The evolution of brain structure captured in stereotyped cell count and cell type distributions
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, přehledy
Grantová podpora
R01 MH115267
NIMH NIH HHS - United States
U01 MH105971
NIMH NIH HHS - United States
U01 MH114824
NIMH NIH HHS - United States
PubMed
31945723
PubMed Central
PMC7191610
DOI
10.1016/j.conb.2019.12.005
PII: S0959-4388(19)30140-0
Knihovny.cz E-zdroje
- MeSH
- druhová specificita MeSH
- mapování mozku * MeSH
- mozek * MeSH
- neurony MeSH
- počet buněk MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
The stereotyped features of brain structure, such as the distribution, morphology and connectivity of neuronal cell types across brain areas, are those most likely to explain the remarkable capacity of the brain to process information and govern behaviors. Recent advances in anatomical methods, including the simple but versatile isotropic fractionator and several whole-brain labeling, clearing and microscopy methods, have opened the door to an exciting new era in comparative brain anatomy, one that has the potential to transform our understanding of the brain structure-function relationship by representing the evolution of brain complexity in quantitative anatomical features shared across species and species-specific or clade-specific. Here we discuss these methods and their application to mapping brain cell count and cell type distributions-two particularly powerful neural correlates of vertebrate cognitive and behavioral capabilities.
Cold Spring Harbor Laboratory Cold Spring Harbor NY 11743 USA
Department of Zoology Faculty of Science Charles University Vinicna 7 12844 Prague Czech Republic
Zobrazit více v PubMed
Briscoe SD, Ragsdale CW: Evolution of the Chordate Telencephalon. Curr Biol 2019, 29:R647–R662. PubMed PMC
Liebeskind BJ, Hillis DM, Zakon HH, Hofmann HA: Complex Homology and the Evolution of Nervous Systems. Trends Ecol Evol 2016, 31:127–135. PubMed PMC
Martin-Duran JM, Pang K, Borve A, Le HS, Furu A, Cannon JT, Jondelius U, Hejnol A: Convergent evolution of bilaterian nerve cords. Nature 2018, 553:45–50. PubMed PMC
Tosches MA, Laurent G: Evolution of neuronal identity in the cerebral cortex. Curr Opin Neurobiol 2019, 56:199–208. PubMed
Striedter GF, Northcutt RG: Brains Through Time: A Natural History of Vertebrates: Oxford University Press; 2019.
West MJ: Stereological methods for estimating the total number of neurons and synapses: issues of precision and bias. Trends Neurosci 1999, 22:51–61. PubMed
Herculano-Houzel S, Lent R: Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J Neurosci 2005, 25:2518–2521. PubMed PMC
Young NA, Flaherty DK, Airey DC, Varlan P, Aworunse F, Kaas JH, Collins CE: Use of flow cytometry for high-throughput cell population estimates in brain tissue. Front Neuroanat 2012, 6:27. PubMed PMC
Herculano-Houzel S, von Bartheld CS, Miller DJ, Kaas JH: How to count cells: the advantages and disadvantages of the isotropic fractionator compared with stereology. Cell Tissue Res 2015, 360:29–42. PubMed PMC
Bahney J, von Bartheld CS: Validation of the isotropic fractionator: comparison with unbiased stereology and DNA extraction for quantification of glial cells. J Neurosci Methods 2014,222:165–174. PubMed PMC
Miller DJ, Balaram P, Young NA, Kaas JH: Three counting methods agree on cell and neuron number in chimpanzee primary visual cortex. Front Neuroanat 2014, 8:36. PubMed PMC
Ngwenya A, Nahirney J, Brinkman B, Williams L, Iwaniuk AN: Comparison of estimates of neuronal number obtained using the isotropic fractionator method and unbiased stereology in day old chicks (Gallus domesticus). J Neurosci Methods 2017, 287:39–46. PubMed
Neves K, Guimarães DM, Rayêe D, Valério-Gomes B, Iack PM, Lent R, Mota B: The reliability of the isotropic fractionator method for counting total cells and neurons. J Neurosci Methods 2019,326:108392. PubMed
Herculano-Houzel S, Catania K, Manger PR, Kaas JH: Mammalian Brains Are Made of These: A Dataset of the Numbers and Densities of Neuronal and Nonneuronal Cells in the Brain of Glires, Primates, Scandentia, Eulipotyphlans, Afrotherians and Artiodactyls, and Their Relationship with Body Mass. Brain BehavEvol 2015, 86:145–163. PubMed
Jardim-Messeder D, Lambert K, Noctor S, Pestana FM, de Castro Leal ME, Bertelsen MF, Alagaili AN, Mohammad OB, Manger PR, Herculano-Houzel S: Dogs have the most neurons, though not the largest brain: trade-off between body mass and number of neurons in the cerebral cortex of large carnivoran species. Front Neuroanat 2017, 11:118. PubMed PMC
Dos Santos SE, Porfirio J, da Cunha FB, Manger PR, Tavares W, Pessoa L, Raghanti MA, Sherwood CC, Herculano-Houzel S: Cellular Scaling Rules for the Brains of Marsupials: Not as “Primitive” as Expected. Brain Behav Evol 2017, 89:48–63. PubMed
Kverková K, Bělíková T, Olkowicz S, Pavelková Z, O’Riain MJ, Šumbera R, Burda H, Bennett NC, Němec P: Sociality does not drive the evolution of large brains in eusocial African mole-rats. Sci Rep 2018, 8:9203. PubMed PMC
Olkowicz S, Kocourek M, Lučan RK, Porteš M, Fitch WT, Herculano-Houzel S, Němec P: Birds have primate-like numbers of neurons in the forebrain. Proc Natl Acad Sci USA 2016, 113:7255–7260. PubMed PMC
Ngwenya A, Patzke N, Manger PR, Herculano-Houzel S: Continued growth of the central nervous system without mandatory addition of neurons in the Nile crocodile (Crocodylus niloticus). Brain Behav Evol 2016, 87:19–38. PubMed
Marhounová L, Kotrschal A, Kverková K, Kolm N, Němec P: Artificial selection on brain size leads to matching changes in overall number of neurons. Evolution 2019. PubMed PMC
Herculano-Houzel S, Collins CE, Wong P, Kaas JH: Cellular scaling rules for primate brains. Proc Natl Acad Sci USA 2007, 104:3562–3567. PubMed PMC
Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Filho WJ, Lent R, Herculano-Houzel S: Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. JComp Neurol 2009, 513:532–541. PubMed
Herculano-Houzel S: The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc Natl Acad Sci USA 2012, 109:10661–10668. PubMed PMC
Herculano-Houzel S: Coordinated scaling of cortical and cerebellar numbers of neurons. Front Neuroanat 2010, 4:12. PubMed PMC
Herculano-Houzel S, Avelino-de-Souza K, Neves K, Porfirio J, Messeder D, Mattos Feijo L, Maldonado J, Manger PR: The elephant brain in numbers. Front Neuroanat 2014, 8:46. PubMed PMC
Deaner RO, Isler K, Burkart J, Van Schaik C: Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain Behav Evol 2007, 70:115–124. PubMed
MacLean EL, Hare B, Nunn CL, Addessi E, Amici F, Anderson RC, Aureli F, Baker JM, Bania AE, Barnard AM: The evolution of self-control. Proc Natl Acad Sci USA 2014, 111:E2140–E2148. PubMed PMC
Kabadayi C, Taylor LA, von Bayern AM, Osvath M: Ravens, New Caledonian crows and jackdaws parallel great apes in motor self-regulation despite smaller brains. R Soc Open Sci 2016,3:160104. PubMed PMC
Güntürkün O, Bugnyar T: Cognition without cortex. Trends Cogn Sci 2016, 20:291–303. PubMed
Lambert ML, Jacobs I, Osvath M, von Bayern AM: Birds of a feather? Parrot and corvid cognition compared. Behaviour 2019, 156: 505–594..
Herculano-Houzel S: Numbers of neurons as biological correlates of cognitive capability. Curr Opin Behav Sci 2017, 16:1–7.
Sokolov AA, Miall RC, Ivry RB: The cerebellum: adaptive prediction for movement and cognition. Trends Cogn Sci 2017, 21:313–332. PubMed PMC
Barton RA: Embodied cognitive evolution and the cerebellum. Philos Trans R Soc Lond B Biol Sci 2012, 367:2097–2107. PubMed PMC
Barton RA, Venditti C: Rapid Evolution of the Cerebellum in Humans and Other Great Apes. Curr Biol 2017, 27:1249–1250. PubMed
Smaers JB, Turner AH, Gomez-Robles A, Sherwood CC: A cerebellar substrate for cognition evolved multiple times independently in mammals. Elife 2018, 7. PubMed PMC
Dicke U, Roth G: Neuronal factors determining high intelligence. Philos Trans R Soc Lond B Biol Sci 2016, 371:20150180. PubMed PMC
Seelke AM, Dooley JC, Krubitzer LA: The cellular composition of the marsupial neocortex. J Comp Neurol 2014, 522:2286–2298. PubMed PMC
Herculano-Houzel S, Watson C, Paxinos G: Distribution of neurons in functional areas of the mouse cerebral cortex reveals quantitatively different cortical zones. Front Neuroanat 2013, 7:35. PubMed PMC
Collins CE, Airey DC, Young NA, Leitch DB, Kaas JH:Neuron densities vary across and within cortical areas in primates. Proc Natl Acad Sci USA 2010, 107:15927–15932. PubMed PMC
Collins CE, Turner EC, Sawyer EK, Reed JL, Young NA, Flaherty DK, Kaas JH: Cortical cell and neuron density estimates in one chimpanzee hemisphere. Proc Natl Acad Sci USA 2016, 113:740–745. PubMed PMC
Turner EC, Young NA, Reed JL, Collins CE, Flaherty DK, Gabi M, Kaas JH: Distributions of Cells and Neurons across the Cortical Sheet in Old World Macaques. Brain Behav Evol 2016, 88:1–13. PubMed
Ribeiro PFM, Ventura-Antunes L, Gabi M, Mota B, Grinberg LT, Farfel JM, Ferretti-Rebustini REL, Leite REP, Filho WJ, Herculano-Houzel S: The human cerebral cortex is neither one nor many: neuronal distribution reveals two quantitatively different zones in the gray matter, three in the white matter, and explains local variations in cortical folding. Front Neuroanat 2013, 7:28. PubMed PMC
Charvet CJ, Cahalane DJ, Finlay BL: Systematic, Cross-Cortex Variation in Neuron Numbers in Rodents and Primates. Cereb Cortex 2013, 25:147–160. PubMed PMC
Herculano-Houzel S, Messeder DJ, Fonseca-Azevedo K, Pantoja NA: When larger brains do not have more neurons: increased numbers of cells are compensated by decreased average cell size across mouse individuals. Front Neuroanat 2015, 9:64. PubMed PMC
Ecker JR, Geschwind DH, Kriegstein AR, Ngai J, Osten P, Polioudakis D, Regev A, Sestan N, Wickersham IR, Zeng H: The BRAIN Initiative Cell Census Consortium: Lessons Learned toward Generating a Comprehensive Brain Cell Atlas. Neuron 2017, 96:542–557. PubMed PMC
Zeng H, Sanes JR: Neuronal cell-type classification: challenges, opportunities and the path forward. Nat Rev Neurosci 2017, 18:530. PubMed
Ascoli GA, Wheeler DW: In search of a periodic table of the neurons: Axonal-dendritic circuitry as the organizing principle. BioEssays 2016, 38:969–976. PubMed PMC
L Rees C, M White C, A Ascoli G: Neurochemical markers in the mammalian brain: structure, roles in synaptic communication, and pharmacological relevance. Current medicinal chemistry 2017,24:3077–3103. PubMed PMC
Shapiro E, Biezuner T, Linnarsson S: Single-cell sequencing-based technologies will revolutionize whole-organism science. Nature Reviews Genetics 2013, 14:618. PubMed
Yuste R, Hawrylycz M, Aalling N, Arendt D, Armananzas R, Ascoli G, Bielza C, Bokharaie V, Bergmann T, Bystron I et al.: A community-based transcriptomics classification and nomenclature of neocortical cell types [Internet]. arXiv.org 2019, 1909.0 3083. PubMed PMC
Huang ZJ, Zeng H: Genetic approaches to neural circuits in the mouse. Annu Rev Neurosci 2013,36:183–215. PubMed
Fenno L, Yizhar O, Deisseroth K: The development and application of optogenetics. Annu Rev Neurosci 2011, 34:389–412. PubMed PMC
Luo L, Callaway EM, Svoboda K: Genetic Dissection of Neural Circuits: A Decade of Progress. Neuron 2018, 98:865. PubMed PMC
Ragan T, Kadiri LR, Venkataraju KU, Bahlmann K, Sutin J, Taranda J, Arganda-Carreras I, Kim Y, Seung HS, Osten P: Serial two-photon tomography for automated ex vivo mouse brain imaging. Nat Methods 2012, 9:255–258. PubMed PMC
Sunkin SM, Ng L, Lau C, Dolbeare T, Gilbert TL, Thompson CL, Hawrylycz M, Dang C: Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acids Res 2013, 41:D996–D1008. PubMed PMC
Kim Y, Venkataraju KU, Pradhan K, Mende C, Taranda J, Turaga SC, Arganda-Carreras I, Ng L,Hawrylycz MJ, Rockland KS, et al.: Mapping social behavior-induced brain activation at cellular resolution in the mouse. Cell Rep 2015, 10:292–305. PubMed PMC
Kim Y, Yang GR, Pradhan K, Venkataraju KU, Bota M, Garcia Del Molino LC, Fitzgerald G, Ram K, He M,Levine JM, et al.: Brain-wide Maps Reveal Stereotyped Cell-Type-Based Cortical Architecture and Subcortical Sexual Dimorphism. Cell 2017, 171:456–469 e422. PubMed PMC
Douglas RJ, Martin KA: Mapping the matrix: the ways of neocortex. Neuron 2007, 56:226–238. PubMed
Wang X-J: A microcircuit model of prefrontal functions: ying and yang of reverberatory neurodynamics in cognition. The frontal lobes 2006:92–127.
Yang T, Shah NM: Molecular and neural control of sexually dimorphic social behaviors. Curr Opin Neurobiol 2016, 38:89–95. PubMed PMC
Chung K, Deisseroth K: CLARITY for mapping the nervous system. Nat Methods 2013, 10:508–513. PubMed
Renier N, Adams EL, Kirst C, Wu Z, Azevedo R, Kohl J, Autry AE, Kadiri L, Umadevi Venkataraju K, Zhou Y, et al.: Mapping of Brain Activity by Automated Volume Analysis of Immediate Early Genes. Cell 2016, 165:1789–1802. PubMed PMC
Cai R, Pan C, Ghasemigharagoz A, Todorov MI, Foerstera B, Zhao S, Bhatia HS, Parra-Damas A, Mrowka L, Theodorou D: Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull–meninges connections. Edited by: Nature Publishing Group; 2018. PubMed PMC
Murakami TC, Mano T, Saikawa S, Horiguchi SA, Shigeta D, Baba K, Sekiya H, Shimizu Y, Tanaka KF, Kiyonari H: A three-dimensional single-cell-resolution whole-brain atlas using CUBIC-X expansion microscopy and tissue clearing. Nature Neurosci 2018, 21:625. PubMed
Lin MK, Takahashi YS, Huo B-X, Hanada M, Nagashima J, Hata J, Tolpygo AS, Ram K, Lee BC, Miller MI:A high-throughput neurohistological pipeline for brain-wide mesoscale connectivity mapping of the common marmoset. Elife 2019, 8:e40042. PubMed PMC
Karten HJ, Brzozowska-Prechtl A, Lovell PV, Tang DD, Mello CV, Wang H, Mitra PP: Digital atlas of the zebra finch (Taeniopygia guttata) brain: A high-resolution photo atlas. J Comp Neurol 2013,521:3702–3715. PubMed PMC
Guo W, Liu X, Hu Q, Huang F, Li N, Zhang Q, Li Y, Xiong F, Luo Q, Zeng S: Whole-mount in situ hybridization of mouse brain to precisely locate mRNAs via fluorescence tomography. Journal of biophotonics 2019, 12:e201800249. PubMed
Moffitt JR, Bambah-Mukku D, Eichhorn SW, Vaughn E, Shekhar K, Perez JD, Rubinstein ND, Hao J,Regev A, Dulac C: Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 2018, 362:eaau5324. PubMed PMC
Shah S, Lubeck E, Zhou W, Cai L: seqFISH accurately detects transcripts in single cells and reveals robust spatial organization in the hippocampus. Neuron 2017, 94:752–758. e751. PubMed
Wang X, Allen WE, Wright MA, Sylwestrak EL, Samusik N, Vesuna S, Evans K, Liu C, Ramakrishnan C,Liu J: Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 2018, 361:eaat5691. PubMed PMC
Neuron numbers link innovativeness with both absolute and relative brain size in birds
The evolution of brain neuron numbers in amniotes
Individual and age-related variation of cellular brain composition in a squamate reptile