Scaling of erythrocyte shape and nucleus size among squamate reptiles: reanalysis points to constrained, proportional rather than adaptive changes
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37122952
PubMed Central
PMC10130710
DOI
10.1098/rsos.221513
PII: rsos221513
Knihovny.cz E-zdroje
- Klíčová slova
- N : C ratio, cell shape, cell size, erythrocytes, reptiles, scaling,
- Publikační typ
- časopisecké články MeSH
Small erythrocytes might be beneficial for blood rheology, as they contribute less to blood viscosity than large erythrocytes. We predicted that rheological disadvantages of larger erythrocytes could be alleviated by relatively smaller nucleus size in larger cells allowing higher flexibility and by more elongated shape. Across squamate reptiles, we found that species with larger erythrocytes tend to have smaller ratio of nucleus size to cell size (N : C ratio), but that larger erythrocytes tend to be rounder, not more elongated. Nevertheless, we document that in fact nucleus area changes with erythrocyte area more or less linearly, which is also true for the relationship between cell length and cell width. These linear relationships suggest that nucleus size and cell size, and cell width and cell length, might be constrained to largely proportional mutual changes. The shifts in widely used N : C ratio and elongation ratio (cell length/cell width) with cell size might be misleading, as they do not reflect adaptive or maladaptive changes of erythrocytes, but rather mathematically trivial scaling of the ratios of two variables with a linear relationship with non-zero intercepts. We warn that ratio scaling without analyses of underlying patterns of evolutionary changes can lead to misinterpretation of evolutionary processes.
Department of Ecology Faculty of Science Charles University Viničná 7 12844 Prague Czech Republic
Department of Zoology Faculty of Science Charles University Viničná 7 12844 Prague Czech Republic
Zobrazit více v PubMed
Szarski H. 1983. Cell-size and the concept of wasteful and frugal evolutionary strategies. J. Theor. Biol. 105, 201-209. (10.1016/S0022-5193(83)80002-2) PubMed DOI
Kozłowski J, Konarzewski M, Gawelczyk T. 2003. Cell size as a link between noncoding DNA and metabolic rate scaling. Proc. Natl Acad. Sci. USA 100, 14 080-14 085. (10.1073/pnas.2334605100) PubMed DOI PMC
Kozłowski J, Czarnoleski M, François-Krassowska A, Maciak S, Pis T. 2010. Cell size is positively correlated between different tissues in passerine birds and amphibians, but not necessarily in mammals. Biol. Lett. 6, 792-796. (10.1098/rsbl.2010.0288) PubMed DOI PMC
Czarnoleski M, Labecka AM, Starostová Z, Sikorska A, Bonda-Ostaszewska E, Woch K, Kubička L, Kratochvíl L, Kozlowski J. 2017. Not all cells are equal: temperature and sex effects on the size of different cell types in the Madagascar ground gecko Paroedura picta. Biol. Open 6, 1149-1154. (10.1242/bio.025817) PubMed DOI PMC
Antoł A, Labecka AM, Horváthová T, Sikorska A, Szabla N, Bauchinger U, Kozlowski J, Czarnoleski M. 2020. Effects of thermal and oxygen conditions during development on cell size in the common rough woodlice Porcellio scaber. Ecol. Evol. 10, 9552-9566. (10.1002/ece3.6683) PubMed DOI PMC
Gregory TR. 2002. A bird's-eye view of the C-value enigma: genome size, cell size, and metabolic rate in the class Aves. Evolution 56, 121-130. (10.1111/j.0014-3820.2002.tb00854.x) PubMed DOI
Starostová Z, Kubička L, Kozlowski J, Konarzewski M, Kratochvíl L. 2009. Cell size but not genome size affects scaling of metabolic rate in eyelid geckos. Am. Nat. 174, E100-E105. (10.1086/603610) PubMed DOI
Bury S, Bury A, Sadowska ET, Cichon M, Bauchinger U. 2019. More than just the numbers—contrasting response of snake erythrocytes to thermal acclimation. Sci. Nat. 106, 24. (10.1007/s00114-019-1617-x) PubMed DOI
Holland RAB, Forster RE. 1966. The effect of size of red cells on the kinetics of their oxygen uptake. J. Gen. Physiol. 49, 727-742. (10.1085/jgp.49.4.727) PubMed DOI PMC
Yamaguchi K, Jürgens KD, Bartels H, Piiper J. 1987. Oxygen transfer properties and dimensions of red blood cells in high-altitude camelids, dromedary camel and goat. J. Comp. Physiol. B 157, 1-9. (10.1007/BF00702722) PubMed DOI
Nguyen CT, Desgranges F, Roy G, Galanis N, Maré T, Boucher S, Mintsa HA. 2007. Temperature and particle-size dependent viscosity data for water-based nanofluids – hysteresis phenomenon. Int. J. Heat Fluid. Fl. 28, 1492-1506. (10.1016/j.ijheatfluidflow.2007.02.004) DOI
Windberger U, Baskurt OK. 2007. Comparative hemorheology. In Handbook of hemorheology and hemodynamics (eds Baskurt OK, Hardeman MR, Rampling MW, Meiselman HJ), pp. 267-284. Amsterdam, The Netherlands: IOS; Press.
Snyder GK, Sears RD. 2006. Red blood cell size and the Fåhraeus–Lindqvist effect. Can. J. Zool. 84, 419-424. (10.1139/z06-011) DOI
Chien S, Usami S, Dellenback RJ, Bryant CA. 1971. Comparative hemorheology – hematological implications of species differences in blood viscosity. Biorheology 8, 35-57. (10.3233/BIR-1971-8106) PubMed DOI
Penman Z, Deeming DC, Soulsbury CD. 2022. Ecological and life-history correlates of erythrocyte size and shape in Lepidosauria. J. Evol. Biol. 35, 708-718. (10.1111/jeb.14004) PubMed DOI PMC
Starostová Z, Kratochvíl L, Flajšhans M. 2008. Cell size does not always correspond to genome size: phylogenetic analysis of genome size in eublepharid geckos. Zoology 111, 377-384. (10.1016/j.zool.2007.10.005) PubMed DOI
Gulliver G. 1875. Observations on the sizes and shapes of the red corpuscles of the blood of vertebrates, with drawings of them to a uniform scale, and extended and revised tables of measurements. Proc. Zool. Soc. Lond. 1875, 474-495.
Snyder GK, Sheafor BA. 1999. Red blood cells: centerpiece in the evolution of the vertebrate circulatory system. Am. Zool. 39, 189-198. (10.1093/icb/39.2.189) DOI
Hawkey CM, Bennett PM, Gascoyne SC, Hart MG, Kirkwood JK. 1991. Erythrocyte size, number and haemoglobin content in vertebrates. Br. J. Haematol. 77, 392-397. (10.1111/j.1365-2141.1991.tb08590.x) PubMed DOI
Mueller RL, Gregory TR, Gregory SM, Hsieh A, Boore JL. 2008. Genome size, cell size, and the evolution of enucleated erythrocytes in attenuate salamanders. Zoology 111, 218-230. (10.1016/j.zool.2007.07.010) PubMed DOI PMC
Pough FH. 1980. Blood oxygen transport and delivery in reptiles. Am. Zool. 20, 173-185. (10.1093/icb/20.1.173) DOI
Kronmal RA. 1993. Spurious correlation and the fallacy of the ratio standard revisited. J. R. Stat. Soc. Ser. A 156, 379-392. (10.2307/2983064) DOI
Jasieński M, Bazzaz FA. 1999. The fallacy of ratios and the testability of models in biology. Oikos 84, 321-326. (10.2307/3546729) DOI
Kratochvíl L, Rovatsos M. 2022. Ratios can be misleading for detecting selection. Curr. Biol. 32, R28-R30. (10.1016/j.cub.2021.11.066) PubMed DOI
Lolli L, Batterham AM, Kratochvíl L, Flegr J, Weston KL, Atkinson G. 2017. A comprehensive allometric analysis of 2nd digit length to 4th digit length in humans. Proc. R. Soc. B 284, 20170356. PubMed PMC
Bollen KA, Jackman RW. 1990. Regression diagnostics: an expository treatment of outliers and influential cases. In Modern methods of data analysis (eds Fox J, Scott LJ), pp. 257-291. Newbury Park, CA: Sage.
Zheng Y, Wiens JJ. 2016. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol. Phylogenet. Evol. 94, 537-547. (10.1016/j.ympev.2015.10.009) PubMed DOI
Ho LST, Ane C.. 2014. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397-408. (10.1093/sysbio/syu005) PubMed DOI
Grafen A. 1989. The phylogenetic regression. Phil. Trans. R. Soc. lond. B 326, 119-157. (10.1098/rstb.1989.0106) PubMed DOI
Freckleton RP, Harvey PH, Pagel M. 2002. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160, 712-726. (10.1086/343873) PubMed DOI
Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature 401, 877-884. (10.1038/44766) PubMed DOI
Akaike H. 1973. Information theory and an extension of the maximum likelihood principle. In Proc. of the 2nd Int. Symp. on Information Theory, 2–8 September 1971 (eds Petrovand BN, Caski S), pp. 267-281. Budapest, Hungary: Akademiai Kaido.
Beaupre SJ. 2005. Ratio representations of specific dynamic action (mass-specific SDA and SDA coefficient) do not standardize for body mass and meal size. Physiol. Biochem. Zool. 78, 126-131. (10.1086/425195) PubMed DOI
Soulsbury CD, Dobson J, Deeming CD, Minias P. 2021. Energetic lifestyle drives size and shape of avian erythrocytes. Integr. Comp. Biol. 62, 71-80. (10.1093/icb/icab195) PubMed DOI PMC
Janiga M, Haas M, Kufelová M. 2017. Age, sex and seasonal variation in the shape and size of erythrocytes of the alpine accentor, Prunella collaris (Passeriformes: Prunellidae). Eur. Zool. J. 84, 583-590. (10.1080/24750263.2017.1403656) DOI
Gregory TR. 2001. The bigger the C-value, the larger the cell: genome size and red blood cell size in vertebrates. Blood Cells Mol. Dis. 27, 830-843. (10.1006/bcmd.2001.0457) PubMed DOI
Chen B, Co C, Ho CC. 2015. Cell shape dependent regulation of nuclear morphology. Biomaterials 67, 129-136. (10.1016/j.biomaterials.2015.07.017) PubMed DOI PMC
Jung J, Matemba LE, Lee K, Kazyoba PE, Yoon J, Massaga JJ, Kim K, Kim DJ, Park Y. 2016. Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging. Sci. Rep. 6, 31698. (10.1038/srep31698) PubMed DOI PMC
McKinley KL, Stuurman N, Royer LA, Schartner C, Castillo-Azofeifa D, Delling M, Klein OD, Vale RD. 2018. Cellular aspect ratio and cell division mechanics underlie the patterning of cell progeny in diverse mammalian epithelia. eLife 7, e36739. (10.7554/eLife.36739) PubMed DOI PMC
Moore MJ, Sebastian JA, Kolios MC. 2019. Determination of cell nucleus-to-cytoplasmic ratio using imaging flow cytometry and a combined ultrasound and photoacoustic technique: a comparison study. J. Biomed. Opt. 24, 106502. (10.1117/1.JBO.24.10.106502) PubMed DOI PMC
Grant NA, Magid AA, Franklin J, Dufour Y, Lenski RE. 2020. Changes in cell size and shape during 50,000 generations of experimental evolution with Escherichia coli. J. Bacteriol. 203, e00469-20. (10.1128/JB.00469-20) PubMed DOI PMC
Malerba ME, Marshall DJ. 2021. Larger cells have relatively smaller nuclei across the Tree of Life. Evol. Lett. 5, 306-314. (10.1002/evl3.243) PubMed DOI PMC
Sinnott EW, Trombetta VV. 1936. The cytonuclear ratio in plant cells. Am. J. Bot. 23, 602-606. (10.1002/j.1537-2197.1936.tb09032.x) DOI
Goodman RM, Heah TP. 2010. Temperature-induced plasticity at cellular and organismal levels in the lizard Anolis carolinensis. Integr. Zool. 5, 208-217. (10.1111/j.1749-4877.2010.00206.x) PubMed DOI
Hermaniuk A, Rybacki M, Taylor JR. 2016. Low temperature and polyploidy result in larger cell and body size in an ectothermic vertebrate. Physiol. Biochem. Zool. 89, 118-129. (10.1086/684974) PubMed DOI
Meiselman HJ. 1981. Morphological determinants of red cell deformability. Scand. J. Clin. Lab. Investig. 41(Suppl. 156), 27-34. (10.3109/00365518109097426) PubMed DOI
Huisjes R, Bogdanova A, van Solinge WW, Schiffelers RM, Kaestner L, van Wijk R. 2018. Squeezing for life – properties of red blood cell deformability. Front. Physiol. 9, 656. (10.3389/fphys.2018.00656) PubMed DOI PMC
Nemeth N, Alexy T, Furka A, Baskurt OK, Meiselman HJ, Furka I, Miko I. 2009. Inter-species differences in hematocrit to blood viscosity ratio. Biorheology 46, 155-165. (10.3233/BIR-2009-0533) PubMed DOI
Nader E, et al. 2019. Blood rheology: key parameters, impact on blood flow, role in sickle cell disease and effects of exercise. Front. Physiol. 10, 1329. (10.3389/fphys.2019.01329) PubMed DOI PMC
Varga A, Matrai AA, Barath B, Deak A, Horvath L, Nemeth N. 2022. Interspecies diversity of osmotic gradient deformability of red blood cells in human and seven vertebrate animal species. Cells 11, 1351. (10.3390/cells11081351) PubMed DOI PMC
Wallach V. 1998. Pulmonary system: the lung of snakes. In Biology of the reptilia. Volume 19. Morphology G. Visceral organs (eds Gans C, Abbot S), pp. 93-295. New York, NY: SSAR.
Sheehy CM III, Albert JS, Lillywhite HB. 2016. The evolution of tail length in snakes associated with different gravitational environments. Funct. Ecol. 30, 244-254. (10.1111/1365-2435.12472) DOI
Bury S, Kratochvíl L, Starostová Z. 2023. Scaling of erythrocyte shape and nucleus size among squamate reptiles: reanalysis points to constrained, proportional rather than adaptive changes. Figshare. (10.6084/m9.figshare.c.6602821) PubMed DOI PMC
figshare
10.6084/m9.figshare.c.6602821