Natural repeated backcrosses lead to triploidy and tetraploidy in parthenogenetic butterfly lizards (Leiolepis: Agamidae)
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
22-14-00227
Russian Science Foundation
22-14-00227
Russian Science Foundation
22-14-00227
Russian Science Foundation
22-14-00227
Russian Science Foundation
22-14-00227
Russian Science Foundation
22-14-00227
Russian Science Foundation
23-07665S
Grantová Agentura České Republiky
23-07665S
Grantová Agentura České Republiky
23-07665S
Grantová Agentura České Republiky
23-07665S
Grantová Agentura České Republiky
0092-2022-0002
Vavilov Institute of General Genetics state assignment contracts
PubMed
39856096
PubMed Central
PMC11760361
DOI
10.1038/s41598-024-83300-y
PII: 10.1038/s41598-024-83300-y
Knihovny.cz E-zdroje
- Klíčová slova
- Leiolepis, Hybridisation, Meiosis, Parthenogenesis, Tetraploidy, Vietnam,
- MeSH
- hybridizace genetická MeSH
- ještěři * genetika MeSH
- mitochondriální DNA genetika MeSH
- partenogeneze * genetika MeSH
- tetraploidie * MeSH
- triploidie * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mitochondriální DNA MeSH
Obligatory parthenogenesis in vertebrates is restricted to squamate reptiles and evolved through hybridisation. Parthenogens can hybridise with sexual species, resulting in individuals with increased ploidy levels. We describe two successive hybridisations of the parthenogenetic butterfly lizards (genus Leiolepis) in Vietnam with a parental sexual species. Contrary to previous proposals, we document that parthenogenetic L. guentherpetersi has mitochondrial DNA and two haploid sets from L. guttata and one from L. reevesii, suggesting that it is the result of a backcross of a parthenogenetic L. guttata × L. reevesii hybrid with a L. guttata male increasing ploidy from 2n to 3n. Within the range of L. guentherpetersi, we found an adult tetraploid male with three L. guttata and one L. reevesii haploid genomes. It probably originated from fertilisation of an unreduced triploid L. guentherpetersi egg by a L. guttata sperm. Although its external morphology resembles that of the maternal species, it possessed exceptionally large erythrocytes and was likely sterile. As increased ploidy level above triploidy or tetraploidy appears to be harmful for amniotes, all-female asexual lineages should evolve a strategy to prevent incorporation of other haploid genomes from a sexual species by avoiding fertilisation by sexual males.
Department of Ecology Faculty of Science Charles University Viničná 7 Prague 128 44 Czech Republic
Department of Zoology Biological Faculty of Yerevan State University Charents st 8 Yerevan Armenia
Lomonosov Moscow State University Kolmogorova st 1 Moscow Russia
Vavilov Institute of General Genetics of the Russian Academy of Sciences Gubkin St 3 Moscow Russia
Vietnam Academy of Science and Technology Hanoi Vietnam
Zoological Institute Russian Academy of Sciences Universitetskaya nab 1 St Petersburg 199034 Russia
Zoological Museum of Moscow State University B Nikitskaya ul 2 Moscow 125009 Russia
Zobrazit více v PubMed
Kearney, M., Fujita, M. K. & Ridenour, J. Lost sex in reptiles: Constraints and correlations. In Lost Sex: The Evolutionary Biology of Parthenogenesis (eds Schön, I. et al.) 447–474 (Springer Scientific, 2009). 10.1007/978-90-481-2770-2_21.
Fyon, F., Berbel-Filho, W. M., Schlupp, I., Wild, G. & Úbeda, F. Why do hybrids turn down sex? Evolution77, 2186–2199. 10.1093/evolut/qpad129 (2023). PubMed
Sinclair, E. A., Pramuk, J. B., Bezy, R. L., Crandall, K. A. & Sites, J. W. Jr. DNA evidence for nonhybrid origins of parthenogenesis in natural populations of vertebrates. Evolution64, 1346–1357. 10.1111/j.1558-5646.2009.00893.x (2010). PubMed
Shimizu, Y., Shibata, N., Sakaizumi, M. & Yamashita, M. Production of diploid eggs through premeiotic endomitosis in the hybrid medaka between Oryzias latipes and O. curvinotus. Zool. Sci.17, 951–958. 10.2108/zsj.17.951 (2000).
Marta, A. et al. Genetic and karyotype divergence between parents affect clonality and sterility in hybrids. eLife12, RP88366. 10.7554/eLife.88366.3 (2023). PubMed PMC
Wright, J. W. & Lowe, C. H. Weeds, polyploids, parthenogenesis, and the geographical and ecological distribution of all-female species of Cnemidophorus. Copeia1968, 128–138. 10.2307/1441559 (1968).
Billy, A. J. Why do parthenogenetic lizards hybridize with sympatric bisexual relatives? Evol. Theory9, 225–238 (1990).
Paulissen, M. A., Walker, J. M. & Cordes, J. E. Status of the parthenogenetic lizards of the Cnemidophorus laredoensis complex in Texas: Re-survey after eleven years. Tex. J. Sci.53, 121–138 (2001).
Petrosyan, V. G. et al. New records and geographic distribution of the sympatric zones of unisexual and bisexual rock lizards of the genus Darevskia in Armenia and adjacent territories. Biodivers. Data J.8, e56030. 10.3897/BDJ.8.e56030 (2020). PubMed PMC
Tarkhnishvili, D., Gavashelishvili, A., Avaliani, A., Murtskhvaladze, M. & Mumladze, L. Unisexual rock lizard might be outcompeting its bisexual progenitors in the Caucasus. Biol. J. Linn. Soc.101, 447–460. 10.1111/j.1095-8312.2010.01498.x (2010).
Darevsky, I. S., Kupriyanova, L. A. & Uzzell, T. Parthenogenesis in reptiles. In Evolution and Ecology of Unisexual Vertebrates (eds Dawley, R. M. & Bogart, J. P.) (The New York State Museum, Albany, 1985).
Danielyan, F., Arakelyan, M. & Stepanyan, I. Hybrids of Darevskia valentini, D. armeniaca and D. unisexualis from a sympatric population in Armenia. Amphib. -Reptil29, 487–504. 10.1163/156853808786230424 (2008).
Dawley, R. M. & Bogart, J. P. Evolution and ecology of unisexual vertebrates. N. Y. State Mus. Bull.466, 1–302 (1989).
Lamatsch, D. K. & Stöck, M. Sperm-dependent parthenogenesis and hybridogenesis in teleost fishes. In Lost Sex: The Evolutionary Biology of Parthenogenesis (eds Schön, I. et al.) 399–432 (Springer Scientific, 2009). 10.1007/978-90-481-2770-2_19.
Stöck, M. et al. A brief review of vertebrate sex evolution with a pledge for integrative research: Towards ‘sexomics’. Philos. Trans. R Soc. Lond. B Biol. Sci.376, 20200426. 10.1098/rstb.2020.0426 (2021). PubMed PMC
Dedukh, D. et al. A cyclical switch of gametogenic pathways in hybrids depends on the ploidy level. Commun. Biol.7, 424. 10.1038/s42003-024-05948-6 (2024). PubMed PMC
Lampert, K. P. Facultative parthenogenesis in vertebrates: Reproductive error or chance? Sex. Dev.2, 290–301. 10.1159/000195678 (2009). PubMed
Moritz, C. The origin and evolution of parthenogenesis in Heteronotia binoei (Gekkonidae). Chromosoma89, 151–162. 10.1007/BF00292899 (1984).
Kluge, A. G. Hemidactylus garnotii Duméril and Bibron, a triploid all-female species of gekkonid lizard. Copeia1969, 651–664. 10.2307/1441789 (1969).
Adams, M., Foster, R., Hutchinson, M. N., Hutchinson, R. G. & Donnellan, S. C. The Australian scincid lizard Menetia greyii: A new instance of widespread vertebrate parthenogenesis. Evolution57, 2619–2627. 10.1111/j.0014-3820.2003.tb01504.x (2003). PubMed
Lowe, C. H. & Wright, J. W. Evolution of parthenogenetic species of Cnemidophorus (whiptail lizards) in western North America. J. Ariz Acad. Sci.4, 81–87 (1966).
Cole, C. J., Dessauer, H. C. & Barrowclough, G. F. Hybrid origin of a unisexual species of whiptail lizard, Cnemidophorus neomexicanus, in western North America: New evidence and a review. Am. Mus. Nov.2905, 1–38 (1988).
Avila, L. J. & Martori, R. A. A unisexual species of Teius Merrem 1820 (Sauria Teiidae) from central Argentina. Trop. Zool.4, 193–201. 10.1080/03946975.1991.10539489 (1991).
Cole, C. J., Dessauer, H. C. & Markezich, A. L. Missing link found: The second ancestor of Gymnophthalmus underwoodi (Squamata: Teiidae), a South American unisexual lizard of hybrid origin. Am. Mus. Nov.3055, 1–13 (1993).
Kizirian, D. A. & Cole, C. J. Origin of the unisexual lizard Gymnophthalmus underwoodi (Gymnophthalmidae) inferred from mitochondrial DNA nucleotide sequences. Mol. Phylogenet. Evol.11, 394–400. 10.1006/mpev.1998.0591 (1999). PubMed
Darevsky, I. S. Rock Lizards of the Caucasus (Smithsonian Institution and the National Science Foundation, Washington, 1978).
Abdala, C. S., Baldo, D., Juárez, R. A. & Espinoza, R. E. The first parthenogenetic pleurodont iguanian: A new all-female Liolaemus (Squamata: Liolaemidae) from Western Argentina. Copeia104, 487–497. 10.1643/CH-15-381 (2016).
Darevsky, I. S. & Kupriyanova, L. A. Two new all-female lizard species of the genus Leiolepis Cuvier, 1829 from Thailand and Vietnam (Squamata: Sauria: Uromastycinae). Herpetozoa6, 3–20 (1993).
Nussbaum, R. The Brahminy blind snake (Ramphotyphlops braminus) in the Seychelles archipelago: Distribution, variation, and further evidence for parthenogenesis. Herpetologica36, 215–221 (1980).
Moritz, C. & Bi, K. Spontaneous speciation by ploidy elevation: Laboratory synthesis of a new clonal vertebrate. Proc. Natl. Acad. Sci. U S A108, 9733–9734. 10.1073/pnas.1106455108 (2011). PubMed PMC
Galoyan, E. A. et al. Love bites: Males of lizards prefer to mate with conspecifics, but do not disdain parthenogens. Biol. J. Linn. Soc.10.1093/biolinnean/blae057 (2024) (in Press).
Darevsky, I. S. & Danielyan, F. D. Diploid and triploid progeny arising from natural mating of parthenogenetic Lacerta armeniaca and L. unisexualis with bisexual L. saxicola valentini. J. Herpetol.2, 65–69. 10.2307/1563104 (1968).
Grismer, J. L. et al. Multiple origins of parthenogenesis, and a revised species phylogeny for the Southeast Asian butterfly lizards, Leiolepis. Biol. J. Linn. Soc.113, 1080–1093. 10.1111/bij.12367 (2014).
Trifonov, V. A. et al. Comparative chromosome painting and NOR distribution suggest a complex hybrid origin of triploid Lepidodactylus lugubris (Gekkonidae). PLoS ONE10, e0132380. 10.1371/journal.pone.0132380 (2015). PubMed PMC
Barley, A. J., Nieto-Montes de Oca, A., Manríquez-Morán, N. L. & Thomson, R. C. The evolutionary network of whiptail lizards reveals predictable outcomes of hybridization. Science377, 773–777. 10.1126/science.abn1593 (2022). PubMed
Neaves, W. B. Tetraploidy in a hybrid lizard of the genus Cnemidophorus (Teiidae). Breviora381, 1–25 (1971).
Lutes, A. A., Baumann, D. P., Neaves, W. B. & Baumann, P. Laboratory synthesis of an independently reproducing vertebrate species. Proc. Natl. Acad. Sci. USA108, 9910–9915. 10.1073/pnas.1102811108 (2011). PubMed PMC
Cole, C. J. et al. The second known tetraploid species of parthenogenetic tetrapod (Reptilia: Squamata: Teiidae): Description, reproduction, comparisons with ancestral taxa, and origins of multiple clones. Bull. Mus. Comp. Zool.161, 285–321. 10.3099/MCZ37.1 (2017).
Cole, C. J., Taylor, H. L., Baumann, D. P. & Baumann, P. Neaves’ whiptail lizard: The first known tetraploid parthenogenetic tetrapod (Reptilia: Squamata: Teiidae). Breviora539, 1–20. 10.3099/MCZ17.1 (2014).
Maciak, S. et al. Standard Metabolic Rate (SMR) is inversely related to erythrocyte and genome size in allopolyploid fish of the Cobitis taenia hybrid complex. Funct. Ecol.25, 1072–1078. 10.1111/j.1365-2435.2011.01870.x (2011).
Cadart, C., Bartz, J., Oaks, G., Liu, M. Z. & Heald, R. Polyploidy in Xenopus lowers metabolic rate by decreasing total cell surface area. Curr. Biol.33, 1744-1752e7. 10.1016/j.cub.2023.03.071 (2023). PubMed PMC
Tarkhnishvili, D. & Iankoshvili, G. The farther, the closer: Geographic proximity and niche overlap versus genetic divergence in Caucasian rock lizards. Biol. J. Linn. Soc.140, 41–57. 10.1093/biolinnean/blad034 (2023).
Galoyan, E. A., Tsellarius, E. Y. & Arakelyan, M. S. Friend-or-foe? Behavioural evidence suggests interspecific discrimination leading to low probability of hybridization in two coexisting rock lizard species (Lacertidae, Darevskia). Behav. Ecol. Sociobiol.73, 46. 10.1007/s00265-019-2650-7 (2019).
Cuellar, O. Reproduction and the mechanism of meiotic restitution in the parthenogenetic lizard Cnemidophorus uniparens. J. Morphol.133, 139–165 (1971). PubMed
Case, T. J. Patterns of coexistence in sexual and asexual species of Cnemidophorus lizards. Oecologia83, 220–227 (1990). PubMed
Paulissen, M. A., Walker, J. M. & Cordes, J. E. Can parthenogenetic Cnemidophorus laredoensis (Teiidae) coexist with its bisexual congeners? J. Herpetol.26, 153–158. 10.2307/1564856 (1992).
Cacciali, P., Morando, M., Köhler, G. & Avila, L. On the distribution of the genus Teius Merrem, 1820 (Reptilia: Squamata: Teiidae). Zootaxa4136, 491–514. 10.11646/zootaxa.4136.3.4 (2016). PubMed
Hall, W. P. Three probable cases of parthenogenesis in lizards (Agamidae, Chameleonidae, Gekkonidae). Experientia26, 1271–1273. 10.1007/BF01898012 (1970). PubMed
Grismer, J. L. & Grismer, L. L. Who’s your mommy? Identifying maternal ancestors of unisexual species of Leiolepis Cuvier, 1829 and the description of a new endemic species of unisexual Leiolepis Cuvier, 1829 from southern Vietnam. Zootaxa2433, 47–61. 10.11646/zootaxa.2433.1.3 (2010).
Uetz, P. et al. The Reptile Database (2024). http://www.reptile-database.org, accessed October 28.
de Queiroz, A., Lawson, R. & Lemos-Espinal, J. A. Phylogenetic relationships of North American garter snakes (Thamnophis) based on four mitochondrial genes: How much DNA sequence is enough? Mol. Phylogenet. Evol.22, 315–329. 10.1006/mpev.2001.1074 (2002). PubMed
Burbrink, F. T., Lawson, R. & Slowinski, J. B. Mitochondrial DNA phylogeography of the polytypic North American rat snake (Elaphe obsoleta): A critique of the subspecies concept. Evolution54, 2107–2118. https://doi.org/10.1554/0014-3820(2000)054[2107:MDPOTP]2.0.CO;2 (2000). PubMed
Lin, L. H., Ji, X., Diong, C. H., Du, Y. & Lin, C. X. Phylogeography and population structure of the Reevese’s butterfly lizard (Leiolepis reevesii) inferred from mitochondrial DNA sequences. Mol. Phylogenet. Evol.56, 601–607. 10.1016/j.ympev.2010.04.032 (2010). PubMed
Okonechnikov, K., Golosova, O. & Fursov, M. the UGENE team. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics28, 1166–1167. 10.1093/bioinformatics/bts091 (2012). PubMed
Okajima, Y. & Kumazawa, Y. Mitochondrial genomes of acrodont lizards: Timing of gene rearrangements and phylogenetic and biogeographic implications. BMC Evol. Biol.10, 1–15. 10.1186/1471-2148-10-141 (2010). PubMed PMC
Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol.32, 268–274. 10.1093/molbev/msu300 (2015). PubMed PMC
Minh, B. Q., Nguyen, M. A. T. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol.30, 1188–1195. 10.1093/molbev/mst024 (2013). PubMed PMC
Kalyaanamoorthy, S. et al. Fast model selection for accurate phylogenetic estimates. Nat. Methods14, 587–589. 10.1038/nmeth.4285 (2017). PubMed PMC
Lanfear, R., Calcott, B., Ho, S. Y. W. & Guindon, S. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol.29, 1695–1701. 10.1093/molbev/mss020 (2012). PubMed
Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics19, 1572–1574. 10.1093/bioinformatics/btg180 (2003). PubMed
Rambaut, A., Drummond, A. J. & Suchard, M. Tracer v1.7.1 (2007). http://beast.bio.ed.ac.uk/Tracer.
Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogeny. Bioinformatics17, 754–755. 10.1093/bioinformatics/17.8.754 (2001). PubMed
Tamura, K., Stecher, G. & Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol.38, 3022–3027. 10.1093/molbev/msab120 (2021). PubMed PMC
Meyer, D., Zeileis, A., Hornik, K. & Vcd Visualizing Categorical Data. R Package Version 1.4-4. (2017).
Kassambara, A. Factoextra: extract and visualize the results of multivariate data analyses. R package version 1.0.7. (2020). https://CRAN.R-project.org/package=factoextra
Wickham, H. In Data Analysis in ggplot2: Elegant Graphics for Data Analysis. 189–201 (eds Wickham, H.) (Springer, 2016). 10.1007/978-3-319-24277-4_9
Wright, J. H. A rapid method for the differential staining of blood films and malarial parasites. J. Med. Res.7, 138–144 (1902). PubMed PMC
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. ImerTest package: Tests in linear mixed effects models. J. Stat. Softw.82, 1–26. 10.18637/jss.v082.i13 (2017).
Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Package “Emmeans”. R Package Version 4.0–3. (2018).
Kassambara, A. ggpubr:’ggplot2’based publication ready plots. R package version 2. (2018). http://cran.r-project.org/package=emmeans
Ford, C. E. & Hamerton, J. L. A colchicine, hypotonic citrate, squash sequence for mammalian chromosomes. Stain Technol.31, 247–251. 10.3109/10520295609113814 (1956). PubMed
Altmanová, M. et al. Karyotype stasis but species-specific repetitive DNA patterns in Anguis lizards (Squamata: Anguidae), in the evolutionary framework of Anguiformes. Zool. J. Linn. Soc.202, zlad153. 10.1093/zoolinnean/zlad153 (2024).
Peters, A., Plug, A. W., Van Vugt, M. J. & De Boer, P. A drying-down technique for the spreading of mammalian meiocytes from the male and female germline. Chromosome Res.5, 66–68. 10.1023/a:1018445520117 (1997). PubMed
Anderson, L. K., Reeves, A., Webb, L. M. & Ashley, T. Distribution of crossing over on mouse synaptonemal complexes using immunofluorescent localization of MLH1 protein. Genetics151, 1569–1579. 10.1093/genetics/151.4.1569 (1999). PubMed PMC
Moritz, C. Parthenogenesis in the tropical gekkonid lizard, Nactus arnouxii (Sauria: Gekkonidae). Evolution41, 1252–1266. 10.2307/2409091 (1987). PubMed
Ota, H., Hikida, T. & Lue, K. Y. Polyclony in a triploid gecko, Hemidactylus stejnegeri, from Taiwan, with notes on its bearing on the chromosomal diversity of the H. garnotii-vietnamensis complex (Sauria: Gekkonidae). Genetica79, 183–189. 10.1007/BF00121511 (1989).
Dedukh, D., Altmanová, M., Klíma, J. & Kratochvíl, L. Premeiotic endoreplication is essential for obligate parthenogenesis in geckos. Development149, dev200345. 10.1242/dev.200345 (2022). PubMed
Reeder, T. W., Cole, C. J. & Dessauer, H. C. Phylogenetic relationships of whiptail lizards of the genus Cnemidophorus (Squamata: Teiidae): a test of monophyly, reevaluation of karyotypic evolution, and review of hybrid origins. Am. Mus. Nov.3365, 1–61. https://doi.org/10.1206/0003-0082(2002)365<0001:PROWLO>2.0.CO;2 (2002).
Brunes, T. O., da Silva, A. J., Marques-Souza, S., Rodrigues, M. T. & Pellegrino, K. C. M. Not always young: The first vertebrate ancient origin of true parthenogenesis found in an Amazon leaf litter lizard with evidence of mitochondrial haplotypes surfing on the wave of a range expansion. Mol. Phylogenet. Evol.135, 105–122. 10.1016/j.ympev.2019.01.023 (2019). PubMed
Wynn, A. H., Cole, C. J. & Gardner, A. L. Apparent triploidy in the unisexual Brahminy blind snake, Ramphotyphlops braminus. Am. Mus. Nov.2868, 1–7 (1987).
Schuett, G. W. et al. Production of offspring in the absence of males: Evidence for facultative parthenogenesis in bisexual snakes. Herpetol. Nat. Hist.5, 1–10 (1997).
Ho, D. V. et al. Post-meiotic mechanism of facultative parthenogenesis in gonochoristic whiptail lizard species. eLife7, e97035. 10.7554/eLife.97035 (2024). PubMed PMC
Kratochvíl, L. et al. Mixed-sex offspring produced via cryptic parthenogenesis in a lizard. Mol. Ecol.29, 4118–4127. 10.1111/mec.15617 (2020). PubMed
Lutes, A. A., Neaves, W. B., Baumann, D. P., Wiegraebe, W. & Baumann, P. Sister chromosome pairing maintains heterozygosity in parthenogenetic lizards. Nature464, 283–286. 10.1038/nature08818 (2010). PubMed PMC
Spangenberg, V. et al. Reticulate evolution of the rock lizards: meiotic chromosome dynamics and spermatogenesis in diploid and triploid males of the genus Darevskia. Genes8, 149. 10.3390/genes8060149 (2017). PubMed PMC
Taylor, H. L. et al. Natural hybridization between the teiid lizards Cnemidophorus tesselatus (parthenogenetic) and C. tigris marmoratus (bisexual): Assessment of evolutionary alternatives. Am. Mus. Novit.3345, 1–65. https://doi.org/10.1206/0003-0082(2001)345<0001:NHBTTL>2.0.CO;2 (2001).
L Taylor, H. Comparison of morphological variation among parthenogenetic Aspidoscelis neomexicana, gonochoristic A. sexlineata viridis, and their hybrids (Squamata: Teiidae) from Ute Lake and Conchas Lake, northeastern New Mexico. Southwest. Nat.59, 251–257 (2014).
Manning, G. J., Walker, J. M. & Walker, J. M. Hybridization between normally parthenogenetic Aspidoscelis tesselata and gonochoristic A. sexlineata viridis (Squamata: Teiidae) at Ft. Sumner, De Baca Co., New Mexico. Am. Midl. Nat.155, 411–416 (2006).
Manning, G. J., Cole, C. J., Dessauer, H. C. & Walker, J. M. Hybridization between parthenogenetic lizards (Aspidoscelis neomexicana) and gonochoristic (Aspidoscelis sexlineata viridis) in New Mexico: Ecological, morphological, cytological, and molecular context. Am. Mus. Novit.2005, 1–56. 10.1206/0003-0082(2005)492[0001:HBPLAN]2.0.CO;2 (2005).
Tarkhnishvili, D. et al. Genotypic similarities among the parthenogenetic Darevskia rock lizards with different hybrid origins. BMC Evol. Biol.20, 122. 10.1186/s12862-020-01690-9 (2020). PubMed PMC
Lowe, C. H., Wright, J. W., Cole, C. J. & Bezy, R. L. Natural hybridization between the teiid lizards Cnemidophorus sonorae (parthenogenetic) and Cnemidophorus tigris (bisexual). Syst. Zool.19, 114–127 (1970).
Cole, C. J., Dessauer, H. C., Paulissen, M. A. & Walker, J. M. Hybridization between whiptail lizards in Texas: Aspidoscelis laredoensis and A. gularis, with notes on reproduction of a hybrid. Am. Mus. Nov.3947, 1–13. 10.1206/3947.1 (2020).
Lebeda, I., Ráb, P., Majtánová, Z. & Flajšhans, M. Artificial whole genome duplication in paleopolyploid sturgeons yields highest documented chromosome number in vertebrates. Sci. Rep.10, 19705. 10.1038/s41598-020-76680-4 (2020). PubMed PMC
Gallardo, M., Bickham, J., Honeycutt, R., Ojeda, R. A. & Köhler, N. Discovery of tetraploidy in a mammal. Nature401, 341. 10.1038/43815 (1999). PubMed
Mares, M. A., Braun, J. K., Bárquez, R. M. & Díaz, M. M. Two new genera and species of halophytic desert mammals from isolated salt flats in Argentina. Occas. Pap. Mus. Tex. Tech. Univ.203, 1–27. 10.5962/bhl.title.147045 (2000).
Rovatsos, M. et al. Triploid colubrid snake provides insight into the mechanism of sex determination in advanced snakes. Sex. Dev.12, 251–255. 10.1159/000490124 (2018). PubMed
Iannucci, A. et al. Conserved sex chromosomes and karyotype evolution in monitor lizards (Varanidae). Heredity123, 215–227. 10.1038/s41437-018-0179-6 (2019). PubMed PMC
Pensabene, E., Augstenová, B., Kratochvíl, L. & Rovatsos, M. Differentiated sex chromosomes, karyotype evolution, and spontaneous triploidy in carphodactylid geckos. J. Hered.115, 262–276. 10.1093/jhered/esae010 (2024). PubMed
Bickham, J. W., Tucker, P. K. & Legler, J. M. Diploid-triploid mosaicism: An unusual phenomenon in side-necked turtles (Platemys platycephala). Science227, 1591–1593. 10.1126/science.227.4694.1591 (1985). PubMed
Araya-Donoso, R., Véliz, D., Vidal, M. & Lamborot, M. Relationships of the morphological variation in diploids, triploids and mosaics of Liolaemus chiliensis (Sauria: Liolaemidae). Amphib. -Reptil38, 503–515. 10.1163/15685381-00003132 (2017).
Hardy, L. M. & Cole, C. J. Morphology of a sterile, tetraploid, hybrid whiptail lizard (Squamata, Teiidae, Cnemidophorus). Am. Mus. Nov.3228, 1–16 (1998).
Starostová, Z., Kubička, L., Konarzewski, M., Kozłowski, J. & Kratochvíl, L. Cell size but not genome size affects scaling of metabolic rate in eyelid geckos. Am. Nat.174, E100–E105. 10.1086/603610 (2009). PubMed
Morgan-Richards, M., Langton-Myers, S. S. & Trewick, S. A. Loss and gain of sexual reproduction in the same stick insect. Mol. Ecol.28, 3929–3941. 10.1111/mec.15203 (2019). PubMed PMC
Schwander, T., J Crespi, B., Gries, R. & Gries, G. Neutral and selection-driven decay of sexual traits in asexual stick insects. Proc. Biol. Sci.280, 20130823. 10.1098/rspb.2013.0823 (2013). PubMed PMC
Lodé, T. Have sex or not? Lessons from bacteria. Sex. Dev.6, 325–328. 10.1159/000342879 (2012). PubMed