A comprehensive allometric analysis of 2nd digit length to 4th digit length in humans
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
MR/K02325X/1
Medical Research Council - United Kingdom
PubMed
28659446
PubMed Central
PMC5489719
DOI
10.1098/rspb.2017.0356
PII: rspb.2017.0356
Knihovny.cz E-zdroje
- Klíčová slova
- 2D : 4D, Akaike information criterion, allometry, sexual dimorphism,
- MeSH
- antropometrie MeSH
- lidé MeSH
- lineární modely MeSH
- pohlavní dimorfismus * MeSH
- prsty ruky anatomie a histologie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
It has been widely reported that men have a lower ratio of the 2nd and 4th human finger lengths (2D : 4D). Size-scaling ratios, however, have the seldom-appreciated potential for providing biased estimates. Using an information-theoretic approach, we compared 12 candidate models, with different assumptions and error structures, for scaling untransformed 2D to 4D lengths from 154 men and 262 women. In each hand, the two-parameter power function and the straight line with intercept models, both with normal, homoscedastic error, were superior to the other models and essentially equivalent to each other for normalizing 2D to 4D lengths. The conventional 2D : 4D ratio biased relative 2D length low for the generally bigger hands of men, and vice versa for women, thereby leading to an artefactual indication that mean relative 2D length is lower in men than women. Conversely, use of the more appropriate allometric or linear regression models revealed that mean relative 2D length was, in fact, greater in men than women. We conclude that 2D does not vary in direct proportion to 4D for both men and women, rendering the use of the simple 2D : 4D ratio inappropriate for size-scaling purposes and intergroup comparisons.
Zobrazit více v PubMed
Baker F. 1888. Anthropological notes on the human hand. Am Anthropol 1, 51–76. (10.1525/aa.1888.1.1.02a00040) DOI
Phelps VR. 1952. Relative index finger length as a sex-influenced trait in man. Am. J. Hum. Genet. 4, 72–89. PubMed PMC
Bailey AA, Hurd PL. 2005. Finger length ratio (2D : 4D) correlates with physical aggression in men but not in women. Biol. Psychol. 68, 215–222. (10.1016/j.biopsycho.2004.05.001) PubMed DOI
Cohen-Bendahan CC, van de Beek C., Berenbaum SA. 2005. Prenatal sex hormone effects on child and adult sex-typed behavior: methods and findings. Neurosci. Biobehav. Rev. 29, 353–384. (10.1016/j.neubiorev.2004.11.004) PubMed DOI
Hill R, Simpson B, Millet G, Manning J, Kilduff L. 2012. Right–left digit ratio (2D : 4D) and maximal oxygen uptake. J. Sports Sci. 30, 129–134. (10.1080/02640414.2011.637947) PubMed DOI
Longman D., Stock JT, Wells JC. 2011. Digit ratio (2D : 4D) and rowing ergometer performance in males and females. Am. J. Phys. Anthropol. 144, 337–341. (10.1002/ajpa.21407) PubMed DOI
Manning JT, Scutt D., Wilson J., Lewis-Jones DI. 1998. The ratio of 2nd to 4th digit length: a predictor of sperm numbers and concentrations of testosterone, luteinizing hormone and oestrogen. Hum. Reprod. 13, 3000–3004. (10.1093/humrep/13.11.3000) PubMed DOI
Voracek M, Reimer B, Dressler SG. 2010. Digit ratio (2D : 4D) predicts sporting success among female fencers independent from physical, experience, and personality factors. Scand. J. Med. Sci. Sports 20, 853–860. (10.1111/j.1600-0838.2009.01031.x) PubMed DOI
Zhang W, Robertson J, Doherty S, Liu JJ, Maciewicz RA, Muir KR, Doherty M. 2008. Index to ring finger length ratio and the risk of osteoarthritis. Arthritis Rheum. 58, 137–144. (10.1002/art.23237) PubMed DOI
Manning JT. 2010. Digit ratio (2D : 4D), sex differences, allometry, and finger length of 12–30-year olds: evidence from the British Broadcasting Corporation (BBC) internet study. Am. J. Hum. Biol. 22, 604–608. (10.1002/ajhb.21051) PubMed DOI
Zheng Z, Cohn MJ. 2011. Developmental basis of sexually dimorphic digit ratios. Proc. Natl Acad. Sci. USA 108, 16 289–16 294. (10.1073/pnas.1108312108) PubMed DOI PMC
Albrecht GH, Gelvin BR, Hartman SE. 1993. Ratios as a size adjustment in morphometrics. Am. J. Phys. Anthropol. 91, 441–468. (10.1002/ajpa.1330910404) PubMed DOI
Katch VL. 1973. Use of the oxygen/body weight ratio in correlational analyses: spurious correlations and statistical considerations. Med. Sci. Sports Exerc. 5, 253–257. (10.1249/00005768-197300540-00008) PubMed DOI
Li JK-J. 1996. Comparative cardiovascular dynamics of mammals. Boca Raton, FL: CRC Press.
Dunbar RIM. 1995. Neocortex size and group-size in primates—a test of the hypothesis. J. Hum. Evol. 28, 287–296. (10.1006/jhev.1995.1021) DOI
Curran-Everett D. 2013. Explorations in statistics: the analysis of ratios and normalized data. Adv. Physiol. Educ. 37, 213–219. (10.1152/advan.00053.2013) PubMed DOI
Packard GC, Boardman TJ. 1999. The use of percentages and size-specific indices to normalize physiological data for variation in body size: wasted time, wasted effort? Comp. Biochem. Physiol. A Mol. Integr. Physiol. 122, 37–44. (10.1016/S1095-6433(98)10170-8) DOI
Pearson K. 1896. Mathematical contributions to the theory of evolution: on a form of spurious correlation which may arise when indices are used in the measurement of organs. Proc. R. Soc. Lond. 60, 489–498. (10.1098/rspl.1896.0076) DOI
Tanner JM. 1949. Fallacy of per-weight and per-surface area standards, and their relation to spurious correlation. J. Appl. Physiol. 2, 1–15. PubMed
Atkinson G., Batterham AM. 2013. The percentage flow-mediated dilation index: a large-sample investigation of its appropriateness, potential for bias and causal nexus in vascular medicine. Vasc. Med. 18, 354–365. (10.1177/1358863X13508446) PubMed DOI
Kratochvil L., Flegr J. 2009. Differences in the 2nd to 4th digit length ratio in humans reflect shifts along the common allometric line. Biol. Lett. 5, 643–646. (10.1098/rsbl.2009.0346) PubMed DOI PMC
Huxley JS. 1924. Constant differential growth-ratios and their significance. Nature 114, 895–896. (10.1038/114895a0) DOI
Packard GC, Birchard GF, Boardman TJ. 2011. Fitting statistical models in bivariate allometry. Biol. Rev. Camb. Philos. Soc. 86, 549–563. (10.1111/j.1469-185X.2010.00160.x) PubMed DOI
Hui D., Jackson RB. 2007. Uncertainty in allometric exponent estimation: a case study in scaling metabolic rate with body mass. J. Theor. Biol. 249, 168–177. (10.1016/j.jtbi.2007.07.003) PubMed DOI
Packard GC. 2017. Is complex allometry in field metabolic rates of mammals a statistical artifact? Comp. Biochem. Physiol. A Mol. Integr. Physiol. 203, 322–327. (10.1016/j.cbpa.2016.10.005) PubMed DOI
Kilmer JT, Rodriguez RL. 2017. Ordinary least squares regression is indicated for studies of allometry. J. Evol. Biol. 30, 4–12. (10.1111/jeb.12986) PubMed DOI
Batterham AM, George KP, Mullineaux DR. 1997. Allometric scaling of left ventricular mass by body dimensions in males and females. Med. Sci. Sports Exerc. 29, 181–186. (10.1097/00005768-199702000-00003) PubMed DOI
Burnham KP, Anderson DR, Huyvaert KP. 2011. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35. (10.1007/s00265-010-1029-6) DOI
Malas MA, Dogan S., Evcil EH, Desdicioglu K. 2006. Fetal development of the hand, digits and digit ratio (2D : 4D). Early Hum. Dev. 82, 469–475. (10.1016/j.earlhumdev.2005.12.002) PubMed DOI
Laird N. 1983. Further comparative analyses of pretest–posttest research designs. Am. Stat. 37, 329–330. (10.1080/00031305.1983.10483133) DOI
The fallacy of global comparisons based on per capita measures