Differentiation-specific association of HP1alpha and HP1beta with chromocentres is correlated with clustering of TIF1beta at these sites
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Azacitidine analogs & derivatives pharmacology MeSH
- Cell Differentiation drug effects physiology MeSH
- Cell Nucleus metabolism MeSH
- Centromere metabolism MeSH
- Chromosomal Proteins, Non-Histone genetics metabolism MeSH
- Decitabine MeSH
- Chromobox Protein Homolog 5 MeSH
- Immunohistochemistry MeSH
- Enzyme Inhibitors pharmacology MeSH
- Histone Deacetylase Inhibitors MeSH
- Nuclear Proteins metabolism MeSH
- Microscopy, Confocal MeSH
- Hydroxamic Acids pharmacology MeSH
- DNA Methylation drug effects MeSH
- Cell Line, Tumor MeSH
- Protein Subunits genetics metabolism MeSH
- Recombinant Fusion Proteins genetics metabolism MeSH
- Signal Transduction drug effects MeSH
- Transcription Factors metabolism MeSH
- Blotting, Western MeSH
- Green Fluorescent Proteins genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Azacitidine MeSH
- Chromosomal Proteins, Non-Histone MeSH
- Decitabine MeSH
- Chromobox Protein Homolog 5 MeSH
- Enzyme Inhibitors MeSH
- Histone Deacetylase Inhibitors MeSH
- Nuclear Proteins MeSH
- Hydroxamic Acids MeSH
- Protein Subunits MeSH
- Recombinant Fusion Proteins MeSH
- transcriptional intermediary factor 1 MeSH Browser
- Transcription Factors MeSH
- trichostatin A MeSH Browser
- Green Fluorescent Proteins MeSH
Mammalian heterochromatin protein 1 (HP1alpha, HP1beta, HP1gamma subtypes) and transcriptional intermediary factor TIF1beta play an important role in the regulation of chromatin structure and function. Here, we investigated the nuclear arrangement of these proteins during differentiation of embryonal carcinoma P19 cells into primitive endoderm and into the neural pathway. Additionally, the differentiation potential of trichostatin A (TSA) and 5-deoxyazacytidine (5-dAzaC) was studied. In 70% of the cells from the neural pathway and in 20% of TSA-stimulated cells, HP1alpha and HP1beta co-localized and associated with chromocentres (clusters of centromeres), which correlated with clustering of TIF1beta at these heterochromatic regions. The cell types that we studied were also characterized by a pronounced focal distribution of HP1gamma. The above-mentioned nuclear patterns of HP1 and TIF1beta proteins were completely different from the nuclear patterns observed in the remaining cell types investigated, in which HP1alpha was associated with chromocentres while HP1beta and HP1gamma were largely localized in distinct nuclear regions. Moreover, a dispersed nuclear distribution of TIF1beta was observed. Our findings showed that the nuclear arrangement of HP1 subtypes and TIF1beta is differentiation specific, and seems to be more important than changes in the levels of these proteins, which were relatively stable during all the induced differentiation processes.
See more in PubMed
J Cell Sci. 2003 Aug 15;116(Pt 16):3327-38 PubMed
Genes Dev. 2004 Sep 1;18(17):2147-60 PubMed
Science. 1995 Sep 8;269(5229):1429-31 PubMed
Cytometry. 1999 Aug 1;36(4):279-93 PubMed
J Cell Sci. 1999 Oct;112 ( Pt 20):3443-54 PubMed
Methods Cell Sci. 2001;23(1-3):171-4 PubMed
EMBO Rep. 2005 Jun;6(6):520-4 PubMed
EMBO J. 1999 Nov 15;18(22):6385-95 PubMed
J Cell Sci. 2002 Sep 1;115(Pt 17):3439-48 PubMed
Biol Cell. 2006 Jun;98(6):323-36 PubMed
J Cell Sci. 2005 Nov 1;118(Pt 21):5035-46 PubMed
Curr Opin Cell Biol. 2001 Jun;13(3):263-73 PubMed
J Biochem. 1999 Apr;125(4):832-7 PubMed
Int J Dev Biol. 1993 Mar;37(1):135-40 PubMed
J Cell Biol. 1982 Aug;94(2):253-62 PubMed
Cytogenet Cell Genet. 1994;66(2):99-103 PubMed
Mol Cell. 2001 Apr;7(4):729-39 PubMed
Cell. 1997 Dec 12;91(6):845-54 PubMed
EMBO Rep. 2002 Oct;3(10):975-81 PubMed
J Leukoc Biol. 2005 Jan;77(1):100-11 PubMed
EMBO J. 2003 Oct 15;22(20):5540-50 PubMed
Mol Cell Biol. 1999 Jun;19(6):4366-78 PubMed
Exp Cell Res. 1998 Jul 10;242(1):303-14 PubMed
Stem Cells. 2004;22(2):225-35 PubMed
Chromosoma. 1999 Aug;108(4):220-34 PubMed
Mol Cell Biol. 2000 Sep;20(17):6449-65 PubMed
Mol Cell. 1999 Feb;3(2):207-17 PubMed
Nucleic Acids Res. 1995 Aug 25;23(16):3168-73 PubMed
Chromosoma. 2002 Mar;111(1):22-36 PubMed
Chromosome Res. 1999;7(4):261-5 PubMed
Physiol Res. 2005;54(1):115-22 PubMed
Philos Trans R Soc Lond B Biol Sci. 2002 Apr 29;357(1420):405-17 PubMed
Cell. 1998 May 1;93(3):321-4 PubMed
Mol Cell Biol. 2005 Jun;25(11):4552-64 PubMed
Nature. 2001 Mar 1;410(6824):120-4 PubMed
J Cell Sci. 2005 Sep 1;118(Pt 17):3861-8 PubMed
Proc Natl Acad Sci U S A. 2002 Dec 10;99 Suppl 4:16462-9 PubMed
Blood. 2000 Mar 1;95(5):1608-15 PubMed
Science. 2003 Jan 31;299(5607):721-5 PubMed
J Cell Sci. 2003 Jun 1;116(Pt 11):2117-24 PubMed
Curr Opin Genet Dev. 2000 Apr;10(2):204-10 PubMed
Chromosome Res. 2004;12(5):505-16 PubMed
Cytogenet Cell Genet. 1996;73(4):308-11 PubMed
Cytogenet Cell Genet. 2000;90(3-4):279-84 PubMed
Science. 2002 Mar 15;295(5562):2080-3 PubMed
Nat Cell Biol. 2001 Feb;3(2):114-20 PubMed
Exp Cell Res. 2003 Nov 1;290(2):358-69 PubMed
Proc Natl Acad Sci U S A. 1990 Dec;87(24):9923-7 PubMed
J Cell Sci. 1995 Apr;108 ( Pt 4):1419-31 PubMed
SUV39h-independent association of HP1 beta with fibrillarin-positive nucleolar regions
Histone modifications and nuclear architecture: a review
Single-cell c-myc gene expression in relationship to nuclear domains