Differentiation-specific association of HP1alpha and HP1beta with chromocentres is correlated with clustering of TIF1beta at these sites

. 2007 Apr ; 127 (4) : 375-88. [epub] 20070105

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid17205308

Mammalian heterochromatin protein 1 (HP1alpha, HP1beta, HP1gamma subtypes) and transcriptional intermediary factor TIF1beta play an important role in the regulation of chromatin structure and function. Here, we investigated the nuclear arrangement of these proteins during differentiation of embryonal carcinoma P19 cells into primitive endoderm and into the neural pathway. Additionally, the differentiation potential of trichostatin A (TSA) and 5-deoxyazacytidine (5-dAzaC) was studied. In 70% of the cells from the neural pathway and in 20% of TSA-stimulated cells, HP1alpha and HP1beta co-localized and associated with chromocentres (clusters of centromeres), which correlated with clustering of TIF1beta at these heterochromatic regions. The cell types that we studied were also characterized by a pronounced focal distribution of HP1gamma. The above-mentioned nuclear patterns of HP1 and TIF1beta proteins were completely different from the nuclear patterns observed in the remaining cell types investigated, in which HP1alpha was associated with chromocentres while HP1beta and HP1gamma were largely localized in distinct nuclear regions. Moreover, a dispersed nuclear distribution of TIF1beta was observed. Our findings showed that the nuclear arrangement of HP1 subtypes and TIF1beta is differentiation specific, and seems to be more important than changes in the levels of these proteins, which were relatively stable during all the induced differentiation processes.

Zobrazit více v PubMed

J Cell Sci. 2003 Aug 15;116(Pt 16):3327-38 PubMed

Genes Dev. 2004 Sep 1;18(17):2147-60 PubMed

Science. 1995 Sep 8;269(5229):1429-31 PubMed

Cytometry. 1999 Aug 1;36(4):279-93 PubMed

J Cell Sci. 1999 Oct;112 ( Pt 20):3443-54 PubMed

Methods Cell Sci. 2001;23(1-3):171-4 PubMed

EMBO Rep. 2005 Jun;6(6):520-4 PubMed

EMBO J. 1999 Nov 15;18(22):6385-95 PubMed

J Cell Sci. 2002 Sep 1;115(Pt 17):3439-48 PubMed

Biol Cell. 2006 Jun;98(6):323-36 PubMed

J Cell Sci. 2005 Nov 1;118(Pt 21):5035-46 PubMed

Curr Opin Cell Biol. 2001 Jun;13(3):263-73 PubMed

J Biochem. 1999 Apr;125(4):832-7 PubMed

Int J Dev Biol. 1993 Mar;37(1):135-40 PubMed

J Cell Biol. 1982 Aug;94(2):253-62 PubMed

Cytogenet Cell Genet. 1994;66(2):99-103 PubMed

Mol Cell. 2001 Apr;7(4):729-39 PubMed

Cell. 1997 Dec 12;91(6):845-54 PubMed

EMBO Rep. 2002 Oct;3(10):975-81 PubMed

J Leukoc Biol. 2005 Jan;77(1):100-11 PubMed

EMBO J. 2003 Oct 15;22(20):5540-50 PubMed

Mol Cell Biol. 1999 Jun;19(6):4366-78 PubMed

Exp Cell Res. 1998 Jul 10;242(1):303-14 PubMed

Stem Cells. 2004;22(2):225-35 PubMed

Chromosoma. 1999 Aug;108(4):220-34 PubMed

Mol Cell Biol. 2000 Sep;20(17):6449-65 PubMed

Mol Cell. 1999 Feb;3(2):207-17 PubMed

Nucleic Acids Res. 1995 Aug 25;23(16):3168-73 PubMed

Chromosoma. 2002 Mar;111(1):22-36 PubMed

Chromosome Res. 1999;7(4):261-5 PubMed

Physiol Res. 2005;54(1):115-22 PubMed

Philos Trans R Soc Lond B Biol Sci. 2002 Apr 29;357(1420):405-17 PubMed

Cell. 1998 May 1;93(3):321-4 PubMed

Mol Cell Biol. 2005 Jun;25(11):4552-64 PubMed

Nature. 2001 Mar 1;410(6824):120-4 PubMed

J Cell Sci. 2005 Sep 1;118(Pt 17):3861-8 PubMed

Proc Natl Acad Sci U S A. 2002 Dec 10;99 Suppl 4:16462-9 PubMed

Blood. 2000 Mar 1;95(5):1608-15 PubMed

Science. 2003 Jan 31;299(5607):721-5 PubMed

J Cell Sci. 2003 Jun 1;116(Pt 11):2117-24 PubMed

Curr Opin Genet Dev. 2000 Apr;10(2):204-10 PubMed

Chromosome Res. 2004;12(5):505-16 PubMed

Cytogenet Cell Genet. 1996;73(4):308-11 PubMed

Cytogenet Cell Genet. 2000;90(3-4):279-84 PubMed

Science. 2002 Mar 15;295(5562):2080-3 PubMed

Nat Cell Biol. 2001 Feb;3(2):114-20 PubMed

Exp Cell Res. 2003 Nov 1;290(2):358-69 PubMed

Proc Natl Acad Sci U S A. 1990 Dec;87(24):9923-7 PubMed

J Cell Sci. 1995 Apr;108 ( Pt 4):1419-31 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

DNA Damage Changes Distribution Pattern and Levels of HP1 Protein Isoforms in the Nucleolus and Increases Phosphorylation of HP1β-Ser88

. 2019 Sep 17 ; 8 (9) : . [epub] 20190917

The level and distribution pattern of HP1β in the embryonic brain correspond to those of H3K9me1/me2 but not of H3K9me3

. 2016 Apr ; 145 (4) : 447-61. [epub] 20160121

Differentiation-independent fluctuation of pluripotency-related transcription factors and other epigenetic markers in embryonic stem cell colonies

. 2012 Mar 20 ; 21 (5) : 710-20. [epub] 20110708

Heterogeneity in the kinetics of nuclear proteins and trajectories of substructures associated with heterochromatin

. 2011 Mar 18 ; 4 () : 5. [epub] 20110318

A nonfitting method using a spatial sine window transform for inhomogeneous effective-diffusion measurements by FRAP

. 2011 Jan 19 ; 100 (2) : 507-16.

SUV39h-independent association of HP1 beta with fibrillarin-positive nucleolar regions

. 2010 Jun ; 119 (3) : 227-41. [epub] 20091223

Histone modifications and nuclear architecture: a review

. 2008 Aug ; 56 (8) : 711-21. [epub] 20080512

Single-cell c-myc gene expression in relationship to nuclear domains

. 2008 ; 16 (2) : 325-43. [epub] 20080307

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...