Single Nucleotide Variants in KIF14 Gene May Have Prognostic Value in Breast Cancer
Jazyk angličtina Země Nový Zéland Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36192583
DOI
10.1007/s40291-022-00616-z
PII: 10.1007/s40291-022-00616-z
Knihovny.cz E-zdroje
- MeSH
- kineziny * MeSH
- lidé MeSH
- nádorové biomarkery genetika MeSH
- nádory prsu * patologie MeSH
- nukleotidy MeSH
- onkogenní proteiny genetika metabolismus MeSH
- pilotní projekty MeSH
- prognóza MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- KIF14 protein, human MeSH Prohlížeč
- kineziny * MeSH
- nádorové biomarkery MeSH
- nukleotidy MeSH
- onkogenní proteiny MeSH
INTRODUCTION: Human kinesin 14 (KIF14) is one of the 70 prognostic marker genes (so-called Amsterdam profile) previously identified by the microarray of breast carcinomas, and its high transcript expression in tumor specimens indicates a poor prognosis for patients. We performed a pilot study to explore the prognostic and predictive meaning of KIF14 germline genetic variability in breast cancer patients. METHODS: KIF14 coding sequence, including 5' and 3' untranslated regions and overlaps to introns for identification of splicing sites, was analyzed using next-generation sequencing in the testing set of blood DNA samples from 105 breast cancer patients with clinical follow-up. After rigorous evaluation of major allele frequency, haplotype blocks, in silico predicted functional aspects, expression quantitative trait loci, and clinical associations, eight single nucleotide variants were subsequently validated in the evaluation set of 808 patients. RESULTS: Carriers of minor alleles G (rs17448931) or T (rs3806362) had significantly shorter overall survival than wild type homozygotes (p = 0.010 and p = 0.023, respectively) thus successfully replicating the results of the testing set. Both associations remained significant in the multivariate Cox regression analysis, including molecular subtype and stage as covariates (hazard ratio, HR = 1.7, 95% confidence interval (CI) = 1.1-2.8 for rs17448931 and HR = 1.9, CI 1.2-3.0 for rs3806362). DISCUSSION: In conclusion, our preliminary data suggest that minor alleles in rs17448931 and rs3806362 of KIF14 represent candidate biomarkers of poor prognosis of breast cancer patients. After pending validation in independent populations and eventual functional characterization, these candidates might become useful biomarkers in the clinics.
3rd Faculty of Medicine Charles University Prague Czech Republic
Biomedical Center Faculty of Medicine in Pilsen Charles University Pilsen Czech Republic
Comprehensive Cancer Center Novy Jicin Hospital Novy Jicin Novy Jicin Czech Republic
Department of Oncosurgery MEDICON Prague Czech Republic
Department of Surgery EUC Hospital Zlin and Tomas Bata University in Zlin Zlin Czech Republic
Toxicogenomics Unit National Institute of Public Health Srobarova 48 100 42 Prague 10 Czech Republic
Zobrazit více v PubMed
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin. 2021;71:209–49. DOI
Neveu V, Nicolas G, Salek RM, Wishart DS, Scalbert A. Exposome-Explorer 2.0: an update incorporating candidate dietary biomarkers and dietary associations with cancer risk. Nucleic Acids Res. 2020;48:D908–12. PubMed
Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12:31–46. PubMed DOI
Lucanus AJ, Yip GW. Kinesin superfamily: roles in breast cancer, patient prognosis and therapeutics. Oncogene. 2018;37:833–8. PubMed DOI
Miki H, Setou M, Kaneshiro K, Hirokawa N. All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci USA. 2001;98:7004–11. PubMed DOI PMC
Priyanga J, Guha G, Bhakta-Guha D. Microtubule motors in centrosome homeostasis: a target for cancer therapy? Biochim Biophys Acta Rev Cancer. 2021;1875: 188524. PubMed DOI
Sheng L, Hao SL, Yang WX, Sun Y. The multiple functions of kinesin-4 family motor protein KIF4 and its clinical potential. Gene. 2018;678:90–9. PubMed DOI
Wordeman L. How kinesin motor proteins drive mitotic spindle function: lessons from molecular assays. Semin Cell Dev Biol. 2010;21:260–8. PubMed DOI PMC
Lee K-Y, Davies T, Mishima M. Cytokinesis microtubule organisers at a glance. J Cell Sci. 2012;125:3495–500. PubMed DOI PMC
Van’ t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AAM, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415:530–6. DOI
Corson TW, Huang A, Tsao M-S, Gallie BL. KIF14 is a candidate oncogene in the 1q minimal region of genomic gain in multiple cancers. Oncogene. 2005;24:4741–53. PubMed DOI
Corson TW, Gallie BL. KIF14 mRNA expression is a predictor of grade and outcome in breast cancer. Int J Cancer. 2006;119:1088–94. PubMed DOI
Gerashchenko TS, Zolotaryova SY, Kiselev AM, Tashireva LA, Novikov NM, Krakhmal NV, Cherdyntseva NV, Zavyalova MV, Perelmuter VM, Denisov EV. The activity of KIF14, Mieap, and EZR in a new type of the invasive component, torpedo-like structures, predetermines the metastatic potential of breast cancer. Cancers. 2020;12:1909. DOI PMC
Pariyar M, Johns A, Thorne RF, Scott RJ, Avery-Kiejda KA. Copy number variation in triple negative breast cancer samples associated with lymph node metastasis. Neoplasia. 2021;23:743–53. PubMed DOI PMC
Ehrlichova M, Mohelnikova-Duchonova B, Hrdy J, Brynychova V, Mrhalova M, Kodet R, Rob L, Pluta M, Gut I, Soucek P, et al. The association of taxane resistance genes with the clinical course of ovarian carcinoma. Genomics. 2013;102:96–101. PubMed DOI
Brynychova V, Ehrlichova M, Hlavac V, Nemcova-Furstova V, Pecha V, Leva J, Trnkova M, Mrhalova M, Kodet R, Vrana D, et al. Genetic and functional analyses do not explain the association of high PRC1 expression with poor survival of breast carcinoma patients. Biomed Pharmacother. 2016;83:857–64. PubMed DOI
Hanicinec V, Brynychova V, Rosendorf J, Palek R, Liska V, Oliverius M, Kala Z, Mohelnikova-Duchonova B, Krus I, Soucek P. Gene expression of cytokinesis regulators PRC1, KIF14 and CIT has no prognostic role in colorectal and pancreatic cancer. Oncol Lett. 2021;22:598. PubMed DOI PMC
Xu H, Choe C, Shin SH, Park SW, Kim HS, Jung SH, Yim SH, Kim TM, Chung YJ. Silencing of KIF14 interferes with cell cycle progression and cytokinesis by blocking the p27(Kip1) ubiquitination pathway in hepatocellular carcinoma. Exp Mol Med. 2014;46: e97. PubMed DOI PMC
Zhu Q, Ren H, Li X, Qian B, Fan S, Hu F, Xu L, Zhai B. Silencing KIF14 reverses acquired resistance to sorafenib in hepatocellular carcinoma. Aging. 2020;12:22975–3003. PubMed PMC
Singel SM, Cornelius C, Batten K, Fasciani G, Wright WE, Lum L, Shay JW. A targeted RNAi screen of the breast cancer genome identifies KIF14 and TLN1 as genes that modulate docetaxel chemosensitivity in triple-negative breast cancer. Clin Cancer Res. 2013;19:2061–70. PubMed DOI PMC
Hlavac V, Kovacova M, Elsnerova K, Brynychova V, Kozevnikovova R, Raus K, Kopeckova K, Mestakova S, Vrana D, Gatek J, et al. Use of germline genetic variability for prediction of chemoresistance and prognosis of breast cancer patients. Cancers. 2018;10:511. DOI PMC
Tavassoli F, Devilee P. Pathology and genetics of tumours of the breast and female genital organs. Lyon: IARC Press; 2003.
Cheang MCU, Chia SK, Voduc D, Gao D, Leung S, Snider J, Watson M, Davies S, Bernard PS, Parker JS, et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. JNCI J Natl Cancer Inst. 2009;101:736–50. PubMed DOI
Coates AS, Winer EP, Goldhirsch A, Gelber RD, Gnant M, Piccart-Gebhart M, Thürlimann B, Senn H-J, André F, Baselga J, et al. Tailoring therapies—improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. Ann Oncol. 2015;26:1533–46. PubMed DOI PMC
Schwartz LH, Litière S, de Vries E, Ford R, Gwyther S, Mandrekar S, Shankar L, Bogaerts J, Chen A, Dancey J, et al. RECIST 1.1—update and clarification: from the RECIST committee. Eur J Cancer. 2016;62:132–7. PubMed DOI PMC
Topić E, Gluhak J. Isolation of restrictible DNA. Eur J Clin Chem Clin Biochem. 1991;29:327–30. PubMed
Li H. Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics. 2014;30:2843–51. PubMed DOI PMC
Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, et al. From FastQ data to high-confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinform. 2013;43:11101–111033. DOI
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164–e164. PubMed DOI PMC
Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4:1073–81. PubMed DOI
Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, Karczewski KJ, Park J, Hitz BC, Weng S, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012;22:1790–7. PubMed DOI PMC
Barrett JC. 2009. Haploview: visualization and analysis of SNP genotype data. Cold Spring Harb Protoc. 2009:pdb.ip71.
Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, et al. The structure of haplotype blocks in the human genome. Science. 2002;296:2225–9. PubMed DOI
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115–e115. PubMed DOI PMC
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B (Methodol). 1995;57:289–300.
Liang Q, Ma D, Gao RF, Yu KD. Effect of Ki-67 expression levels and histological grade on breast cancer early relapse in patients with different immunohistochemical-based subtypes. Sci Rep. 2020;10:7648. PubMed DOI PMC
Li T-F, Zeng H-J, Shan Z, Ye R-Y, Cheang T-Y, Zhang Y-J, Lu S-H, Zhang Q, Shao N, Lin Y. Overexpression of kinesin superfamily members as prognostic biomarkers of breast cancer. Cancer Cell Int. 2020;20:123. PubMed DOI PMC
Singel SM, Cornelius C, Zaganjor E, Batten K, Sarode VR, Buckley DL, Peng Y, John GB, Li HC, Sadeghi N, et al. KIF14 promotes AKT phosphorylation and contributes to chemoresistance in triple-negative breast cancer. Neoplasia. 2014;16:247-256.e2. PubMed DOI PMC
Shasttiri A, Rostamian Delavar M, Baghi M, Dehghani Ashkezari M, Ghaedi K. SNP rs10800708 within the KIF14 miRNA binding site is linked with breast cancer. Br J Biomed Sci. 2019;76:46–8. PubMed DOI
Hinnebusch AG, Ivanov IP, Sonenberg N. Translational control by 5′-untranslated regions of eukaryotic mRNAs. Science. 2016;352:1413–6. PubMed DOI PMC
Phan, L, Jin Y, Zhang H. Qiang W, Shekhtman E, Shao D, Revoe D, Villamarin R, Ivanchenko E, Kimura M, et al. ALFA: Allele Frequency Aggregator. National Center for Biotechnology Information, U.S. National Library of Medicine, 10 Mar. 2020. http://ww.ncbi.nlm.nih.gov/snp/docs/gsr/alfa/ .