Individual and age-related variation of cellular brain composition in a squamate reptile

. 2020 Sep ; 16 (9) : 20200280. [epub] 20200923

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32961085

Within-species variation in the number of neurons, other brain cells and their allocation to different brain parts is poorly studied. Here, we assess these numbers in a squamate reptile, the Madagascar ground gecko (Paroedura picta). We examined adults from two captive populations and three age groups within one population. Even though reptiles exhibit extensive adult neurogenesis, intrapopulation variation in the number of neurons is similar to that in mice. However, the two populations differed significantly in most measures, highlighting the fact that using only one population can underestimate within-species variation. There is a substantial increase in the number of neurons and decrease in neuronal density in adult geckos relative to hatchlings and an increase in the number of neurons in the telencephalon in fully grown adults relative to sexually mature young adults. This finding implies that adult neurogenesis does not only replace worn out but also adds new telencephalic neurons in reptiles during adulthood. This markedly contrasts with the situation in mammals, where the number of cortical neurons declines with age.

Zobrazit více v PubMed

Herculano-Houzel S. 2017. Numbers of neurons as biological correlates of cognitive capability. Curr. Opin. Behav. Sci. 16, 1–7. (10.1016/j.cobeha.2017.02.004) DOI

Němec P, Osten P. 2020. The evolution of brain structure captured in stereotyped cell count and cell type distributions. Curr. Opin. Neurobiol. 60, 176–183. (10.1016/j.conb.2019.12.005) PubMed DOI PMC

Olkowicz S, Kocourek M, Lučan RK, Porteš M, Fitch TW, Herculano-Houzel S, Němec P. 2016. Birds have primate-like numbers of neurons in the forebrain. Proc. Natl Acad. Sci. USA 113, 7255–7260. (10.1073/pnas.1517131113) PubMed DOI PMC

Dicke U, Roth G. 2016. Neuronal factors determining high intelligence. Phil. Trans. R. Soc. B 371, 20150180 (10.1098/rstb.2015.0180) PubMed DOI PMC

Herculano-Houzel S, Messeder DJ, Fonseca-Azevedo K, Pantoja NA. 2015. When larger brains do not have more neurons: increased numbers of cells are compensated by decreased average cell size across mouse individuals. Front. Neuroanat. 9, 64 (10.3389/fnana.2015.00064) PubMed DOI PMC

Marhounová L, Kotrschal A, Kverková K, Kolm N, Němec P. 2019. Artificial selection on brain size leads to matching changes in overall number of neurons. Evolution 73, 2003–2012. (10.1111/evo.13805) PubMed DOI PMC

Ngwenya A, et al. 2013. The continuously growing central nervous system of the Nile crocodile (Crocodylus niloticus). Anat. Rec. 296, 1489–1500. (10.1002/ar.22752) PubMed DOI

Ngwenya A, Patzke N, Manger PR, Herculano-Houzel S. 2016. Continued growth of the central nervous system without mandatory addition of neurons in the Nile crocodile (Crocodylus niloticus). Brain Behav. Evol. 87, 19–38. (10.1159/000443201) PubMed DOI

López-García C, Tineo PL, Del Corral J. 1984. Increase of the neuron number in some cerebral cortical areas of a lizard, Podarcis hispanica, (Steind., 1870), during postnatal periods of life. J. Hirnforsch. 25, 255–259. PubMed

Font E, Desfilis E, Pérez-Cañellas M, García-Verdugo J. 2001. Neurogenesis and neuronal regeneration in the adult reptilian brain. Brain Behav. Evol. 58, 276–295. (10.1159/000057570) PubMed DOI

Kaslin J, Ganz J, Brand M. 2007. Proliferation, neurogenesis and regeneration in the non-mammalian vertebrate brain. Phil. Trans. R. Soc. B 363, 101–122. (10.1098/rstb.2006.2015) PubMed DOI PMC

Ngwenya A, Patzke N, Herculano-Houzel S, Manger P. 2017. Potential adult neurogenesis in the telencephalon and cerebellar cortex of the Nile crocodile revealed with doublecortin immunohistochemistry. Anat. Rec. 301, 659–672. (10.1002/ar.23738) PubMed DOI

Pérez-Cañellas M, García-Verdugo J. 1996. Adult neurogenesis in the telencephalon of a lizard: a [3H]thymidine autoradiographic and bromodeoxyuridine immunocytochemical study. Dev. Brain Res. 93, 49–61. (10.1016/0165-3806(96)00014-4) PubMed DOI

McDonald R, Vickaryous M. 2018. Evidence for neurogenesis in the medial cortex of the leopard gecko, Eublepharis macularius. Scient. Rep. 8, 9648 (10.1038/s41598-018-27880-6) PubMed DOI PMC

LaDage LD. 2020. Broadening the functional and evolutionary understanding of postnatal neurogenesis using reptilian models. J. Exp. Biol. 223, jeb210542 (10.1242/jeb.210542) PubMed DOI

Kubička L, Kratochvíl L. 2009. First grow, then breed and finally get fat: hierarchical allocation to life-history traits in a lizard with invariant clutch size. Funct. Ecol. 23, 595–601. (10.1111/j.1365-2435.2008.01518.x) DOI

Ives A, Midford P, Garland T. 2007. Within-species variation and measurement error in phylogenetic comparative methods. Syst. Biol. 56, 252–270. (10.1080/10635150701313830) PubMed DOI

Gonda A, Herczeg G, Merilä J. 2013. Evolutionary ecology of intraspecific brain size variation: a review. Ecol. Evol. 3, 2751–2764. (10.1002/ece3.627) PubMed DOI PMC

Platel R. 1975. Encéphalisation et sexe chez les reptiles squamates [Encephalization and sex in squamate reptiles]. Bull. Soc. Zool. France 100, 621–631. [In French.]

Platel R. 1975. Nouvelles données sur l'encéphalisation des reptiles squamates [New data on encephalization of squamate reptiles]. J. Zool. Syst. Evol. Res. 13, 161–184. [In French, with English abstract.] (10.1111/j.1439-0469.1975.tb00507.x) DOI

Crews D, Wade J, Wilczynski W. 1990. Sexually dimorphic areas in the brain of whiptail lizards. Brain Behav. Evol. 36, 262–270. (10.1159/000115312) PubMed DOI

Sampedro C, Font E, Desfilis E. 2008. Size variation and cell proliferation in chemosensory brain areas of a lizard (Podarcis hispanica): effects of sex and season. Eur. J. Neurosci. 28, 87–98. (10.1111/j.1460-9568.2008.06287.x) PubMed DOI

Hoops D, et al. 2016. Sexual selection predicts brain structure in dragon lizards. J. Evol. Biol. 30, 244–256. (10.1111/jeb.12984) PubMed DOI

Hara Y, Takeuchi M, Kageyama Y, Tatsumi K, Hibi M, Kiyonari H, Kuraku S. 2018. Madagascar ground gecko genome analysis characterizes asymmetric fates of duplicated genes. BMC Biol. 16, 40 (10.1186/s12915-018-0509-4) PubMed DOI PMC

Czarnoleski M, Labecka A, Starostová Z, Sikorska A, Bonda-Ostaszewska E, Woch K, Kubička L, Kratochvíl L, Kozlowski J. 2017. Not all cells are equal: effects of temperature and sex on the size of different cell types in the Madagascar ground gecko Paroedura picta. Biol. Open 6, 1149–1154. (10.1242/bio.025817) PubMed DOI PMC

Kratochvíl L, Kubička L, Vohralík M, Starostová Z. 2018. Variability in vertebral numbers does not contribute to sexual size dimorphism, interspecific variability, or phenotypic plasticity in body size in geckos (Squamata: Gekkota: Paroedura). J. Exp. Zool. A 329, 185–190. (10.1002/jez.2159) PubMed DOI

Kubička L, Schořálková T, Červenka J, Kratochvíl L. 2016. Ovarian control of growth and sexual size dimorphism in a male-larger gecko. J. Exp. Biol. 220, 787–795. (10.1242/jeb.146597) PubMed DOI

Meiri S. 2008. Evolution and ecology of lizard body sizes. Glob. Ecol. Biogeogr. 17, 724–734. (10.1111/j.1466-8238.2008.00414.x) DOI

Herculano-Houzel S, Lent R. 2005. Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J. Neurosci. 25, 2518–2521. (10.1523/JNEUROSCI.4526-04.2005) PubMed DOI PMC

Bahney J, von Bartheld CS. 2014. Validation of the isotropic fractionator: comparison with unbiased stereology and DNA extraction for quantification of glial cells. J. Neurosci. Methods 222, 165–174. (10.1016/j.jneumeth.2013.11.002) PubMed DOI PMC

Miller DJ, Balaram P, Young NA, Kaas JH. 2014. Three counting methods agree on cell and neuron number in chimpanzee primary visual cortex. Front. Neuroanat. 8, 36 (10.3389/fnana.2014.00036) PubMed DOI PMC

Ngwenya A, Nahirney J, Brinkman B, Williams L, Iwaniuk AN. 2017. Comparison of estimates of neuronal number obtained using the isotropic fractionator method and unbiased stereology in day old chicks (Gallus domesticus). J. Neurosci. Methods 287, 39–46. (10.1016/j.jneumeth.2017.05.025) PubMed DOI

Mullen RJ, Buck CR, Smith AM. 1992. NeuN, a neuronal specific nuclear protein in vertebrates. Development 116, 201–211. PubMed

R Core Team. 2019. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; See https://www.R-project.org.

Kverková K, Bělíková T, Olkowicz S, Pavelková Z, O'Riain JM, Šumbera R, Burda H, Bennett NC, Němec P. 2018. Sociality does not drive the evolution of large brains in eusocial African mole-rats. Scient. Rep. 8, 9203 (10.1038/s41598-018-26062-8) PubMed DOI PMC

Powers AS. 2016. Plasticity and adult neurogenesis in amphibians and reptiles: more questions than answers. Brain Behav. Evol. 87, 175–183. (10.1159/000447047) PubMed DOI

Jerison H. 1973. Evolution of the brain and intelligence. New York, NY: Academic Press.

Starostová Z, Kubička L, Kratochvíl L. 2010. Macroevolutionary pattern of sexual size dimorphism in geckos corresponds to intraspecific temperature-induced variation. J. Evol. Biol. 23, 670–677. (10.1111/j.1420-9101.2010.01933.x) PubMed DOI

Mink JW, Blumenschine RJ, Adams DB. 1981. Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis. Am. J. Physiol. 241, R203–R212. PubMed

Fu Y, Rusznák Z, Herculano-Houzel S, Watson C, Paxinos G. 2013. Cellular composition characterizing postnatal development and maturation of the mouse brain and spinal cord. Brain. Struct. Funct. 218, 1337–1354. (10.1007/s00429-012-0462-x) PubMed DOI

Morterá P, Herculano-Houzel S. 2012. Age-related neuronal loss in the rat brain starts at the end of adolescence. Front. Neuroanat. 6, 45 (10.3389/fnana.2012.00045) PubMed DOI PMC

Bandeira F, Lent R, Herculano-Houzel S. 2009. Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat. Proc. Natl Acad. Sci. USA 106, 14 108–14 113. (10.1073/pnas.0804650106) PubMed DOI PMC

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.c.5120436

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...