Not all cells are equal: effects of temperature and sex on the size of different cell types in the Madagascar ground gecko Paroedura picta
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
28630354
PubMed Central
PMC5576080
DOI
10.1242/bio.025817
PII: bio.025817
Knihovny.cz E-zdroje
- Klíčová slova
- Life history, Optimal cell size, Phenotypic plasticity, Sexual dimorphism, Temperature-size rule,
- Publikační typ
- časopisecké články MeSH
Cell size plays a role in evolutionary and phenotypically plastic changes in body size. To examine this role, we measured the sizes of seven cell types of geckos (Paroedura picta) reared at three constant temperatures (24, 27, and 30°C). Our results show that the cell size varies according to the body size, sex and developmental temperature, but the pattern of this variance depends on the cell type. We identified three groups of cell types, and the cell sizes changed in a coordinated manner within each group. Larger geckos had larger erythrocytes, striated muscle cells and hepatocytes (our first cell group), but their renal proximal tubule cells and duodenal enterocytes (our second cell group), as well as tracheal chondrocytes and epithelial skin cells (our third cell group), were largely unrelated to the body size. For six cell types, we also measured the nuclei and found that larger cells had larger nuclei. The relative sizes of the nuclei were not invariant but varied in a complex manner with temperature and sex. In conclusion, we provide evidence suggesting that changes in cell size might be commonly involved in the origin of thermal and sexual differences in adult size. A recent theory predicts that smaller cells speed up metabolism but demand more energy for their maintenance; consequently, the cell size matches the metabolic demand and supply, which in ectotherms, largely depends on the thermal conditions. The complex thermal dependency of cell size in geckos suggests that further advancements in understanding the adaptive value of cell size requires the consideration of tissue-specific demand/supply conditions.
Charles University Department of Ecology Viničná 7 128 44 Praha Czech Republic
Charles University Department of Zoology Viničná 7 128 44 Praha Czech Republic
Jagiellonian University Institute of Environmental Sciences Gronostajowa 7 30 387 Kraków Poland
University of Białystok Institute of Biology Ciołkowskiego 1J 15 245 Białystok Poland
Zobrazit více v PubMed
Adrian G. J., Czarnoleski M. and Angilletta M. J. Jr. (2016). Flies evolved small bodies and cells at high or fluctuating temperatures. Ecol. Evol. 6, 7991-7996. 10.1002/ece3.2534 PubMed DOI PMC
Arendt J. (2007). Ecological correlates of body size in relation to cell size and cell number: patterns in flies, fish, fruits, and foliage. Biol. Rev. 82, 241-256. 10.1111/j.1469-185X.2007.00013.x PubMed DOI
Ashton K. G. and Feldman C. R. (2003). Bergmann's rule in nonavian reptiles: turtles follow it, lizards and snakes reverse it. Evolution 57, 1151-1163. 10.1111/j.0014-3820.2003.tb00324.x PubMed DOI
Atkinson D. (1994). Temperature and organism size: a biological law for ectotherms. Adv. Ecol. Res. 25, 1-58. 10.1016/S0065-2504(08)60212-3 DOI
Atkinson D., Morley S. A. and Hughes R. N. (2006). From cells to colonies: at what levels of body organization does the ‘temperature-size rule’ apply? Evol. Dev. 8, 202-214. 10.1111/j.1525-142X.2006.00090.x PubMed DOI
Azevedo R. B. R., French V. and Partridge L. (2002). Temperature modulates epidermal cell size in Drosophila melanogaster. J. Insect Physiol. 48, 231-237. 10.1016/S0022-1910(01)00168-8 PubMed DOI
Brodribb T. J., Jordan G. J. and Carpenter R. J. (2013). Unified changes in cell size permit coordinated leaf evolution. New Phytol. 199, 559-570. 10.1111/nph.12300 PubMed DOI
Cavalier-Smith T. (2005). Economy, speed and size matter: Evolutionary forces driving nuclear genome miniaturization and expansion. Ann. Bot. 95, 147-175. 10.1093/aob/mci010 PubMed DOI PMC
Chown S. L., Marais E., Terblanche J. S., Klok C. J., Lighton J. R. B. and Blackburn T. M. (2007). Scaling of insect metabolic rate is inconsistent with the nutrient supply network model. Funct. Ecol. 21, 282-290. 10.1111/j.1365-2435.2007.01245.x DOI
Cunha A., Azevedo R. B. R., Emmons S. W. and Leroi A. M. (1999). Developmental biology - variable cell number in nematodes. Nature 402, 253-253 10.1038/46211 PubMed DOI
Czarnoleski M., Cooper B. S., Kierat J. and Angilletta M. J. (2013). Flies developed small bodies and small cells in warm and in thermally fluctuating environments. J. Exp. Biol. 216, 2896-2901. 10.1242/jeb.083535 PubMed DOI PMC
Czarnoleski M., Dragosz-Kluska D. and Angilletta M. J. (2015a). Flies developed smaller cells when temperature fluctuated more frequently. J. Therm. Biol. 54, 106-110. 10.1016/j.jtherbio.2014.09.010 PubMed DOI
Czarnoleski M., Ejsmont-Karabin J., Angilletta M. J. and Kozlowski J. (2015b). Colder rotifers grow larger but only in oxygenated waters. Ecosphere 6, art164 10.1890/ES15-00024.1 DOI
Czarnoleski M., Labecka A. M. and Kozłowski J. (2016). Thermal plasticity of body size and cell size in snails from two subspecies of Cornu aspersum. J. Molluscan Stud. 82, 235-243. 10.1093/mollus/eyv059 DOI
Dale J., Dunn P. O., Figuerola J., Lislevand T., Szekely T. and Whittingham L. A. (2007). Sexual selection explains Rensch's rule of allometry for sexual size dimorphism. Proc. R. Soc. B. Biol. Sci. 274, 2971-2979. 10.1098/rspb.2007.1043 PubMed DOI PMC
Davison J. (1956). An analysis of cell growth and metabolism in the crayfish (Procambarus-alleni). Biol. Bull. 110, 264-273. 10.2307/1538832 DOI
De Virgilio C. and Loewith R. (2006). The TOR signalling network from yeast to man. Int. J. Biochem. Cell Biol. 38, 1476-1481. 10.1016/j.biocel.2006.02.013 PubMed DOI
Ejsmond M. J., Varpe O., Czarnoleski M. and Kozlowski J. (2015). Seasonality in offspring value and trade-offs with growth explain capital breeding. Am. Nat. 186, E111-E125. 10.1086/683119 DOI
Frýdlová P., Hnízdo J., Chylíkova L., Šimková O., Cikánová V., Velenský P. and Frynta D. (2013). Morphological characteristics of blood cells in monitor lizards: is erythrocyte size linked to actual body size? Integr. Zool. 8, 39-45. 10.1111/j.1749-4877.2012.00295.x PubMed DOI
Gregory T. R. (2001a). The bigger the C-value, the larger the cell: Genome size and red blood cell size in vertebrates. Blood Cells Mol. Dis. 27, 830-843. 10.1006/bcmd.2001.0457 PubMed DOI
Gregory T. R. (2001b). Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol. Rev. 76, 65-101. PubMed
Grewal S. S. (2009). Insulin/TOR signaling in growth and homeostasis: A view from the fly world. Int. J. Biochem. Cell Biol. 41, 1006-1010. 10.1016/j.biocel.2008.10.010 PubMed DOI
Heinrich E. C., Farzin M., Klok C. J. and Harrison J. F. (2011). The effect of developmental stage on the sensitivity of cell and body size to hypoxia in Drosophila melanogaster. J. Exp. Biol. 214, 1419-1427. 10.1242/jeb.051904 PubMed DOI PMC
Hermaniuk A., Rybacki M. and Taylor J. R. E. (2017). Metabolic rate of diploid and triploid edible frog Pelophylax esculentus correlates inversely with cell size in tadpoles but not in frogs. Physiol. Biochem. Zool. 90, 230-239. 10.1086/689408 PubMed DOI
Hessen D. O., Daufresne M. and Leinaas H. P. (2013). Temperature-size relations from the cellular-genomic perspective. Biol. Rev. 88, 476-489. 10.1111/brv.12006 PubMed DOI
Horne C. R., Hirst A. G. and Atkinson D. (2015). Temperature-size responses match latitudinal-size clines in arthropods, revealing critical differences between aquatic and terrestrial species. Ecol. Lett. 18, 327-335. 10.1111/ele.12413 PubMed DOI
Jalal M., Wojewodzic M. W., Laane C. M. M. and Hessen D. O. (2013). Larger Daphnia at lower temperature: a role for cell size and genome configuration? Genome 56, 511-519. 10.1139/gen-2013-0004 PubMed DOI
Jalal M., Andersen T. and Hessen D. O. (2015). Temperature and developmental responses of body and cell size in Drosophila; effects of polyploidy and genome configuration. J. Therm. Biol. 51, 1-14. 10.1016/j.jtherbio.2015.02.011 PubMed DOI
Kerr J. B. (2010). Functional Histology. Australia: Mosby Elsevier.
Kierat J., Szentgyörgyi H., Czarnoleski M. and Woyciechowski M. (2017). The thermal environment of the nest affects body and cell size in the solitary red mason bee (Osmia bicornis L.). J. Therm. Biol. (in press). PubMed
Klok C. J. and Harrison J. F. (2013). The temperature size rule in Arthropods: independent of macro-environmental variables but size dependent. Integr. Comp. Biol. 53, 557-570. 10.1093/icb/ict075 PubMed DOI
Kozlowski J. (1992). Optimal allocation of resources to growth and reproduction: implications for age and size at maturity. Trends Ecol. Evol. 7, 15-19. 10.1016/0169-5347(92)90192-E PubMed DOI
Kozlowski J. (2006). Why life histories are diverse? Pol. J. Ecol. 54, 585-605.
Kozlowski J., Konarzewski M. and Gawelczyk A. T. (2003). Cell size as a link between noncoding DNA and metabolic rate scaling. Proc. Natl. Acad. Sci. USA 100, 14080-14085. 10.1073/pnas.2334605100 PubMed DOI PMC
Kozlowski J., Czarnoleski M. and Danko M. (2004). Can optimal resource allocation models explain why ectotherms grow larger in cold? Integr. Comp. Biol. 44, 480-493. 10.1093/icb/44.6.480 PubMed DOI
Kozlowski J., Czarnoleski M., François-Krassowska A., Maciak S. and Pis T. (2010). Cell size is positively correlated between different tissues in passerine birds and amphibians, but not necessarily in mammals. Biol. Lett. 6, 792-796. 10.1098/rsbl.2010.0288 PubMed DOI PMC
Kubička L., Schořálková T., Červenka J. and Kratochvíl L. (2016). Ovarian control of growth and sexual size dimorphism in a male-larger gecko. J. Exp. Biol. 220, 787-795. 10.1242/jeb.146597 PubMed DOI
Maciak S., Janko K., Kotusz J., Choleva L., Boroń A., Juchno D., Kujawa R., Kozlowski J. and Konarzewski M. (2011). Standard metabolic rate (SMR) is inversely related to erythrocyte and genome size in allopolyploid fish of the Cobitis taenia hybrid complex. Funct. Ecol. 25, 1072-1078. 10.1111/j.1365-2435.2011.01870.x DOI
Maciak S., Bonda-Ostaszewska E., Czarnoleski M., Konarzewski M. and Kozlowski J. (2014). Mice divergently selected for high and low basal metabolic rates evolved different cell size and organ mass. J. Evol. Biol. 27, 478-487. 10.1111/jeb.12306 PubMed DOI
Reeve J. P. and Fairbairn D. J. (2001). Predicting the evolution of sexual size dimorphism. J. Evol. Biol. 14, 244-254. 10.1046/j.1420-9101.2001.00276.x DOI
Schönecker P. (2008). Geckos of Madagascar, the Seychelles, Comoros and Mascarene Islands Rodgau: Aqualog Verlag Gmbh.
Schramm B. W., Gudowska A., Kapustka F., Labecka A. M., Czarnoleski M. and Kozlowski J. (2015). Automated measurement of ommatidia in the compound eyes of beetles. BioTechniques 59, 99-101. 10.2144/000114316 PubMed DOI
Starostová Z. and Musilová Z. (2016). The complete mitochondrial genome of the Madagascar ground gecko Paroedura picta (Squamata: Gekkonidae). Mitochondrial DNA Part A 27, 4397-4398. 10.3109/19401736.2015.1089540 PubMed DOI
Starostová Z., Kratochvíl L. and Frynta D. (2005). Dwarf and giant geckos from the cellular perspective: the bigger the animal, the bigger its erythrocytes? Funct. Ecol. 19, 744-749. 10.1111/j.1365-2435.2005.01020.x DOI
Starostová Z., Kubička L. and Kratochvíl L. (2010). Macroevolutionary pattern of sexual size dimorphism in geckos corresponds to intraspecific temperature-induced variations. J. Evol. Biol. 23, 670-677. 10.1111/j.1420-9101.2010.01933.x PubMed DOI
Starostová Z., Angilletta M. J., Kubička L. and Kratochvíl L. (2012). Thermal dependence of reproductive allocation in a tropical lizard. J. Therm. Biol. 37, 159-163. 10.1016/j.jtherbio.2011.12.009 DOI
Starostová Z., Konarzewski M., Kozlowski J. and Kratochvíl L. (2013). Ontogeny of metabolic rate and red blood cell size in eyelid geckos: species follow different paths. PLoS ONE 8, e64715 10.1371/journal.pone.0064715 PubMed DOI PMC
Stearns S. C. (1992). The Evolution of Life Histories. Oxford: Oxford University Press.
Stevenson R. D., Hill M. F. and Bryant P. J. (1995). Organ and cell allometry in Hawaiian Drosophila: how to make a big fly. Proc. R. Soc. B 259, 105-110. 10.1098/rspb.1995.0016 PubMed DOI
Stillwell R. C., Blanckenhorn W. U., Teder T., Davidowitz G. and Fox C. W. (2010). Sex differences in phenotypic plasticity affect variation in sexual size dimorphism in insects: from physiology to evolution. Annu. Rev. Entomol. 55, 227-245. 10.1146/annurev-ento-112408-085500 PubMed DOI PMC
Szarski H. (1983). Cell size and the concept of wasteful and frugal evolutionary strategies. J. Theor. Biol. 105, 201-209. 10.1016/S0022-5193(83)80002-2 PubMed DOI
Teder T. and Tammaru T. (2005). Sexual size dimorphism within species increases with body size in insects. Oikos 108, 321-334. 10.1111/j.0030-1299.2005.13609.x DOI
Van Voorhies W. A. (1996). Bergmann size clines: a simple explanation for their occurrence in ectotherms. Evolution 50, 1259-1264. 10.1111/j.1558-5646.1996.tb02366.x PubMed DOI
Walczyńska A., Labecka A. M., Sobczyk M., Czarnoleski M. and Kozlowski J. (2015). The Temperature-size rule in Lecane inermis (Rotifera) is adaptive and driven by nuclei size adjustment to temperature and oxygen concentrations. J. Therm. Biol. 54, 78-85. 10.1016/j.jtherbio.2014.11.002 PubMed DOI
West G. B., Brown J. H. and Enquist B. J. (1997). A general model for the origin of allometric scaling laws in biology. Science 276, 122-126. 10.1126/science.276.5309.122 PubMed DOI
Wieczorek M., Szafranska P. A., Labecka A. M., Lazaro J. and Konarzewski M. (2015). Effect of the abrasive properties of sedges on the intestinal absorptive surface and resting metabolic rate of root voles. J. Exp. Biol. 218, 309-315. 10.1242/jeb.117168 PubMed DOI
Individual and age-related variation of cellular brain composition in a squamate reptile