Effects of thermal and oxygen conditions during development on cell size in the common rough woodlice Porcellio scaber

. 2020 Sep ; 10 (17) : 9552-9566. [epub] 20200818

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32953083

During development, cells may adjust their size to balance between the tissue metabolic demand and the oxygen and resource supply: Small cells may effectively absorb oxygen and nutrients, but the relatively large area of the plasma membrane requires costly maintenance. Consequently, warm and hypoxic environments should favor ectotherms with small cells to meet increased metabolic demand by oxygen supply. To test these predictions, we compared cell size (hindgut epithelium, hepatopancreas B cells, ommatidia) in common rough woodlice (Porcellio scaber) that were developed under four developmental conditions designated by two temperatures (15 or 22°C) and two air O2 concentrations (10% or 22%). To test whether small-cell woodlice cope better under increased metabolic demand, the CO2 production of each woodlouse was measured under cold, normoxic conditions and under warm, hypoxic conditions, and the magnitude of metabolic increase (MMI) was calculated. Cell sizes were highly intercorrelated, indicative of organism-wide mechanisms of cell cycle control. Cell size differences among woodlice were largely linked with body size changes (larger cells in larger woodlice) and to a lesser degree with oxygen conditions (development of smaller cells under hypoxia), but not with temperature. Developmental conditions did not affect MMI, and contrary to predictions, large woodlice with large cells showed higher MMI than small woodlice with small cells. We also observed complex patterns of sexual difference in the size of hepatopancreatic cells and the size and number of ommatidia, which are indicative of sex differences in reproductive biology. We conclude that existing theories about the adaptiveness of cell size do not satisfactorily explain the patterns in cell size and metabolic performance observed here in P. scaber. Thus, future studies addressing physiological effects of cell size variance should simultaneously consider different organismal elements that can be involved in sustaining the metabolic demands of tissue, such as the characteristics of gas-exchange organs and O2-binding proteins.

Zobrazit více v PubMed

Adrian, G. J. , Czarnoleski, M. , & Angilletta, M. J. (2016). Flies evolved small bodies and cells at high or fluctuating temperatures. Ecology and Evolution, 6, 7991–7996. 10.1002/ece3.2534 PubMed DOI PMC

Antoł, A. , & Czarnoleski, M. (2018). Size dependence of offspring production in isopods: A synthesis. ZooKeys, 801, 337–357. 10.3897/zookeys.801.23677 PubMed DOI PMC

Antoł, A. , Labecka, A. M. , Horváthová, T. , Zieliński, B. , Szabla, N. , Vasko, Y. , … Czarnoleski, M. (2020). Thermal and oxygen conditions during development cause common rough woodlice (Porcellio scaber) to alter the size of their gas‐exchange organs. Journal of Thermal Biology, 90, 102600 10.1016/j.jtherbio.2020.102600 PubMed DOI

Antoł, A. , Rojek, W. , Singh, S. , Piekarski, D. , & Czarnoleski, M. (2019). Hypoxia causes woodlice (Porcellio scaber) to select lower temperatures and impairs their thermal performance and heat tolerance. PLoS One, 14, e0220647 10.1371/journal.pone.0220647 PubMed DOI PMC

Arendt, J. D. (2006). The cellular basis for phenotypic plasticity of body size in Western Spadefoot toad (Spea hammondi) tadpoles: Patterns of cell growth and recruitment in response to food and temperature manipulations. Biological Journal of the Linnean Society, 88, 499–510. 10.1111/j.1095-8312.2006.00642.x DOI

Atkinson, D. (1994). Temperature and organism size – A biological law for ectotherms? Advances in Ecological Research, 25, 1–58. 10.1016/S0306-4565(99)00015-7 DOI

Atkinson, D. , Morley, S. A. , & Hughes, R. N. (2006). From cells to colonies: At what levels of body organization does the ‘temperature‐size rule’ apply? Evolution Development, 8, 202–214. 10.1111/j.1525-142X.2006.00090.x PubMed DOI

Azevedo, R. B. R. , French, V. , & Partridge, L. (2002). Temperature modulates epidermal cell size in Drosophila melanogaster . Journal of Insect Physiology, 48, 231–237. 10.1016/S0022-1910(01)00168-8 PubMed DOI

Bates, D. , Mächler, M. , Bolker, B. M. , & Walker, S. C. (2015). Fitting Linear Mixed‐Effects Models Using lme4. Journal of Statistical Software, 67, 1–48. 10.18637/jss.v067.i01 DOI

Bergmann, C. (1848). Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Größe. Götingen: Vandhoeck und Ruprecht.

Böhni, R. , Riesgo‐Escovar, J. , Oldham, S. , Brogiolo, W. , Stocker, H. , Andruss, B. F. , … Hafen, E. (1999). Autonomous control of cell and organ size by CHICO, a Drosophila Homolog of Vertebrate IRS1 – 4. Cell, 97, 865–875. 10.1016/S0092-8674(00)80799-0 PubMed DOI

Bonvillain, C. P. , Rutherford, D. A. , & Kelso, W. E. (2015). Effects of environmental hypoxia on population characteristics of red swamp crayfish Procambarus clarkii in the Atchafalaya River Basin, Louisiana. Hydrobiologia, 743(1), 309–319. 10.1007/s10750-014-2049-4 DOI

Brodribb, T. J. , Jordan, G. J. , & Carpenter, R. J. (2013). Unified changes in cell size permit coordinated leaf evolution. New Phytologist, 199, 559–570. 10.1111/nph.12300 PubMed DOI

Brum, P. E. D. , & Araujo, P. B. (2007). The manca stages of Porcellio dilatatus Brandt (Crustacea, Isopoda, Oniscidea). Revista Brasileria de Zoologia, 24, 493–502. 10.1590/S0101-81752007000200030 DOI

Chown, S. L. , Marais, E. , Terblanche, J. S. , Klok, C. J. , Lighton, J. R. B. , & Blackburn, T. M. (2007). Scaling of insect metabolic rate is inconsistent with the nutrient supply network model. Functional Ecology, 21, 282–290. 10.1111/j.1365-2435.2007.01245.x DOI

Clarke, A. , & Pörtner, H. O. (2010). Temperature, metabolic power and the evolution of endothermy. Biological Reviews, 85, 703–727. 10.1111/j.1469-185X.2010.00122.x PubMed DOI

Cloudsley‐Thompson, J. L. (1988). Evolution and adaptation of terrestrial arthropods. Berlin, Heidelberg, NewYork, London, Paris, Tokyo: Springer.

Czarnoleski, M. , Cooper, B. S. , Kierat, J. , & Angilletta, M. J. (2013). Flies developed small bodies and small cells in warm and in thermally fluctuating environments. Journal of Experimental Biology, 216, 2896–2901. 10.1242/jeb.083535 PubMed DOI PMC

Czarnoleski, M. , Dragosz‐Kluska, D. , & Angilletta, M. J. (2015). Flies developed smaller cells when temperature fluctuated more frequently. Journal of Thermal Biology, 54, 106–110. 10.1016/j.jtherbio.2014.09.010 PubMed DOI

Czarnoleski, M. , Ejsmont‐Karabin, J. , Angilletta, M. J. , & Kozlowski, J. (2015). Colder rotifers grow larger but only in oxygenated waters. Ecosphere, 6, 164 10.1890/ES15-00024.1 DOI

Czarnoleski, M. , Labecka, A. M. , Dragosz‐Kluska, D. , Pis, T. , Pawlik, K. , Kapustka, F. , … Kozłowski, J. (2018). Concerted evolution of body mass and cell size: Similar patterns among species of birds (Galliformes) and mammals (Rodentia). Biology Open, 7(4), bio029603 10.1242/bio.029603 PubMed DOI PMC

Czarnoleski, M. , Labecka, A. M. , & Kozlowski, J. (2015). Thermal plasticity of body size and cell size in snails from two subspecies of Cornu aspersum . Journal of Molluscan Studies, 82, 235–243, 10.1093/mollus/eyv059 DOI

Czarnoleski, M. , Labecka, A. M. , Starostová, Z. , Sikorska, A. , Bonda‐Ostaszewska, E. , Woch, K. , … Kozlowski, J. (2017). Not all cells are equal: Effects of temperature and sex on the size of different cell types in the Madagascar ground gecko Paroedura picta . Biology Open, 6, 1149–1154. 10.1242/bio.025817 PubMed DOI PMC

Davison, J. (1956). An analysis of cell growth and metabolism in the crayfish (Procambarus alleni). Biological Bulletin, 110, 264–273. 10.2307/1538832 DOI

De Moed, G. H. D. E. , De Jong, G. , & Scharloo, W. (1997). Environmental effects on body size variation in Drosophila melanogaster and its cellular basis. Genetics Research, 70, 35–43. PubMed

De Virgilio, C. , & Loewith, R. (2006). The TOR signalling network from yeast to man. International Journal of Biochemistry & Cell Biology, 38, 1476–1481. 10.1016/j.biocel.2006.02.013 PubMed DOI

Edwards, A. S. (1969). The structure of eye of Ligia oceanica L. Tiss, 1, 217–228. PubMed

Engl, E. , & Attwell, D. (2014). Non‐signalling energy use in the brain. Journal of Physiology, 593, 3417–3429. 10.1113/jphysiol.2014.282517 PubMed DOI PMC

Fox, J. , & Weisberg, S. (2018). Visualizing fit and lack of fit in complex regression models with predictor effect plots and partial residuals. Journal of Statistical Software, 87, 1–27. 10.18637/jss.v087.i09 DOI

French, V. , Feast, M. , & Partridge, L. (1998). Body size and cell size in Drosophila: The developmental response to temperature. Journal of Insect Physiology, 44, 1081–1089. 10.1016/S0022-1910(98)00061-4 PubMed DOI

Ginzberg, M. B. , Kafri, R. , & Kirschner, M. (2015). On being the right (cell) size. Science, 348, 1245075 10.1126/science.1245075 PubMed DOI PMC

Gregory, T. R. (2001). The bigger the C‐value, the larger the cell: Genome size and red blood cell size in vertebrates. . Blood Cells, Molecules, and Diseases, 27, 830–843. 10.1006/bcmd.2001.0457 PubMed DOI

Grewal, S. S. (2009). Insulin/TOR signaling in growth and homeostasis: A view from the fly world. International Journal of Biochemistry & Cell Biology, 41, 1006–1010. 10.1016/j.biocel.2008.10.010 PubMed DOI

Gudowska, A. , Schramm, B. W. , Czarnoleski, M. , Kozłowski, J. , & Bauchinger, U. (2017). Physical mechanism or evolutionary trade‐off? Factors dictating the relationship between metabolic rate and ambient temperature in carabid beetles. Journal of Thermal Biology, 68, 89–95. 10.1016/j.jtherbio.2016.11.009 PubMed DOI

Hames, C. A. C. , & Hopkin, S. P. (1989). The structure and function of the digestive system of terrestrial isopods. Journal of Zoology, 217, 599–627. 10.1111/j.1469-7998.1989.tb02513.x DOI

Hames, C. A. C. , & Hopkin, S. P. (1991). A daily cycle of apocrine secretion by the B cells in the hepatopancreas of terrestrial isopods. Canadian Journal of Zoology, 69, 1931–1937. 10.1139/z91-267 DOI

Heinrich, E. C. , Farzin, M. , Klok, C. J. , & Harrison, J. F. (2011). The effect of developmental stage on the sensitivity of cell and body size to hypoxia in Drosophila melanogaster . Journal of Experimental Biology, 214, 1419–1427. 10.1242/jeb.051904 PubMed DOI PMC

Hermaniuk, A. , Rybacki, M. , & Taylor, J. R. E. (2016). Low temperature and polyploidy result in larger cell and body size in an ectothermic vertebrate. Physiological and Biochemical Zoology, 89, 118–129. 10.1086/684974 PubMed DOI

Hermaniuk, A. , Rybacki, M. , & Taylor, J. R. E. (2017). Metabolic rate of Diploid and Triploid Edible Frog Pelophylax esculentus correlates inversely with cell size in tadpoles but not in frogs. Physiological and Biochemical Zoology, 90, 230–239. 10.1086/689408 PubMed DOI

Hicks, J. W. , & Wood, S. C. (1985). Temperature regulation in lizards: Effects of hypoxia. American Journal of Physiology, 248, 595–600. 10.1152/ajpregu.1985.248.5.R595 PubMed DOI

Hoback, W. W. , & Stanley, D. W. (2001). Insects in hypoxia. Journal of Insect Physiology, 47, 533–542. 10.1016/S0022-1910(00)00153-0 PubMed DOI

Hoefnagel, N. K. , & Verberk, W. C. E. P. (2015). Is the temperature‐size rule mediated by oxygen in aquatic ectotherms? Journal of Thermal Biology, 54, 56–65. 10.1016/j.jtherbio.2014.12.003 PubMed DOI

Hornung, E. (2011). Evolutionary adaptation of oniscidean isopods to terrestrial life: Structure, physiology and behavior. Terrestrial Arthropod Reviews, 4, 95–130. 10.1163/187498311X576262 DOI

Horváthová, T. , Antoł, A. , Czarnoleski, M. , Kozłowski, J. , & Bauchinger, U. (2017). An evolutionary solution of terrestrial isopods to cope with low atmospheric oxygen levels. Journal of Experimental Biology, 220, 1563–1567. 10.1242/jeb.156661 PubMed DOI

Horváthová, T. , Antol, A. , Czarnoleski, M. , Kramarz, P. , Bauchinger, U. , Labecka, A. M. , & Kozłowski, J. (2015). Does temperature and oxygen affect duration of intramarsupial development and juvenile growth in the terrestrial isopod Porcellio scaber (Crustacea, Malacostraca)? ZooKeys, 515, 67–79. 10.3897/zookeys.515.9353 PubMed DOI PMC

Horváthová, T. , Kozłowski, J. , & Bauchinger, U. (2015). Growth rate and survival of terrestrial isopods is related to possibility to acquire symbionts. European Journal of Soil Biology, 69, 52–56. 10.1016/j.ejsobi.2015.05.003 DOI

Keskinen, E. , Meyer‐Rochow, V. B. , & Hariyama, T. (2002). Postembryonic eye growth in the seashore isopod Ligia exotica (Crustacea, Isopoda). Biocell, 26, 357–367. 10.2307/1543472 PubMed DOI

Kiełbasa, A. , Walczyńska, A. , Fiałkowska, E. , Pajdak‐Stós, A. , & Kozłowski, J. (2014). Seasonal changes in the body size of two rotifer species living in activated sludge follow the Temperature‐Size Rule. Ecology and Evolution, 24, 4678–4689. 10.1002/ece3.1292 PubMed DOI PMC

Kierat, J. , Szentgyörgyi, H. , Czarnoleski, M. , & Woyciechowski, M. (2016). The thermal environment of the nest affects body and cell size in the solitary red mason bee (Osmia bicornis L.). Journal of Thermal Biology, 68, 39–44. 10.1016/j.jtherbio.2016.11.008 PubMed DOI

Kight, S. L. (2008). Reproductive ecology of terrestrial isopods (Crustacea: Oniscidea). Terrestrial Arthropod Reviews, 1, 95–110. 10.1163/187498308X414724 DOI

Kozłowski, J. , Czarnoleski, M. , François‐Krassowska, A. , Maciak, S. , & Pis, T. (2010). Cell size is positively correlated between different tissues in passerine birds and amphibians, but not necessarily in mammals. Biology Letters, 6, 792–796. 10.1098/rsbl.2010.0288 PubMed DOI PMC

Kozłowski, J. , Konarzewski, M. , & Czarnoleski, M. (2020). Coevolution of body size and metabolic rate in vertebrates: A life‐history perspective. Biological Reviews. 10.1111/brv.12615 PubMed DOI PMC

Kozłowski, J. , Konarzewski, M. , & Gawelczyk, A. T. (2003). Cell size as a link between noncoding DNA and metabolic rate scaling. Proceedings of the National Academy of Sciences of the United States of America, 100, 14080–14085. 10.1073/pnas.2334605100 PubMed DOI PMC

Kubrakiewicz, J. (1994). Oogeneza stawonogów In Biliński S., Bielańska‐Osuchowska Z., Kawiak J., & Przełęcka A. (Eds.), Ultrastruktura i Funkcja Komórki. Oogeneza (pp. 87–100). Warszawa: Wydawnictwo Naukowe PWN.

Kuznetsova, A. (2017). lmerTest Package : Tests in Linear Mixed Effects Models. Journal of Statistical Software, 82, 1–26. 10.18637/jss.v082.i13 DOI

Lardies, M. A. , & Bozinovic, F. (2006). Geographic covariation between metabolic rate and life‐history traits. Evolutionary Ecology Research, 8, 455–470.

Maciak, S. , Bonda‐Ostaszewska, E. , Czarnoleski, M. , Konarzewski, M. , & Kozlowski, J. (2014). Mice divergently selected for high and low basal metabolic rates evolved different cell size and organ mass. Journal of Evolutionary Biology, 27, 478–487. 10.1111/jeb.12306 PubMed DOI

McQueen, D. J. , & Steel, C. G. H. (1980). The role of photoperiod and temperature in the initiation of reproduction in the terrestrial isopod Oniscus asellus Linnaeus. Canadia, 58, 235–240.

Minelli, A. , Maruzzo, D. , & Fusco, G. (2010). Multi‐scale relationships between numbers and size in the evolution of arthropod body features. Arthropod Structure & Development, 39, 468–477. 10.1016/j.asd.2010.06.002 PubMed DOI

Nemanic, P. (1975). Fine structure of the compound eye of Porcellio scaber in light and dark adaptation. Tissue and Cell, 7, 453–468. PubMed

Paim, U. , & Beckel, W. E. (1964). Effects of environmentel gases on the motility and survival of larvae and pupae of Orthosoma brunneum (Forster) (co. Cerambycidae). Canadian Journal of Zoology, 42, 59–69.

Partridge, L. , Barrie, B. , Fowler, K. , & French, V. (1994). Evolution and development of body size and cell size in Drosophila melanogaster in response to temperature. Evolution, 48, 1269–1276. PubMed

Peacock, A. J. (1998). Oxygen at high altitude. British Medical Journal, 317, 1063–1066. PubMed PMC

Perl, C. D. , & Niven, J. E. (2016a). Colony‐level differences in the scaling rules governing wood ant compound eye structure. Scientific Reports, 6, 24204 10.1038/srep24204 PubMed DOI PMC

Perl, C. D. , & Niven, J. E. (2016b). Differential scaling within an insect compound eye. Biology Letters, 12, 20160042 10.1098/rsbl.2016.0042 PubMed DOI PMC

Picaud, J. (1980). Vitellogenin synthesis by the fat body of Porcellio dilatatus Brandt (Crustacea, Isopoda). International Journal of Invertebrate Reproduction, 2, 37–41. 10.1080/01651269.1980.10553368 DOI

R Core Team . (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Rolfe, D. F. S. , & Brown, G. C. (1997). Cellular energy utilization of standard metabolic and molecular origin rate in mammals. Physiological Reviews, 77, 731–758. PubMed

Scott, G. R. , Matey, V. , Mendoza, J.‐A. , Gilmour, K. M. , Perry, S. F. , Almeida‐Val, V. M. F. , & Val, A. L. (2017). Air breathing and aquatic gas exchange during hypoxia in armoured catfish. Journal of Comparative Physiology B, 187, 117–133. 10.1007/s00360-016-1024-y PubMed DOI

Starostová, Z. , Konarzewski, M. , Kozłowski, J. , & Kratochvíl, L. (2013). Ontogeny of metabolic rate and red blood cell size in eyelid geckos: Species follow different paths. PLoS One, 8, e64715 10.1371/journal.pone.0064715 PubMed DOI PMC

Starostová, Z. , Kubička, L. , Konarzewski, M. , Kozłowski, J. , & Kratochvíl, L. (2009). Cell size but not genome size affects scaling of metabolic rate in eyelid geckos. American Naturalist, 174, 100–105. 10.1086/603610 PubMed DOI

Stevenson, R. D. , Hill, M. F. , & Bryant, P. J. (1995). Organ and cell allometry in Hawaiian Drosophila: How to make a big fly. Proceedings of the Royal Society B‐Biological Sciences, 259, 105–110. 10.1098/rspb.1995.0016 PubMed DOI

Subczyński, W. K. , & Hyde, J. S. (1998). Membranes barriers or pathways for oxygen transport. Advances in Experimental Medicine and Biology, 454, 399–408. PubMed

Subczyński, W. K. , Hyde, J. S. , & Kusumi, A. (1989). Oxygen permeability of phosphatidylcholine‐cholesterol membranes. Proceedings of the National Academy of Sciences of the United States of America, 86, 4474–4478. 10.1073/pnas.86.12.4474 PubMed DOI PMC

Szarski, H. (1983). Cell size and the concept of wasteful and frugal evolutionary strategies. Journal of Theoretical Biology, 105, 201–209. 10.1016/S0022-5193(83)80002-2 PubMed DOI

Tseng, D. , Chen, Y. , Kou, G. , Lo, C. , & Kuo, C.‐M. (2001). Hepatopancreas is the extraovarian site of vitellogenin synthesis in black tiger shrimp, Penaeus monodon . Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 129(4), 909–917. PubMed

Vafopoulou, X. , & Steel, C. G. H. (1995). Vitellogenesis in the terrestrial isopod, Oniscus asellus (L ): Characterization of vitellins and vitellogenins and changes in their synthesis throughout the intermoult cycle. Invertebrate Reproduction & Development, 28, 37–41. 10.1080/07924259.1995.9672469 DOI

van Voorhies, W. A. (1996). Bergmann size clines: A simple explanation for their occurrence in ectotherms. Evolution, 50, 1259–1264. 10.1111/j.1558-5646.1996.tb02366.x PubMed DOI

Verberk, W. C. E. P. , Overgaard, J. , Ern, R. , Bayley, M. , Wang, T. , Boardman, L. , & Terblanche, J. S. (2016). Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 192, 64–78. 10.1016/j.cbpa.2015.10.020 PubMed DOI PMC

Walczyńska, A. , Labecka, A. M. , Sobczyk, M. , Czarnoleski, M. , & Kozłowski, J. (2015). The temperature‐size rule in Lecane inermis (Rotifera) is adaptive and driven by nuclei size adjustment to temperature and oxygen combinations. Journal of Thermal Biology, 54, 78–85. 10.1016/j.jtherbio.2014.11.002 PubMed DOI

Wang, Y. , Brune, A. , & Zimmer, M. (2007). Bacterial symbionts in the hepatopancreas of isopods: Diversity and environmental transmission. FEMS Microbiology Ecology, 61, 141–152. 10.1111/j.1574-6941.2007.00329.x PubMed DOI

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. New York, NY: Springer.

Wood, S. C. , & Gonzales, R. (1996). Hypothermia in hypoxic animals: Mechanisms, mediators, and functional significance. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 113, 37–43. 10.1016/0305-0491(95)02045-4 PubMed DOI

Woods, A. H. (1999). Egg‐mass size and cell size: Effects of temperature on oxygen distribution. American Zoologist, 39, 244–252. 10.2307/3884247 DOI

Wright, J. C. , & Ting, K. (2006). Respiratory physiology of the Oniscidea: Aerobic capacity and the significance of pleopodal lungs. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 145, 235–244. 10.1016/j.cbpa.2006.06.020 PubMed DOI

Zhou, D. , Xue, J. , Chen, J. , Morcillo, P. , Lambert, J. D. , White, K. P. , & Haddad, G. G. (2007). Experimental selection for Drosophila survival in extremely low O2 environment. PLoS One, 2, e490 10.1371/journal.pone.0000490 PubMed DOI PMC

Ziemba, K. S. , & Rutowski, R. L. (2000). Sexual dimorphism in eye morphology in a butterfly (Asterocampa leilia: Lepidoptera, Nymphalidae). Psyche, 103, 25–36.

Žnidaršič, N. , Štrus, J. , & Drobne, D. (2003). Ultrastructural alterations of the hepatopancreas in Porcellio scaber under stress. Environmental Toxicology and Pharmacology, 13, 161–174. 10.1016/S1382-6689(02)00158-8 PubMed DOI

Zwaan, B. J. , Azevedo, R. B. R. , James, A. C. , van 't Land, J. , & Partridge, L. (2000). Cellular basis of wing size variation in Drosophila melanogaster: A comparison of latitudinal clines on two continents. Heredity, 84(Pt 3), 338–347. 10.1046/j.1365-2540.2000.00677.x PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...