Zhi H (2021) A cell wall-localized NLR confers resistance to Soybean mosaic virus by recognizing viral-encoded cylindrical inclusion protein. Mol Plant 14:1881–1900. https://doi.org/10.1016/j.molp.2021.07.013 DOI