Cell size but not genome size affects scaling of metabolic rate in eyelid geckos
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
19604072
DOI
10.1086/603610
Knihovny.cz E-zdroje
- MeSH
- ekosystém * MeSH
- genom MeSH
- ještěři metabolismus MeSH
- velikost buňky * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The metabolic theory of ecology (MTE) predicts the ubiquity of the of 3/4 scaling exponent relating metabolic rate (MR) to body mass, as well as cell-size invariance coupled with body-size dependence of cellular MR in quickly dividing cells. An alternative prediction is that MR scales interspecifically with a coefficient that is between 2/3 and 1, depending on the cell size and cell MR, which is mostly driven by the cell surface-to-volume ratio. We tested (1) the contribution of cell size to interspecific differences in MR and (2) whether the cell size-MR relationship is mediated by genome size (GS), which usually correlates positively with cell size. We tested (1) and (2) using erythrocyte area as a proxy for cell size in 14 eyelid geckos, which belong to a monophyletic group exhibiting large body-size variation. The scaling of standard MR (SMR) was significantly lower than 3/4, whereas mass-specific SMR correlated with erythrocyte area in both phylogenetically adjusted and conventional analyses. This points to cell-size variation as the factor governing metabolic rate scaling, which questions predictions of the MTE. However, the nonsignificance of the correlation between mass-specific SMR and GS undermines the strength of the relation between GS and cell size, at least in these species.
Citace poskytuje Crossref.org
Ontogeny of metabolic rate and red blood cell size in eyelid geckos: species follow different paths