Xenopus fraseri: Mr. Fraser, where did your frog come from?
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
31509539
PubMed Central
PMC6738922
DOI
10.1371/journal.pone.0220892
PII: PONE-D-19-18904
Knihovny.cz E-zdroje
- MeSH
- anatomické modely MeSH
- biodiverzita * MeSH
- fylogeneze MeSH
- genom mitochondriální MeSH
- genomika metody MeSH
- konzervovaná sekvence MeSH
- molekulární evoluce MeSH
- rentgenová mikrotomografie MeSH
- taxonomické DNA čárové kódování MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Xenopus anatomie a histologie klasifikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
A comprehensive, accurate, and revisable alpha taxonomy is crucial for biodiversity studies, but is challenging when data from reference specimens are difficult to collect or observe. However, recent technological advances can overcome some of these challenges. To illustrate this, we used modern approaches to tackle a centuries-old taxonomic enigma presented by Fraser's Clawed Frog, Xenopus fraseri, including whether X. fraseri is different from other species, and if so, where it is situated geographically and phylogenetically. To facilitate these inferences, we used high-resolution techniques to examine morphological variation, and we generated and analyzed complete mitochondrial genome sequences from all Xenopus species, including >150-year-old type specimens. Our results demonstrate that X. fraseri is indeed distinct from other species, firmly place this species within a phylogenetic context, and identify its minimal geographic distribution in northern Ghana and northern Cameroon. These data also permit novel phylogenetic resolution into this intensively studied and biomedically important group. Xenopus fraseri was formerly thought to be a rainforest endemic placed alongside species in the amieti species group; in fact this species occurs in arid habitat on the borderlands of the Sahel, and is the smallest member of the muelleri species group. This study illustrates that the taxonomic enigma of Fraser's frog was a combined consequence of sparse collection records, interspecies conservation and intraspecific polymorphism in external anatomy, and type specimens with unusual morphology.
Department of Biological Sciences University of Texas at El Paso El Paso United States of America
Department of Biology McMaster University Hamilton ON Canada
Department of Life Sciences The Natural History Museum London United Kingdom
Department of Zoology National Museum Prague Czech Republic
Florida Museum of Natural History University of Florida Gainesville FL United States of America
Forestry Research Institute of Ghana Kumasi Ghana
Institute of Vertebrate Biology of the Czech Academy of Sciences Czech Republic
Max Planck Institute for Evolutionary Anthropology Deutscher Platz Leipzig Germany
School of Biological Sciences University of Bristol Bristol United Kingdom
Zobrazit více v PubMed
Boulenger GA. On a collection of batrachians and reptiles made in South Africa by Mr. C. H. B. Grant, and presented to the British Museum by Mr. C. D. Rudd. Proceedings of the Zoological Society of London. 1905;1905:248–55.
Evans BJ, Carter TF, Greenbaum E, Gvoždík V, Kelley DB, McLaughlin PJ, et al. Genetics, morphology, adverstisement calls, and historical records distinguish six new polyploid species of African clawed frog (Xenopus, Pipidae) from West and Central Africa. PLoS One. 2015;10(12):e0142823 10.1371/journal.pone.0142823 PubMed DOI PMC
Kobel HR, Loumont C, Tinsley RC. The extant species In: Tinsley RC, Kobel HR, editors. The Biology of Xenopus. Oxford: Clarendon Press; 1996. p. 9–33.
Conlon JM, Mechkarska M, Kolodziejek J, Nowotny N, Coquet L, Leprince J, et al. Host-defense peptides from skin secretions of Fraser's clawed frog Xenopus fraseri (Pipidae): Further insight into the evolutionary history of the Xenopodinae. Comparative Biochemistry and Physiology, Part D Genomics Proteomics. 2014;12:45–52. 10.1016/j.cbd.2014.10.001 PubMed DOI
Evans BJ. Genome evolution and speciation genetics of allopolyploid clawed frogs (Xenopus and Silurana). Front Biosci. 2008;13:4687–706. PubMed
Evans BJ, Carter TF, Hanner R, Tobias ML, Kelley DB, Hanner R, et al. A new species of clawed frog (genus Xenopus), from the Itombwe Plateau, Democratic Republic of the Congo: Implications for DNA barcodes and biodiversity conservation. Zootaxa. 2008;1780:55–68.
Evans BJ, Greenbaum E, Kusamba C, Carter TF, Tobias ML, Mendel SA, et al. Description of a new octoploid frog species (Anura: Pipidae: Xenopus) from the Democratic Republic of the Congo, with a discussion of the biogeography of African clawed frogs in the Albertine Rift. J Zool, Lond. 2011;283:276–90. PubMed PMC
Evans BJ, Kelley DB, Tinsley RC, Melnick DJ, Cannatella DC. A mitochondrial DNA phylogeny of clawed frogs: Phylogeography on sub-Saharan Africa and implications for polyploid evolution. Mol Phylogenet Evol. 2004;33:197–213. PubMed
Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, et al. Genome evolution in the allotetraploid frog Xenopus laevis. Nature. 2016;538(7625):336–43. 10.1038/nature19840 PubMed DOI PMC
Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kaptonov V, et al. The genome of the western clawed frog Xenopus tropicalis. Science. 2010;328:633–6. 10.1126/science.1183670 PubMed DOI PMC
Tandon P, Conlon F, Furlow JD, Horb ME. Expanding the genetic toolkit in Xenopus: Approaches and opportunities for human disease modeling. Dev Biol. 2016;426(2):325–35. 10.1016/j.ydbio.2016.04.009 . PubMed DOI PMC
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52. 10.1038/nbt.1883 PubMed DOI PMC
Katoh K, Standley SM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. MBE. 2013;30:772–80. PubMed PMC
Minh BQ, Nguyen MA, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 2013;30(5):1188–95. 10.1093/molbev/mst024 PubMed DOI PMC
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–74. 10.1093/molbev/msu300 PubMed DOI PMC
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. MBE. 2012;29:1969–73. PubMed PMC
Feng YJ, Blackburn DC, Liang D, Hillis DM, Wake DB, Cannatella DC, et al. Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous-Paleogene boundary. PNAS. 2017;114(29):E5864–E70. 10.1073/pnas.1704632114 PubMed DOI PMC
Rambaut A, Drummond AJ. Tracer v1.5, Available from http://beast.bio.ed.ac.uk/Tracer. 2007.
Haramoto Y, Oshima T, Takahashi S, Asashima M, Ito Y, Kurabayashi A. Complete mitochondrial genome of “Xenopus tropicalis” Asashima line (Anura: Pipidae), a possible undescribed species. Mitochondrial DNA. 2016;6(27):3341–3. PubMed
Evans BJ, Cannatella DC, Melnick DJ. Understanding the origins of areas of endemism in phylogeographic analyses: a reply to Bridle et al. Evolution. 2004;58(6):1397–400.
Evans BJ, Kelley DB, Melnick DJ, Cannatella DC. Evolution of RAG-1 in polyploid clawed frogs. MBE. 2005;22(5):1193–207. PubMed
Irwin DE. Phylogeographic breaks without geographic barriers to gene flow. Evolution. 2002;56(12):2383–94. PubMed
Furman BL, Bewick AJ, Harrison TL, Greenbaum E, Gvozdik V, Kusamba C, et al. Pan-African phylogeography of a model organism, the African clawed frog 'Xenopus laevis'. Mol Ecol. 2015;24(4):909–25. 10.1111/mec.13076 . PubMed DOI
Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winkley K, et al. Cryptic species as a window on diversity and conservation. TREE. 2006;22(3):148–55. PubMed
Furman BLS, Evans BJ. Sequential turnovers of sex chromosomes in African clawed frogs (Xenopus) suggest some genomic regions are good at sex determination. G3. 2016;6:3625–33. 10.1534/g3.116.033423 PubMed DOI PMC
Yoshimoto S, Okada E, Umemoto H, Tamura K, Uno Y, Nishida-Umehara C, et al. A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. PNAS. 2008;105(7):2469–74. 10.1073/pnas.0712244105 PubMed DOI PMC
Bewick AJ, Anderson DW, Evans BJ. Evolution of the closely related, sex-related genes DM-W and DMRT1 in African clawed frogs (Xenopus). Evolution. 2011;65(3):698–712. 10.1111/j.1558-5646.2010.01163.x PubMed DOI
Tinsley RC, Loumont C, Kobel HR. Geographical distribution and ecology In: Tinsley RC, Kobel HR, editors. The Biology of Xenopus. Oxford: Clarendon Press; 1996. p. 35–59.